Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioconvergent copper-catalysed difluoromethylation of alkyl halides

Abstract

Stereochemically controlled hydrogen bond donors play essential roles in the pharmaceutical industry. Consequently, organic molecules that bear difluoromethyl (CF2H) groups at chiral centres are emerging as pivotal components in pharmaceuticals owing to their distinct hydrogen-bonding property. However, a general approach for introducing CF2H groups in an enantioselective manner has remained elusive. Here we show that enantioconvergent difluoromethylation of racemic alkyl electrophiles, through alkyl radical intermediates, represents a strategy for constructing CF2H-containing stereocentres. This strategy is enabled by using copper catalysts bound with a chiral diamine ligand bearing electron-deficient phenyl groups, and a nucleophilic CF2H-zinc reagent. This method allows the high-yield conversion of a diverse range of alkyl halides into their alkyl-CF2H analogues with excellent enantioselectivity. Mechanistic studies reveal a route involving asymmetric difluoromethylation of alkyl radicals and crucial non-covalent interactions in the enantiodetermining steps. This copper-catalysed difluoromethylation process opens an avenue for the efficient preparation of CF2H-containing pharmaceuticals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of Cu-catalysed enantioconvergent difluoromethylation of alkyl halides.
Fig. 2: Scope for Cu-catalysed enantioconvergent difluoromethylation of alkyl halides.
Fig. 3: Synthetic applications of enantioconvergent difluoromethylation reaction.
Fig. 4: Mechanistic studies and proposed catalytic cycle.
Fig. 5: DFT calculations on the Cu-catalysed enantioconvergent difluoromethylation reaction at the B3LYP-D3BJ/def2-TZVP//B3LYP-D3BJ/def2-SVP level of theory.
Fig. 6: Other families of alkyl electrophiles investigated in this enantioconvergent difluoromethylation reaction.

Similar content being viewed by others

Data availability

The data generated in this study are provided in Supplementary Information and related files provided with this paper. Data are also available from the corresponding author upon request. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers 2300997 and 2303333. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Kenny, P. W. Hydrogen-bond donors in drug design. J. Med. Chem. 65, 14261–14275 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Zafrani, Y. et al. Difluoromethyl bioisostere: examining the ‘lipophilic hydrogen bond donor’ concept. J. Med. Chem. 60, 797–804 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Zafrani, Y. et al. CF2H, a functional group-dependent hydrogen-bond donor: is it a more or less lipophilic bioisostere of OH, SH, and CH3? J. Med. Chem. 62, 5628–5637 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Muller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007).

    Article  PubMed  Google Scholar 

  5. Hanan, E. J. et al. Discovery of GDC-0077 (Inavolisib), a highly selective inhibitor and degrader of mutant PI3Kα. J. Med. Chem. 65, 16589–16621 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, J. et al. Preclinical safety and efficacy characterization of an LpxC inhibitor against Gram-negative pathogens. Science Transl. Med. 15, eadf5668 (2023).

    Article  CAS  Google Scholar 

  7. Sap, J. B. I. et al. Late-stage difluoromethylation: concepts, developments and perspective. Chem. Soc. Rev. 50, 8214–8247 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Briand, M., Anselmi, E., Dagousset, G. & Magnier, E. The revival of enantioselective perfluoroalkylation—update of new synthetic approaches from 2015–2022. Chem. Rec. 23, e202300114 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, X. Y., Wu, T., Phipps, R. J. & Toste, F. D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev. 115, 826–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Aikawa, K., Yoshida, S., Kondo, D., Asai, Y. & Mikami, K. Catalytic asymmetric synthesis of tertiary alcohols and oxetenes bearing a difluoromethyl group. Org. Lett. 17, 5108–5111 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, Y.-L. et al. Organocatalytic asymmetric strecker reaction of di- and trifluoromethyl ketoimines. Remarkable fluorine effect. Org. Lett. 13, 3826–3829 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Middleton, W. J. New fluorinating reagents. Dialkylaminosulfur fluorides. J. Org. Chem. 40, 574–578 (1975).

    Article  CAS  Google Scholar 

  13. Xu, Y. & Prestwich, G. D. Concise synthesis of acyl migration-blocked 1,1-difluorinated analogues of lysophosphatidic acid. J. Org. Chem. 67, 7158–7161 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Ni, C., Wang, F. & Hu, J. Enantioselective nucleophilic difluoromethylation of aromatic aldehydes with Me3SiCF2SO2Ph and PhSO2CF2H reagents catalyzed by chiral quaternary ammonium salts. Beilstein J. Org. Chem. 4, 21 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhao, Y., Huang, W., Zheng, J. & Hu, J. Efficient and direct nucleophilic difluoromethylation of carbonyl compounds and Imines with Me3SiCF2H at ambient or low temperature. Org. Lett. 13, 5342–5345 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Peng, L., Wang, H. & Guo, C. Copper-catalyzed enantioselective difluoromethylation of amino acids via difluorocarbene. J. Am. Chem. Soc. 143, 6376–6381 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Gu, Y., Lu, C., Gu, Y. & Shen, Q. Ligand-controlled copper-catalyzed highly regioselective difluoromethylation of allylic chlorides/bromides and propargyl bromides. Chin. J. Chem. 36, 55–58 (2018).

    Article  CAS  Google Scholar 

  18. Endo, Y., Ishii, K. & Mikami, K. Chiral copper-catalyzed enantioselective Michael difluoromethylation of arylidene Meldrum’s acids with (difluoromethyl)zinc reagents. Tetrahedron 75, 4099–4103 (2019).

    Article  CAS  Google Scholar 

  19. Gao, X., Cheng, R., Xiao, Y.-L., Wan, X.-L. & Zhang, X. Copper-catalyzed highly enantioselective difluoroalkylation of secondary propargyl sulfonates with difluoroenoxysilanes. Chem 5, 2987–2999 (2019).

    Article  CAS  Google Scholar 

  20. Rong, M.-Y., Li, J.-S., Zhou, Y., Zhang, F.-G. & Ma, J.-A. Catalytic enantioselective synthesis of difluoromethylated tetrasubstituted stereocenters in isoindolones enabled by a multiple-fluorine system. Org. Lett. 22, 9010–9015 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Y. et al. Asymmetric α-electrophilic difluoromethylation of β-keto esters by phase transfer catalysis. Org. Biomol. Chem. 19, 4788–4795 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang, F., Chen, P. & Liu, G. Copper-catalyzed radical relay for asymmetric radical transformations. Acc. Chem. Res. 51, 2036–2046 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Gu, Q.-S., Li, Z.-L. & Liu, X.-Y. Copper(I)-catalyzed asymmetric reactions involving radicals. Acc. Chem. Res. 53, 170–181 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, C. & Fu, G. C. Copper-catalysed enantioconvergent alkylation of oxygen nucleophiles. Nature 618, 301–307 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, C., Peters, J. C. & Fu, G. C. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity. Nature 596, 250–256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, J.-J. et al. Enantioconvergent Cu-catalysed N-alkylation of aliphatic amines. Nature 618, 294–300 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, X. & MacMillan, D. W. C. Metallaphotoredox perfluoroalkylation of organobromides. J. Am. Chem. Soc. 142, 19480–19486 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kornfilt, D. J. P. & MacMillan, D. W. C. Copper-catalyzed trifluoromethylation of alkyl bromides. J. Am. Chem. Soc. 141, 6853–6858 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen, H. et al. Trifluoromethylation of alkyl radicals in aqueous solution. J. Am. Chem. Soc. 139, 9843–9846 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Zeng, X. J. et al. Copper-catalyzed decarboxylative difluoromethylation. J. Am. Chem. Soc. 141, 11398–11403 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Cai, A., Yan, W. & Liu, W. Aryl radical activation of C–O bonds: copper-catalyzed deoxygenative difluoromethylation of alcohols. J. Am. Chem. Soc. 143, 9952–9960 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Zeng, X. et al. Copper-catalyzed deaminative difluoromethylation. Angew. Chem. Int. Ed. 59, 16398–16403 (2020).

    Article  CAS  Google Scholar 

  35. Cai, A., Yan, W., Wang, C. & Liu, W. Copper-catalyzed difluoromethylation of alkyl iodides enabled by aryl radical activation of carbon–iodine bonds. Angew. Chem. Int. Ed. 60, 27070–27077 (2021).

    Article  CAS  Google Scholar 

  36. Mao, E., Prieto Kullmer, C. N., Sakai, H. A. & MacMillan, D. W. C. Direct bioisostere replacement enabled by metallaphotoredox deoxydifluoromethylation. J. Am. Chem. Soc. 146, 5067–5073 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Fier, P. S. & Hartwig, J. F. Copper-mediated difluoromethylation of aryl and vinyl iodides. J. Am. Chem. Soc. 134, 5524–5527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bour, J. R., Kariofillis, S. K. & Sanford, M. S. Synthesis, reactivity, and catalytic applications of isolable (NHC)Cu(CHF2) complexes. Organometallics 36, 1220–1223 (2017).

    Article  CAS  Google Scholar 

  39. Zhao, H., Leng, X. B., Zhang, W. & Shen, Q. [Ph4P]+[Cu(CF2H)2]: a powerful difluoromethylating reagent inspired by mechanistic investigation. Angew. Chem. Int. Ed. 61, e202210151 (2022).

    Article  CAS  Google Scholar 

  40. Jiang, C. et al. Enantioselective copper-catalyzed trifluoromethylation of benzylic radicals via ring opening of cyclopropanols. Chem 6, 2407–2419 (2020).

    Article  CAS  Google Scholar 

  41. Xu, P., Fan, W., Chen, P. & Liu, G. Enantioselective radical trifluoromethylation of benzylic C–H bonds via cooperative photoredox and copper catalysis. J. Am. Chem. Soc. 144, 13468–13474 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Xu, L. & Vicic, D. A. Direct difluoromethylation of aryl halides via base metal catalysis at room temperature. J. Am. Chem. Soc. 138, 2536–2539 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Serizawa, H., Ishii, K., Aikawa, K. & Mikami, K. Copper-catalyzed difluoromethylation of aryl iodides with (difluoromethyl)zinc reagent. Org. Lett. 18, 3686–3689 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Chidambaram, R. et al. A practical synthesis of the RARγ agonist, BMS-270394. Org. Process. Res. Dev. 6, 632–636 (2002).

    Article  CAS  Google Scholar 

  45. Klaholz, B. P., Mitschler, A., Belema, M., Zusi, C. & Moras, D. Enantiomer discrimination illustrated by high-resolution crystal structures of the human nuclear receptor hRARγ. Proc. Natl Acad. Sci. USA 97, 6322–6327 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ogawa, Y., Tokunaga, E., Kobayashi, O., Hirai, K. & Shibata, N. Current contributions of organofluorine compounds to the agrochemical industry. iScience 23, 101467 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Foster, R. J. & Carr, R. A. in Analytical Profiles of Drug Substances Vol. 19 (ed. Florey, K.) 1–26 (Academic Press,1990).

  48. Dighiero, G. et al. Chlorambucil in indolent chronic lymphocytic leukemia. N. Engl. J. Med. 338, 1506–1514 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Jacquelynn, J. C. et al. Acute γ-secretase inhibition of nonhuman primate CNS shifts amyloid precursor protein (APP) metabolism from amyloid-β production to alternative APP fragments without amyloid-β rebound. J. Neurosci. 30, 6743–6750 (2010).

  50. Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Luo, Y. et al. Oxidative addition of an alkyl halide to form a stable Cu(III) product. Science 381, 1072–1079 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yan, W. et al. Catalytically relevant organocopper(III) complexes formed through aryl-radical-enabled oxidative addition. J. Am. Chem. Soc. 146, 15176–15185 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, S. et al. C(sp3)-CF3 reductive elimination from a five-coordinate neutral copper(III) complex. J. Am. Chem. Soc. 142, 9785–9791 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Paeth, M. et al. Csp3–Csp3 bond-forming reductive elimination from well-defined copper(III) complexes. J. Am. Chem. Soc. 141, 3153–3159 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, J.-R., Xu, G.-X., Liu, L.-G., Zhang, S.-Q. & Hong, X. Recent advances in theoretical studies on Cu-mediated bond formation mechanisms involving radicals. ACS Catal. 14, 2429–2454 (2024).

    Article  CAS  Google Scholar 

  56. Lu, T. & Chen, Q. Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions. Chem. Methods 1, 231–239 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of General Medical Science (R35GM146765). Mechanistic studies were supported by National Science Foundation under grant CHE-2237757. W.L. also thanks the ACS Herman Frasch Foundation (926-HF22) for the financial support. NMR experiments were performed using a Bruker AVANCE NEO 400 MHz NMR spectrometer, funded by NSF-MRI grant CHE-1726092. Funding for the D8 Venture diffractometer was through NSF-MRI grant CHE-1625737.

Author information

Authors and Affiliations

Authors

Contributions

D.D. and W.L. designed experiments. D.D. and L.Y. performed the synthetic experiments and prepared the supplementary information. A.T.P., S.C.Y., R.M.K. and S.T. performed EPR experiments. M.-J.C., Y.-H.C. and C.-T.H. conducted DFT calculations. J.A.K. performed X-ray diffraction analysis. W.L. conceived and supervised the project. W.L. wrote this manuscript with contributions from all authors.

Corresponding author

Correspondence to Wei Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Al Postigo, Nigam Rath, Qilong Shen, Beatrice Tuccio-Lauricella and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–396, Tables 1–17, Notes, Methods and References.

Supplementary Data 1

Crystallographic data for compound 24.

Supplementary Data 2

Crystallographic Information File check report for compound 24.

Supplementary Data 3

Crystallographic data for compound L*Cu(OAc)2.

Supplementary Data 4

Crystallographic Information File check report for compound compound L*Cu(OAc)2.

Supplementary Data 5

Tables of energy and coordinates for optimized structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Yin, L., Poore, A.T. et al. Enantioconvergent copper-catalysed difluoromethylation of alkyl halides. Nat Catal 7, 1372–1381 (2024). https://doi.org/10.1038/s41929-024-01253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-024-01253-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing