Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Understanding the interplay between electrocatalytic C(sp3)‒C(sp3) fragmentation and oxygenation reactions

Abstract

Achieving the selective electrocatalytic activation of C(sp3)–C(sp3) and C(sp3)−H bonds is key to enabling the electricity-driven synthesis of chemicals, the sustainable upgrading of plastics and the development of fuel cells operating on energy-dense liquid fuels. When exposed to electrodes under oxidative bias, hydrocarbons undergo both C–C bond fragmentation and oxygenation. Currently, we lack control over the bifurcation of these pathways. Here we provide insights into the complex network of alkyl transformation reactions, showing that under oxidizing potentials, adsorbed butane transforms to adsorbed CHx fragments, which can be desorbed as methane before oxidation to adsorbed CO. Identifying the branchpoint between C‒C fragmentation and oxygenation allowed us to steer selectivity by applying pulsed potentials tailored to the desorption potential of specific adsorbates and the kinetics of intermediate oxidation. Our findings provide design criteria for improved fuel cell catalysts and open the door to selective C‒C cleavage in electrosynthetic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EC-MS interrogation of the alkane fragmentation and oxidation branchpoint.
Fig. 2: Potential dependence of butane adsorption and fragmentation on Pt.
Fig. 3: Oxidative stripping of butane-derived adsorbates.
Fig. 4: Potential-induced transformation of adsorbed butane.
Fig. 5: Proposed bifurcation towards butane fragmentation and oxidation.
Fig. 6: Reaction network of butane oxidation and fragmentation.
Fig. 7: Pulsed potential programme for increased methane generation.

Similar content being viewed by others

Data availability

Experimental raw data underlying the results and conclusions of this work are publicly available via Zenodo at https://doi.org/10.5281/zenodo.12801616 (ref. 84). Other data are available from the authors upon reasonable request.

Code availability

The code used to transform ionic current data to species fluxes are publicly accessible via Zenodo at https://doi.org/10.5281/zenodo.12801616 (ref. 84).

References

  1. Xia, R., Overa, S. & Jiao, F. Emerging electrochemical processes to decarbonize the chemical industry. JACS Au 2, 1054–1070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. National Academy of Sciences, National Academy of Engineering & National Research Council America’s Energy Future: Technology and Transformation (National Academies Press, 2009).

  3. Schiffer, Z. J. & Manthiram, K. Electrification and decarbonization of the chemical industry. Joule 1, 10–14 (2017).

    Article  Google Scholar 

  4. Daehn, K. et al. Innovations to decarbonize materials industries. Nat. Rev. Mater. 7, 275–294 (2021).

    Article  Google Scholar 

  5. Chen, B. & Sargent, E. H. What does net zero by 2050 mean to the solar energy materials researcher? Matter 5, 1322–1325 (2022).

    Article  Google Scholar 

  6. Van Geem, K. M., Galvita, V. V. & Marin, G. B. Making chemicals with electricity. Science 364, 734–735 (2019).

    Article  PubMed  Google Scholar 

  7. Lopez, G., Artetxe, M., Amutio, M., Bilbao, J. & Olazar, M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energy Rev. 73, 346–368 (2017).

    Article  CAS  Google Scholar 

  8. Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

    Article  CAS  Google Scholar 

  9. Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).

    Article  PubMed  Google Scholar 

  10. Lucky, C., Wang, T. & Schreier, M. Electrochemical ethylene oxide synthesis from ethanol. ACS Energy Lett. 7, 1316–1321 (2022).

    Article  CAS  Google Scholar 

  11. Goetz, M. K. K., Bender, M. T. & Choi, K. S. Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH. Nat. Commun. 13, 5848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luo, H. et al. Progress and perspectives in photo- and electrochemical-oxidation of biomass for sustainable chemicals and hydrogen production. Adv. Energy Mater. 11, 2101180 (2021).

    Article  CAS  Google Scholar 

  13. You, B., Liu, X., Jiang, N. & Sun, Y. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138, 13639–13646 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, C., Ang, N. W. J., Meyer, T. H., Qiu, Y. & Ackermann, L. Organic electrochemistry: molecular syntheses with potential. ACS Cent. Sci. 7, 415–431 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).

    Article  CAS  Google Scholar 

  16. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peters, B. K. et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363, 838–845 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park, S., Vohs, J. M. & Gorte, R. J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Hibino, T. et al. A low-operating-temperature solid oxide fuel cell in hydrocarbon–air mixtures. Science 288, 2031–2033 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Brummer, S. B. & Turner, M. J. Oxidation and adsorption of hydrocarbons on noble metal electrodes. III. CH-type and O-type intermediates during the oxidative adsorption of propane on platinum. J. Phys. Chem. 71, 2825–2837 (1967).

    Article  CAS  Google Scholar 

  21. Barger, H. J. Jr & Coleman, A. J. Hydrogen–deuterium exchange of propane on a fuel-cell electrode. J. Phys. Chem. 72, 2285–2286 (1968).

    Article  CAS  Google Scholar 

  22. Shropshire, J. A. & Horowitz, H. H. Adsorption and electrooxidation of butane on platinum black in H2SO4. J. Electrochem. Soc. 113, 490–495 (1966).

    Article  CAS  Google Scholar 

  23. Bockris, J. O., Gileadi, E. & Stoner, G. E. The anodic oxidation of saturated hydrocarbons. Mechanistic study. J. Phys. Chem. 73, 427–434 (1969).

    Article  CAS  Google Scholar 

  24. Grubb, W. T. & Lazarus, M. E. Carbon dioxide determination during the galvanostatic oxidation of adsorbed propane intermediates. J. Electrochem. Soc. 114, 360–361 (1967).

    Article  CAS  Google Scholar 

  25. Brummer, S. B., Ford, J. I. & Turner, M. J. The adsorption and oxidation of hydrocarbons on noble metal electrodes. I. Propane adsorption on smooth platinum electrodes. J. Phys. Chem. 69, 3424–3433 (1965).

    Article  CAS  Google Scholar 

  26. Brummer, S. B. & Turner, M. J. in Hydrocarbon Fuel Cell Technology (ed. Baker, B. S.) 408–428 (Academic Press, 1965).

  27. Niedrach, L. W., Gilman, S. & Weinstock, I. Studies of hydrocarbon fuel cell anodes by the multipulse potentiodynamic method: I. behavior of ethane on conducting-porous-Teflon electrodes. J. Electrochem. Soc. 112, 1161–1166 (1965).

    Article  CAS  Google Scholar 

  28. Gilman, S. Studies of hydrocarbon surface processes by the multipulse potentiodynamic method. Part 1. Kinetics and mechanisms of ethane adsorption on platinum. J. Chem. Soc. Faraday Trans. 61, 2546–2560 (1965).

    Article  CAS  Google Scholar 

  29. Lamy, C. et al. Recent advances in the development of direct alcohol fuel cells (DAFC). J. Power Sources 105, 283–296 (2002).

    Article  CAS  Google Scholar 

  30. Li, N. H., Sun, S. G. & Chen, S. P. Studies on the role of oxidation states of the platinum surface in electrocatalytic oxidation of small primary alcohols. J. Electroanal. Chem. 430, 57–67 (1997).

    Article  CAS  Google Scholar 

  31. Puthiyapura, V. K., Brett, D. J. L., Russell, A. E., Lin, W. F. & Hardacre, C. Biobutanol as fuel for direct alcohol fuel cells—investigation of Sn-modified Pt catalyst for butanol electro-oxidation. ACS Appl. Mater. Interfaces 8, 12859–12870 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Rodrigues, I. D. A., De Souza, J. P. I., Pastor, E. & Nart, F. C. Cleavage of the C–C bond during the electrooxidation of 1-propanol and 2-propanol: effect of the Pt morphology and of codeposited Ru. Langmuir 13, 6829–6835 (1997).

    Article  CAS  Google Scholar 

  33. Li, N. H. & Sun, S. G. In situ FTIR spectroscopic studies of the electrooxidation of C4 alcohol on a platinum electrode in acid solutions. Part I. Reaction mechanism of 1-butanol oxidation. J. Electroanal. Chem. 436, 65–72 (1997).

  34. Pastor, E. et al. Spectroscopic investigations of C3 primary alcohols on platinum electrodes in acid solutions. Part I. n-Propanol. J. Electroanal. Chem. 350, 97–116 (1993).

    Article  CAS  Google Scholar 

  35. Brummer, S. B. in Fuel Cell Systems-II (ed. Gould, R. F.) 223–230 (American Chemical Society, 1969).

  36. Bruckenstein, S. & Comeau, J. Electrochemical mass spectrometry. Part 1. Preliminary studies of propane oxidation on platinum. J. Chem. Soc. Faraday Trans. 91, 285–292 (1973).

    Google Scholar 

  37. Barger, H. J. Jr & Savitz, M. L. Chemical identification of adsorbed species in fuel cell reactions: I. propane oxidation. J. Electrochem. Soc. 115, 686–690 (1968).

    Article  CAS  Google Scholar 

  38. Bruckenstein, S., Reidhammer, T. M. & Jureviciute, I. Electrochemical mass spectrometric study of 2-methyl-propane adsorbates formed at platinum in phosphoric acid at 105 °C. J. Electroanal. Chem. 552, 35–43 (2003).

    Article  CAS  Google Scholar 

  39. Solis, V., Castro Luna, A., Triaca, W. E. & Arvfa, A. J. The electrosorption and the potentiodynamic electrooxidation of ethane on platinum at different temperatures. J. Electrochem. Soc. 128, 2115–2122 (1981).

    Article  CAS  Google Scholar 

  40. Bakshi, H. B., Lucky, C., Chen, H. S. & Schreier, M. Electrocatalytic scission of unactivated C(sp3)–C(sp3) bonds through real-time manipulation of surface-bound intermediates. J. Am. Chem. Soc. 145, 13742–13749 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Trimarco, D. B. et al. Enabling real-time detection of electrochemical desorption phenomena with sub-monolayer sensitivity. Electrochim. Acta 268, 520–530 (2018).

    Article  CAS  Google Scholar 

  42. Baltruschat, H. Differential electrochemical mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 1693–1706 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Boyd, M. J. et al. Electro-oxidation of methane on platinum under ambient conditions. ACS Catal. 9, 7578–7587 (2019).

    Article  CAS  Google Scholar 

  44. Gurses, S. M. & Kronawitter, C. X. Electrochemistry of the interaction of methane with platinum at room temperature investigated through operando FTIR spectroscopy and voltammetry. J. Phys. Chem. C 125, 2944–2955 (2021).

    Article  CAS  Google Scholar 

  45. López-Cudero, A., Cuesta, A. & Gutiérrez, C. Potential dependence of the saturation CO coverage of Pt electrodes: the origin of the pre-peak in CO-stripping voltammograms. Part 1: Pt(111). J. Electroanal. Chem. 579, 1–12 (2005).

    Article  Google Scholar 

  46. Cuesta, A. et al. Potential dependence of the saturation CO coverage of Pt electrodes: the origin of the pre-peak in CO-stripping voltammograms. Part 3: Pt(poly). J. Electroanal. Chem. 586, 184–195 (2006).

    Article  CAS  Google Scholar 

  47. Housmans, T. H. M., Hermse, C. G. M. & Koper, M. T. M. CO oxidation on stepped single crystal electrodes: a dynamic Monte Carlo study. J. Electroanal. Chem. 607, 69–82 (2007).

    Article  CAS  Google Scholar 

  48. Voglis, C. & Lagaris, I. E. A rectangular trust region dogleg approach for unconstrained and bound constrained nonlinear optimization. In WSEAS International Conference on Applied Mathematics, Vol. 7 (eds Mastorakis, N., Mladenov, V., Gorla, R.) (World Scientific and Engineering Academy and Society, 2004).

  49. Horányi, G. On the adsorption of organic compounds on platinized platinum electrodes. J. Electroanal. Chem. 51, 163–178 (1974).

    Article  Google Scholar 

  50. Flannery, R. J. & Walker, D. C. in Hydrocarbon Fuel Cell Technology (ed. Baker, B. S.) 335–348 (Academic Press, 1965).

  51. Ojha, K., Arulmozhi, N., Aranzales, D. & Koper, M. T. M. Double layer at the Pt(111)–aqueous electrolyte interface: potential of zero charge and anomalous Gouy–Chapman screening. Angew. Chem. Int. Ed. 59, 711 (2020).

    Article  CAS  Google Scholar 

  52. Piersma, B. J. in Electrosorption (ed. Gileadi, E.) 19–49 (Plenum Press, 1967).

  53. Lucky, C. & Schreier, M. Mind the interface: the role of adsorption in electrocatalysis. ACS Nano https://doi.org/10.1021/acsnano.3c09523 (2024).

    Article  PubMed  Google Scholar 

  54. Beltowska-Brzezinska, M., Luczak, T., Baltruschat, H. & Müller, U. Propene oxidation and hydrogenation on a porous platinum electrode in acidic solution. J. Phys. Chem. B 107, 4793–4800 (2003).

    Article  CAS  Google Scholar 

  55. Gootzen, J. F. E., Wonders, A. H., Visscher, W. & Van Veen, J. A. R. Adsorption of C3 alcohols, 1-butanol, and ethene on platinized platinum as studied with FTIRS and DEMS. Langmuir 13, 1659–1667 (1997).

    Article  CAS  Google Scholar 

  56. Lucky, C., Fuller, L. & Schreier, M. Determining the potential-dependent identity of methane adsorbates at Pt electrodes using EC-MS. Catal. Sci. Technol. 14, 353–361 (2024).

    Article  CAS  Google Scholar 

  57. Niedrach, L. W. Galvanostatic and volumetric studies of hydrocarbons adsorbed on fuel cell anodes. J. Electrochem. Soc. 111, 1309–1317 (1964).

    Article  CAS  Google Scholar 

  58. Giner, J. Electrochemical reduction of CO2 on platinum electrodes in acid solutions. Electrochim. Acta 8, 857–865 (1963).

    Article  CAS  Google Scholar 

  59. Schmiemann, U., Müller, U. & Baltruschat, H. The influence of the surface structure on the adsorption of ethene, ethanol and cyclohexene as studied by DEMS. Electrochim. Acta 40, 99–107 (1995).

    Article  CAS  Google Scholar 

  60. Beltowska-Brzezinska, M., Luczak, T., Maczka, M., Baltruschat, H. & Müller, U. Ethyne oxidation and hydrogenation on porous Pt electrode in acidic solution. J. Electroanal. Chem. 519, 101–110 (2002).

    Article  CAS  Google Scholar 

  61. Arenz, M. et al. The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J. Am. Chem. Soc. 127, 6819–6829 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Yan, Y. G. et al. Study of CO oxidation on polycrystalline Pt electrodes in acidic solution by ATR-SEIRAS. J. Phys. Chem. C 115, 16378–16388 (2011).

    Article  CAS  Google Scholar 

  63. Löffler, T. & Baltruschat, H. Temperature dependent formation of multiple adsorption states from ethene at polycrystalline Pt and Pt(111) electrodes studied by differential electrochemical mass spectrometry. J. Electroanal. Chem. 554–555, 333–344 (2003).

    Article  Google Scholar 

  64. Gopeesingh, J. et al. Resonance-promoted formic acid oxidation via dynamic electrocatalytic modulation. ACS Catal. 10, 9932–9942 (2020).

    Article  CAS  Google Scholar 

  65. Timoshenko, J. et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 5, 259–267 (2022).

    Article  CAS  Google Scholar 

  66. Casebolt, R., Levine, K., Suntivich, J. & Hanrath, T. Pulse check: potential opportunities in pulsed electrochemical CO2 reduction. Joule 5, 1987–2026 (2021).

    Article  CAS  Google Scholar 

  67. Chen, W. et al. Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid. Nat. Commun. 15, 2420 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Blanco, D. E., Lee, B. & Modestino, M. A. Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence. Proc. Natl Acad. Sci. USA 116, 17683–17689 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, C. W., Cho, N. H., Nam, K. T., Hwang, Y. J. & Min, B. K. Cyclic two-step electrolysis for stable electrochemical conversion of carbon dioxide to formate. Nat. Commun. 10, 3919 (2019).

  70. Kim, D., Zhou, C., Zhang, M. & Cargnello, M. Voltage cycling process for the electroconversion of biomass-derived polyols. Proc. Natl Acad. Sci. USA 118, e2113382118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fedkiw, P. S., Traynelis, C. L. & Wang, S.-R. Pulsed-potential oxidation of methanol. J. Electrochem. Soc. 135, 2459–2465 (1988).

    Article  CAS  Google Scholar 

  72. Adžić, R. R., Popov, K. I. & Pamić, M. A. Acceleration of electrocatalytic reactions by pulsation of potential: oxidation of formic acid on Pt and Pt/Pbads electrodes. Electrochim. Acta 23, 1191–1196 (1978).

    Article  Google Scholar 

  73. Ghumman, A. & Pickup, P. G. Efficient electrochemical oxidation of ethanol to carbon dioxide in a fuel cell at ambient temperature. J. Power Sources 179, 280–285 (2008).

    Article  CAS  Google Scholar 

  74. Gasteiger, H. A., Markovic, N. M. & Ross, P. N. Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface. J. Phys. Chem. 99, 8945–8949 (1995).

    Article  CAS  Google Scholar 

  75. Lin, W. F., Iwasita, T. & Vielstich, W. Catalysis of CO electrooxidation at Pt, Ru, and PtRu alloy. An in situ FTIR study. J. Phys. Chem. B 103, 3250–3257 (1999).

    Article  CAS  Google Scholar 

  76. Stamenković, V. R. et al. Surface chemistry on bimetallic alloy surfaces: adsorption of anions and oxidation of CO on Pt3Sn(111). J. Am. Chem. Soc. 125, 2736–2745 (2003).

    Article  PubMed  Google Scholar 

  77. Huang, H., Blackman, O. F., Celorrio, V. & Russell, A. E. Isolating the contributions of surface Sn atoms in the bifunctional behaviour of PtSn CO oxidation electrocatalysts. Electrochim. Acta 390, 138811 (2021).

    Article  CAS  Google Scholar 

  78. Dupont, C., Jugnet, Y. & Loffreda, D. Theoretical evidence of PtSn alloy efficiency for CO oxidation. J. Am. Chem. Soc. 128, 9129–9136 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Almithn, A. & Hibbitts, D. Comparing rate and mechanism of ethane hydrogenolysis on transition metal catalysts. J. Phys. Chem. C 123, 5421–5432 (2019).

  80. Huynh, T. T., Dang, N. N. & Pham, H. Q. Bimetallic PtIr nanoalloy on TiO2-based solid solution oxide with enhanced oxygen reduction and ethanol electro-oxidation performance in direct ethanol fuel cells. Catal. Sci. Technol. 11, 1571–1579 (2021).

    Article  CAS  Google Scholar 

  81. Dang, Q. et al. Iridium metallene oxide for acidic oxygen evolution catalysis. Nat. Commun. 12, 6007 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Feltham, A. M. & Spiro, M. Platinized platinum electrodes. Chem. Rev. 71, 177–193 (1971).

    Article  CAS  Google Scholar 

  83. Herrero, E., Buller, L. J. & Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Lucky, C., Jiang, S., Shih, C.-R., Zavala, V. M. & Schreier, M. EC-MS dataset of electrocatalytic transformations of butane on Pt. Zenodo https://doi.org/10.5281/zenodo.12801616 (2024).

Download references

Acknowledgements

We thank M. Kelly for input. This work was supported by the Arnold and Mabel Beckman Foundation through a Beckman Young Investigator Award (https://doi.org/10.13039/100000997, M.S.). We also acknowledge summer salary support from an NSF CAREER award (CBET-2338627, M.S.) and the use of facilities and instrumentation at the UW–Madison Wisconsin Centers for Nanoscale Technology, partially supported by the NSF through the University of Wisconsin Materials Research Science and Engineering Center (DMR-1720415). This report is based upon work supported by the National Science Foundation Graduate Research Fellowship Program (grant no. DGE-1747503, C.L.). Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation. Support was also provided by the Graduate School and the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin–Madison with funding from the Wisconsin Alumni Research Foundation (C.L.).

Author information

Authors and Affiliations

Authors

Contributions

C.L. and M.S. conceived the project. C.L. designed and performed the experiments. C-R.S. assisted with data collection. S.J. developed the mass spectrum deconvolution methodology and code with assistance from C.L. and V.M.Z. C.L., M.S. and S.J. analysed the data. C.L. and M.S. wrote the paper with S.J. and V.M.Z. contributing to revisions. M.S. and V.M.Z. provided funding acquisition and project supervision.

Corresponding author

Correspondence to Marcel Schreier.

Ethics declarations

Competing interests

C.L. and M.S. are inventors for US patent application 17/959744 (2023), which has been filed on the partial basis of this work. All other authors have no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Ning Jial and Nikolay Kornienko for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Figs. 1–49 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucky, C., Jiang, S., Shih, CR. et al. Understanding the interplay between electrocatalytic C(sp3)‒C(sp3) fragmentation and oxygenation reactions. Nat Catal 7, 1021–1031 (2024). https://doi.org/10.1038/s41929-024-01218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-024-01218-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing