Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gas-balancing adsorption strategy towards noble-metal-based nanowire electrocatalysts

A Publisher Correction to this article was published on 18 June 2024

This article has been updated

Abstract

The preparation of noble metal nanowire electrocatalysts is greatly limited by the thermodynamically symmetric growth of face-centred-cubic structures. Here we report a gas-balancing adsorption strategy to prepare ultrathin palladium-, platinum- and gold-based nanowires (diameter < 2 nm) by controlling the competitive adsorption of in situ-generated H2 and CO. We prepare a library of 43 nanowires consisting of the three above-mentioned noble metals as hosts and 14 metals as guests. The ternary Pd85Pt8Ni7H41 nanowires with interstitial hydrogen exhibit impressive mass and specific activities of \(11.1 \, {\rm{A}}\,{\rm{mg}}_{{\rm{PGM}}}^{-1}\) and 13.9 mA cm−2, respectively, for the oxygen reduction reaction at 0.9 VRHE in alkali. Operando X-ray absorption spectroscopy demonstrates breathing-like Pd–Pd bond length and strain changes at the applied potential, with Pd85Pt8Ni7H41 nanowires exhibiting larger compressive strain at relevant potentials, as well as low oxygen coverage. Theoretical calculations suggest that the interstitial hydrogen induces an sd orbital interaction between palladium and hydrogen, which enhances the activity of the oxygen reduction reaction. The Pd85Pt8Ni7H41 nanowires can generate a high power density of 0.87 W cm−2 in H2/air (CO2-free) at 70 °C in an anion-exchange membrane fuel cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology characterizations of Pd-based nanowires.
Fig. 2: Morphology characterizations of Pt- and Au-based nanowires.
Fig. 3: Summary and formation mechanism of Pt-, Pd- and Au-based NWs libraries.
Fig. 4: Structural characterizations of PdHx-based NWs.
Fig. 5: Electrochemical tests of the Pd-based NWs in 0.1 M KOH.
Fig. 6: Mechanism investigations of the enhanced ORR activity of PdHx-based NWs.
Fig. 7: MEA performance of Pd- and Pt-based NWs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source Data are provided with this paper.

Change history

References

  1. Huo, D. et al. One-dimensional metal nanostructures: from colloidal syntheses to applications. Chem. Rev. 119, 8972–9073 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, Y. P. et al. Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coord. Chem. Rev. 450, 214244 (2022).

  3. Shao, Q., Lu, K. Y. & Huang, X. Q. Platinum group nanowires for efficient electrocatalysis. Small Methods 3, 1800545 (2019).

    Article  Google Scholar 

  4. Bu, L. Z. et al. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 7, 11850 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kulkarni, A., Siahrostami, S., Patel, A. & Norskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Jiang, K. Z. et al. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Sci. Adv. 3, e1601705 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Liang, H. W. et al. Ultrathin Te nanowires: an excellent platform for controlled synthesis of ultrathin platinum and palladium nanowires/nanotubes with very high aspect ratio. Adv. Mater. 21, 1850 (2009).

    Article  CAS  Google Scholar 

  9. Kim, H. Y. et al. Activity origin and multifunctionality of Pt-based intermetallic nanostructures for efficient electrocatalysis. ACS Catal. 9, 11242–11254 (2019).

    Article  CAS  Google Scholar 

  10. Huang, S. et al. Sublayer stable Fe dopant in porous Pd metallene boosts oxygen reduction reaction. ACS Nano 16, 522–532 (2021).

    Article  PubMed  Google Scholar 

  11. Yu, H. et al. Defect‐rich porous palladium metallene for enhanced alkaline oxygen reduction electrocatalysis. Angew. Chem. Int. Ed. 133, 12134–12138 (2021).

    Article  Google Scholar 

  12. Zhang, J. & Fang, J. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J. Am. Chem. Soc. 131, 18543–18547 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, B., Zheng, N. & Fu, G. Small molecules control the formation of Pt nanocrystals: a key role of carbon monoxide in the synthesis of Pt nanocubes. Chem. Commun. 47, 1039–1041 (2011).

    Article  CAS  Google Scholar 

  14. Wang, Y. et al. Is CO adequate to facilitate the formation of Pt3M (M = Fe, Ni and Co) nanocubes? Chem. Commun. 49, 3955 (2013).

    Article  CAS  Google Scholar 

  15. Luo, M. C. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Prabhu, P. & Lee, J. M. Metallenes as functional materials in electrocatalysis. Chem. Soc. Rev. 50, 6700–6719 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, Y. L., Cheng, T. & Goddard, W. A. Atomistic explanation of the dramatically improved oxygen reduction reaction of jagged platinum nanowires, 50 times better than Pt. J. Am. Chem. Soc. 142, 8625–8632 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, W. Y. et al. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 31, 1805833 (2019).

    Article  Google Scholar 

  19. Yu, Y., Cui, F., Sun, J. W. & Yang, P. D. Atomic structure of ultrathin gold nanowires. Nano Lett. 16, 3078–3084 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Nakagawa, M. & Kawai, T. Chirality-controlled syntheses of double-helical Au nanowires. J. Am. Chem. Soc. 140, 4991–4994 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Lv, H., Guo, X. W., Sun, L. Z., Xu, D. D. & Liu, B. A universal strategy for fast, scalable, and aqueous synthesis of multicomponent palladium alloy ultrathin nanowires. Sci. China Chem. 64, 245–252 (2021).

    Article  CAS  Google Scholar 

  22. Lv, H. et al. Ultrathin PdPt bimetallic nanowires with enhanced electrocatalytic performance for hydrogen evolution reaction. Appl. Catal. B 238, 525–532 (2018).

    Article  CAS  Google Scholar 

  23. Wang, W. C. et al. General synthesis of amorphous PdM (M = Cu, Fe, Co, Ni) alloy nanowires for boosting HCOOH dehydrogenation. Nano Lett. 21, 3458–3464 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Kong, Z. J. et al. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions. J. Am. Chem. Soc. 142, 1287–1299 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Kabiraz, M. K. et al. Understanding the grain boundary behavior of bimetallic platinum-cobalt alloy nanowires toward oxygen electro-reduction. ACS Catal. 12, 3516–3523 (2022).

    Article  CAS  Google Scholar 

  26. Huang, L. et al. Shape-control of Pt–Ru nanocrystals: tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 140, 1142–1147 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Zhu, Y. M., Bu, L. Z., Shao, Q. & Huang, X. Q. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C–C bond cleavage for ethanol oxidation electrocatalysis. ACS Catal. 9, 6607–6612 (2019).

    Article  CAS  Google Scholar 

  28. Yin, K. et al. One nanometer PtIr nanowires as high-efficiency bifunctional catalysts for electrosynthesis of ethanol into high value-added multicarbon compound coupled with hydrogen production. J. Am. Chem. Soc. 143, 10822–10827 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Zhan, C. et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 12, 6261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chatterjee, D. et al. Ultrathin Au-alloy nanowires at the liquid–liquid interface. Nano Lett. 18, 4059 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Shi, Y. et al. Solution-phase synthesis of PdH0.706 nanocubes with enhanced stability and activity toward formic acid oxidation. J. Am. Chem. Soc. 144, 2556–2568 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Kabiraz, M. K. et al. Ligand effect of shape-controlled β-palladium hydride nanocrystals on liquid-fuel oxidation reactions. Chem. Mater. 31, 5663–5673 (2019).

    Article  CAS  Google Scholar 

  33. Eastman, J. A., Thompson, L. J. & Kestel, B. J. Narrowing of the palladium–hydrogen miscibility gap in nanocrystalline palladium. Phys. Rev. B 48, 84–92 (1993).

    Article  CAS  Google Scholar 

  34. Li, H. et al. Oxidative stability matters: a case study of palladium hydride nanosheets for alkaline fuel cells. J. Am. Chem. Soc. 144, 8106–8114 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, Z. et al. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J. Am. Chem. Soc. 137, 15672–15675 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, M. et al. Electrocatalytic activities of oxygen reduction reaction on Pd/C and Pd–B/C catalysts. J. Phys. Chem. C 121, 3416–3423 (2017).

    Article  CAS  Google Scholar 

  37. Trinh, Q. T., Yang, J., Lee, J. Y. & Saeys, M. Computational and experimental study of the volcano behavior of the oxygen reduction activity of PdM@PdPt/C (M = Pt, Ni, Co, Fe, and Cr) core–shell electrocatalysts. J. Catal. 291, 26–35 (2012).

    Article  CAS  Google Scholar 

  38. Zamora Zeledón, J. A. et al. Tuning the electronic structure of Ag–Pd alloys to enhance performance for alkaline oxygen reduction. Nat. Commun. 12, 620 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tao, L. et al. A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 144, 10582–10590 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, L. et al. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 363, 870–874 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, H. J. et al. Defect-rich porous palladium metallene for enhanced alkaline oxygen reduction electrocatalysis. Angew. Chem. Int. Ed. 60, 12027–12031 (2021).

    Article  CAS  Google Scholar 

  42. Guo, J. C. et al. Template-directed rapid synthesis of Pd-based ultrathin porous intermetallic nanosheets for efficient oxygen reduction. Angew. Chem. Int. Ed. 60, 10942–10949 (2021).

    Article  CAS  Google Scholar 

  43. Bu, L. Z. et al. Coupled spd exchange in facet-controlled Pd3Pb tripods enhances oxygen reduction catalysis. Chem 4, 359–371 (2018).

    Article  CAS  Google Scholar 

  44. Sun, D. et al. Ordered intermetallic Pd3Bi prepared by an electrochemically induced phase transformation for oxygen reduction electrocatalysis. ACS Nano 13, 10818–10825 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Chang, J. et al. Rational design of septenary high-entropy alloy for direct ethanol fuel cells. Joule 7, 587–602 (2023).

    Article  CAS  Google Scholar 

  46. Mondal, S. et al. In situ mechanistic insights for the oxygen reduction reaction in chemically modulated ordered intermetallic catalyst promoting complete electron transfer. J. Am. Chem. Soc. 144, 11859–11869 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Li, J., Alsudairi, A., Ma, Z.-F., Mukerjee, S. & Jia, Q. Asymmetric volcano trend in oxygen reduction activity of Pt and non-Pt catalysts: in situ identification of the site-blocking effect. J. Am. Chem. Soc. 139, 1384–1387 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. McBride, J. R., Hass, K. C. & Weber, W. H. Resonance-Raman and lattice-dynamics studies of single-crystal PdO. Phys. Rev. B 44, 5016–5028 (1991).

    Article  CAS  Google Scholar 

  50. Wang, Y. H. et al. In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR). Angew. Chem. Int. Ed. 58, 16062–16066 (2019).

    Article  CAS  Google Scholar 

  51. Dong, J. C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    Article  CAS  Google Scholar 

  52. Zhu, E. et al. Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures. Nano Res. 13, 3310–3314 (2020).

    Article  CAS  Google Scholar 

  53. Zhao, Z. P. et al. Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells. Matter 3, 1774–1790 (2020).

    Article  Google Scholar 

  54. Li, J. R. et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 3, 124–135 (2019).

    Article  CAS  Google Scholar 

  55. Cheng, Q. et al. High-loaded sub-6 nm Pt1Co1 intermetallic compounds with high-efficient performance expression in PEMFCs. Energy Environ. Sci. 15, 278–286 (2021).

    Article  Google Scholar 

  56. Chong, L. et al. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Zeng, Y. et al. Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt. J. Am. Chem. Soc. 145, 17643–17655 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Zhao, Z. P. et al. Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nat. Nanotechnol. 17, 968 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Yang, C. L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374, 459 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

  61. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  62. Kresse, G. & Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  63. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  64. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  65. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).

    Article  CAS  Google Scholar 

  66. Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    Article  CAS  Google Scholar 

  67. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  68. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  69. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant no. 22122202 to Q.L.), National Key Research and Development Program of China (grant nos. 2021YFA1501001 and 2021YFA1600800, Q.L.) and NSF-PREM program (grant no. DMR-1828019 to G.L.). We thank the Analytical and Testing Center of the Huazhong University of Science and Technology (HUST) for performing the TEM and XRD measurements, and the BL11B beamline in the Shanghai Synchrotron Radiation Facility (SSRF) for providing the beam time. This work is supported by the Pico Center at SUSTech CRF which receives support from the Presidential Fund and Development and Reform Commission of Shenzhen Municipality.

Author information

Authors and Affiliations

Contributions

Q.L. and J.L. conceived the idea and designed the experiments. J.L., X.L, S.L., H.S. and S.Z. performed the sample synthesis, characterization and electrochemical measurements. Y.X., and H.-L.W. performed HAADF-STEM characterizations. Y.W. and G.L. provided theoretical calculations. J.L., Q.L., G.W. and Y.H. wrote and revised the paper. All of the authors contributed to the overall scientific discussion and edited the paper.

Corresponding author

Correspondence to Qing Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Sang-Il Choi, Alessandro Long, Xueqiang Qi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–76, Tables 1–11 and Notes 1–8.

Supplementary Data 1

CIF data of the computational models.

Supplementary Data 2

CIF data of the computational models.

Supplementary Data 3

CIF data of the computational models.

Source data

Source Data Fig. 1

Source Data for Fig. 1.

Source Data Fig. 2

Source Data for Fig. 2.

Source Data Fig. 4

Source Data for Fig. 4.

Source Data Fig. 5

Source Data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Li, S., Liu, X. et al. Gas-balancing adsorption strategy towards noble-metal-based nanowire electrocatalysts. Nat Catal 7, 719–732 (2024). https://doi.org/10.1038/s41929-024-01167-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-024-01167-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing