Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directed evolution of a highly efficient TNA polymerase achieved by homologous recombination

Abstract

Reprogramming DNA polymerases to synthesize xeno-nucleic acids (XNAs) is an important challenge that tests current enzyme engineering tools. Here we describe an evolutionary campaign aimed at generating an XNA polymerase that can efficiently make α-l-threofuranosyl nucleic acid (TNA)—an artificial genetic polymer that is recalcitrant to nucleases and resistant to acid-mediated degradation. Starting from a homologous recombination library, iterative cycles of selection were performed to traverse the fitness landscape in search of neutral mutations with increased evolutionary potential. Subsequent directed evolution of focused mutagenic libraries yielded 10–92, a newly engineered TNA polymerase that functions with a catalytic rate of 1 nt s−1 and >99% fidelity. A crystal structure of the closed ternary complex reveals the degree of structural change required to remodel the active site pocket for improved TNA synthesis activity. Together, these data demonstrate the importance of recombination as a strategy for evolving XNA polymerases with considerable practical value for biotechnology and medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Homologous recombination as a path to engineered XNA polymerases.
Fig. 2: Directed evolution of a highly efficient TNA polymerase.
Fig. 3: Functional analysis of TNA polymerases.
Fig. 4: Kinetic analysis of TNA synthesis.
Fig. 5: Enhanced functional activity.
Fig. 6: Structural topology of the 10–92 TNA polymerase.
Fig. 7: Active site of the 10–92 TNA polymerase.

Similar content being viewed by others

Data availability

The crystal structure of 10–92 was deposited in the Protein Data Bank [PDB:8T3X]. The repository furthermore contains PDB structures of all ensemble refinements presented in this work. Other data are available in the main text, Supplementary Information or from the authors upon reasonable request. Source data are provided with this paper.

References

  1. Nikoomanzar, A., Chim, N., Yik, E. J. & Chaput, J. C. Engineering polymerases for applications in synthetic biology. Q. Rev. Biophys. 53, e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Houlihan, G., Arangundy-Franklin, S. & Holliger, P. Engineering and application of polymerases for synthetic genetics. Curr. Opin. Biotechnol. 48, 168–179 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Aschenbrenner, J. & Marx, A. DNA polymerases and biotechnological applications. Curr. Opin. Biotechnol. 48, 187–195 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chim, N., Meza, R. A., Trinh, A. M., Yang, K. & Chaput, J. C. Following replicative DNA synthesis by time-resolved X-ray crystallography. Nat. Commun. 12, 2641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doublie, S., Tabor, S., Long, A. M., Richardson, C. C. & Ellenberger, T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391, 251–258 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Larsen, A. C. et al. A general strategy for expanding polymerase function by droplet microfluidics. Nat. Commun. 7, 11235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nikoomanzar, A., Vallejo, D. & Chaput, J. C. Elucidating the determinants of polymerase specificity by microfluidic-based deep mutational scanning. ACS Synth. Biol. 8, 1421–1429 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Nikoomanzar, A., Vallejo, D., Yik, E. J. & Chaput, J. C. Programmed allelic mutagenesis of a DNA polymerase with single amino acid resolution. ACS Synth. Biol. 9, 1873–1881 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Pinheiro, V. B. et al. Synthetic genetic polymers capable of heredity and evolution. Science 336, 341–344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoshino, H., Kasahara, Y., Kuwahara, M. & Obika, S. DNA polymerase variants with high processivity and accuracy for encoding and decoding locked nucleic acid sequences. J. Am. Chem. Soc. 142, 21530–21537 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, C. et al. Phosphonomethyl oligonucleotides as backbone-modified artificial genetic polymers. J. Am. Chem. Soc. 140, 6690–6699 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Kuwahara, M. et al. Systematic analysis of enzymatic DNA polymerization using oligo-DNA templates and triphosphate analogs involving 2′,4′-bridged nucleosides. Nucleic Acids Res. 36, 4257–4265 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Loakes, D., Gallego, J., Pinheiro, V. B., Kool, E. T. & Holliger, P. Evolving a polymerase for hydrophobic base analogues. J. Am. Chem. Soc. 131, 14827–14837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramsay, N. et al. CyDNA: synthesis and replication of highly Cy-dye substituted DNA by an evolved polymerase. J. Am. Chem. Soc. 132, 5096–5104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, T. et al. Evolution of thermophilic DNA polymreases for the recognition and amplification of C2′-modified DNA. Nat. Chem. 8, 556–562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Freund, N. et al. A two-residue nascent-strand steric gate controls synthesis of 2′-O-methyl- and 2′-O-(2-methoxyethyl)-RNA. Nat. Chem. 15, 91–100 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Lelyveld, V. S., Fang, Z. & Szostak, J. W. Trivalent rare earth metal cofactors confer rapid NP-DNA polymerase activity. Science 382, 423–429 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arangundy-Franklin, S. et al. A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids. Nat. Chem. 11, 533–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chim, N., Shi, C., Sau, S. P., Nikoomanzar, A. & Chaput, J. C. Structural basis for TNA synthesis by an engineered TNA polymerase. Nat. Commun. 8, 1810 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Crameri, A., Raillard, S.-A., Bermudez, E. & Stemmer, W. P. C. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Ness, J. E. et al. Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat. Biotechnol. 20, 1251–1255 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Drummond, D. A., Silberg, J. J., Meyer, M. M., Wilke, C. O. & Arnold, F. H. On the conservative nature of intragenic recombination. Proc. Natl Acad. Sci. USA 102, 5380–5385 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. d’Abbadie, M. et al. Molecular breeding of polymerases for amplification of ancient DNA. Nat. Biotechnol. 25, 939–943 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Baar, C. et al. Molecular breeding of polymerases for resistance to environmental inhibitors. Nucleic Acids Res. 39, e51 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leconte, A. M. et al. Directed evolution of DNA polymerases for next-generation sequencing. Angew. Chem. Int. Ed. Engl. 49, 5921–5924 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schöning, K. U. et al. Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3′ → 2′) oligonucleotide system. Science 290, 1347–1351 (2000).

    Article  PubMed  Google Scholar 

  29. Eschenmoser, A. Chemical etiology of nucleic acid structure. Science 284, 2118–2124 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Culbertson, M. C. et al. Evaluating TNA stability under simulated physiological conditions. Bioorg. Med. Chem. Lett. 26, 2418–2421 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, E. M., Setterholm, N. A., Hajjar, M., Barpuzary, B. & Chaput, J. C. Stability and mechanism of threose nucleic acid toward acid-mediated degradation. Nucleic Acids Res. 51, 9542–9551 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dunn, M. R., Jimenez, R. M. & Chaput, J. C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 1, 0076 (2017).

    Article  CAS  Google Scholar 

  33. Yu, H., Zhang, S. & Chaput, J. C. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat. Chem. 4, 183–187 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Dunn, M. R., McCloskey, C. M., Buckley, P., Rhea, K. & Chaput, J. C. Generating biologically stable TNA aptamers that function with high affinity and thermal stability. J. Am. Chem. Soc. 142, 7721–7724 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. McCloskey, C. M. et al. Evolution of functionally enhanced α-l-threofuranosyl nucleic acid aptamers. ACS Synth. Biol. 10, 3190–3199 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Li, X., Li, Z. & Yu, H. Selection of threose nucleic acid aptamers to block PD-1/PD-L1 interaction for cancer immunotherapy. Chem. Commun. 56, 14653–14656 (2020).

    Article  CAS  Google Scholar 

  37. Wang, Y. et al. An RNA-cleaving threose nucleic acid enzyme capable of single point mutation discrimination. Nat. Chem. 14, 350–359 (2022).

    Article  PubMed  Google Scholar 

  38. Wang, Y. et al. A threose nucleic acid enzyme with RNA ligase activity. J. Am. Chem. Soc. 143, 8154–8163 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Yang, K., McCloskey, C. M. & Chaput, J. C. Reading and writing digital information in TNA. ACS Synth. Biol. 9, 2936–2942 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y., Nguyen, K., Spitale, R. C. & Chaput, J. C. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat. Chem. 13, 319–326 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, F. et al. Synthetic α-l-threose nucleic acids targeting BcL-2 show gene silencing and in vivo antitumor activity for cancer therapy. ACS Appl. Mater. Interfaces 11, 38510–38518 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Shigeo, M. et al. Shorter is better: the α-(l)-threofuranosyl nucleic acid modification improves stability, potency, safety, and Ago2 binding and mitigates off-target effects of small interfering RNAs. J. Am. Chem. Soc. 145, 19691–19706 (2023).

  43. Gould, S. J. Wonderful Life: The Burgess Shale and the Nature of History, 1st edn (W.W. Norton, 1989).

  44. Hottin, A. & Marx, A. Structural insights into the processing of nucleobase-modified nucleotides by DNA polymerases. Acc. Chem. Res. 49, 418–427 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Dunn, M. R., Otto, C., Fenton, K. E. & Chaput, J. C. Improving polymerase activity with unnatural substrates by sampling mutations in homologous protein architectures. ACS Chem. Biol. 11, 1210–1219 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Yik, E. J., Maola, V. A. & Chaput, J. C. Engineering TNA polymerases through iterative cycles of directed evolution. Methods Enzymol. 691, 29–59 (2023).

    Article  PubMed  Google Scholar 

  47. Minshull, J. & Stemmer, W. P. Protein evolution by molecular breeding. Curr. Opin. Chem. Biol. 3, 284–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Vallejo, D., Nikoomanzar, A., Paegel, B. M. & Chaput, J. C. Fluorescence-activated droplet sorting for single-cell directed evolution. ACS Synth. Biol. 8, 1430–1440 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liao, J.-Y., Bala, S., Ngor, A. K., Yik, E. J. & Chaput, J. C. P(V) reagents for the scalable synthesis of natural and modified nucleoside triphosphates. J. Am. Chem. Soc. 141, 13286–13289 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Mei, H. et al. Synthesis and evolution of a threose nucleic acid aptamer bearing 7-deaza-7-substituted guanosine residues. J. Am. Chem. Soc. 140, 5706–5713 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Nikoomanzar, A., Dunn, M. R. & Chaput, J. C. Evaluating the rate and substrate specificity of laboratory evolved XNA polymerases. Anal. Chem. 89, 12622–12625 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Goodman, M. F., Creighton, S., Bloom, L. B. & Petruska, J. Biochemical basis of DNA replication fidelity. Crit. Rev. Biochem. Mol. Biol. 28, 83–126 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Kundu, N., McCloskey, C. M., Hajjar, M. & Chaput, J. C. Parameterizing the binding properties of XNA aptamers isolated from a low stringency selection. Biochemistry 62, 3245–3254 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Lozoya-Colinas, A., Yu, Y. & Chaput, J. C. Functionally enhanced XNA aptamers discovered by parallelized library screening. J. Am. Chem. Soc. 145, 25789–25796 (2023).

  55. Bala, S. et al. Synthesis of 2′-deoxy-α-l-threofuranosyl nucleoside triphosphates. J. Org. Chem. 83, 8840–8850 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Rodriguez, A. C., Park, H.-W., Mao, C. & Beese, L. S. Crystal structure of a Pol A family DNA polymerase from the hyperthermophilic Archaeon Thermococcus sp. 9°N-7. J. Mol. Biol. 299, 447–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Kropp, H. M., Betz, K., Wirth, J., Diederichs, K. & Marx, A. Crystal structures of ternary complexes of archaeal B-family DNA polymerases. PLoS One 12, e0188005 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang, Y., Ngor, A. K., Nikoomanzar, A. & Chaput, J. C. Evolution of a general RNA-cleaving FANA enzyme. Nat. Commun. 9, 5067 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chaput, J. C. & Szostak, J. W. TNA synthesis by DNA polymerases. J. Am. Chem. Soc. 125, 9274–9275 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Vastmans, K. et al. Enzymatic incorporation in DNA of 1,5-anhydrohexitol nucleotides. Biochemistry 39, 12757–12765 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Kool, E. T. Active site tightness and substrate fit in DNA replication. Annu. Rev. Biochem. 71, 191–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Steitz, T. A., Smerdon, S. J., Jager, J. & Joyce, C. M. A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. Science 266, 2022–2025 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Hogrefe, H. H., Cline, J., Lovejoy, A. E. & Nielson, K. B. DNA polymerases from hyperthermophiles. Methods Enzymol. 334, 91–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Sau, S. P., Fahmi, N. E., Liao, J.-Y., Bala, S. & Chaput, J. C. A scalable synthesis of α-l-threose nucleic acid monomers. J. Org. Chem. 81, 2302–2307 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Vallejo, D., Nikoomanzar, A. & Chaput, J. C. Directed evolution of custom polymerases using droplet microfluidics. Methods Enzymol. 644, 227–253 (2020).

    Article  PubMed  Google Scholar 

  66. Nikoomanzar, A., Dunn, M. R. & Chaput, J. C. Engineered polymerases with altered substrate specificity: expression and purification. Curr. Protoc. Nucleic Acid Chem. 69, 4.75 (2017).

    Article  Google Scholar 

  67. Cadwell, R. C. & Joyce, G. F. Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2, 28–33 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Chaput, J. C. & Szostak, J. W. Evolutionary optimization of a nonbiological ATP binding protein for improved folding stability. Chem. Biol. 11, 865–874 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Li, Q. et al. Synthesis and polymerase recognition of threose nucleic acid triphosphates equipped with diverse chemical functionalities. J. Am. Chem. Soc. 143, 17761–17768 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Medina, E., Yik, E. J., Herdewijn, P. & Chaput, J. C. Functional comparison of laboratory-evolved XNA polymerases for synthetic biology. ACS Synth. Biol. 10, 1429–1437 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D 66, 133–144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. PyMOL version 2.5.2 (DeLano Scientific, 2002).

Download references

Acknowledgements

This work was supported by a grant to J.C.C. from the NSF (MCB 1946312).

Author information

Authors and Affiliations

Authors

Contributions

J.C.C., V.A.M. and E.J.Y. conceived the project and designed the experiments. E.J.Y. and V.A.M. evolved the enzyme. E.J.Y., V.A.M. and M.H. performed the biochemical characterization. V.A.M., J.J.L., M.H., M.J.H., R.N.Q., K.K.N., K.L.H., J.V.M. and N.C. contributed to protein structure determination. J.C.C. wrote the paper. All authors reviewed and commented on the paper.

Corresponding author

Correspondence to John C. Chaput.

Ethics declarations

Competing interests

J.C.C., V.A.M., E.J.Y. and the University of California, Irvine have filed a patent application (PCT/US24/11595) on the composition and activity of the 10–92 TNA polymerase. The other authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Masayasu Kuwahara, Vitor Pinheiro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–5, Figs. 1–19, and uncropped gels for Supplementary Figs. 2, 5, 8, 9, 10, 13–15.

Reporting Summary

Source data

Source Data Fig. 3

Unprocessed Urea-PAGE gel.

Source Data Fig. 4

Kinetics raw and processed data.

Source Data Fig. 5

Unprocessed Urea-PAGE gel.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maola, V.A., Yik, E.J., Hajjar, M. et al. Directed evolution of a highly efficient TNA polymerase achieved by homologous recombination. Nat Catal 7, 1173–1185 (2024). https://doi.org/10.1038/s41929-024-01233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-024-01233-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing