Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proximity-independent acid–base synergy in a solid ZrOxHy catalyst for amine regeneration in post-combustion CO2 capture

Abstract

Post-combustion CO2 capture with amines offers an almost ready-to-use capture technology to assist in the transition towards net-zero carbon emission. However, the technology suffers from a high regeneration cost due to the high process temperatures involved. Utilization of catalysts in the regeneration process was reported to be an elegant solution to lower process temperatures while maintaining high reaction kinetics. Earlier studies were performed under batch conditions and therefore lack practical validation, and a deeper mechanistic understanding of the catalysis is also missing. This study introduces a practical-to-synthesize, highly efficient, stable and recyclable ZrOxHy solid catalyst, showing high catalytic CO2 desorption rates for most common aqueous amine solutions. Kinetic and ex situ/in situ spectroscopic data reveal a proximity-independent acid–base synergistic mechanism between two catalytic cycles. The approach was validated in a fixed-bed continuous reactor, demonstrating sensible contact time shortening (up to 85%), suggesting considerable potential savings in regeneration energy, reactor construction and amine solvent cost.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic performance of ZrOxHy.
Fig. 2: Catalyst characterization.
Fig. 3: Structure–activity relationship and the proposed catalytic route.
Fig. 4: Operando ATR-FTIR spectroscopy to determine the acid–base synergistic mechanism.
Fig. 5: A first industrial application perspective.

Similar content being viewed by others

Data availability

The data supporting findings of this study are available within the paper and its Supplementary Information, or from the authors on reasonable request.

References

  1. United Nations Framework Convention on Climate Change. The Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement (UM, 2015).

  2. Energy Technology Perspectives 2020. https://www.iea.org/reports/energy-technology-perspectives-2020 (IEA, 2020).

  3. Further Assessment of Emerging CO2 Capture Technologies for the Power Sector and their Potential to Reduce Costs (IEAGHG, 2019).

  4. Danaci, D., Bui, M., Petit, C. & MacDowell, N. En route to zero emissions for power and industry with amine-based post-combustion capture. Environ. Sci. Technol. 55, 10619–10632 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Plaza, M. G., Martínez, S. & Rubiera, F. CO2 capture, use, and storage in the cement industry: state of the art and expectations. Energies 13, 5692 (2020).

    Article  CAS  Google Scholar 

  6. Rao, A. B. & Rubin, E. S. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ. Sci. Technol. 36, 4467–4475 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Yu, C. H., Huang, C. H. & Tan, C. S. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12, 745–769 (2012).

    Article  CAS  Google Scholar 

  8. Rao, A. B., Rubin, E. S., Keith, D. W. & Granger Morgan, M. Evaluation of potential cost reductions from improved amine-based CO2 capture systems. Energy Policy 34, 3765–3772 (2006).

    Article  Google Scholar 

  9. Aghel, B., Janati, S., Wongwises, S. & Safdari, M. Review on CO2 capture by blended amine solutions. Int. J. Greenh. Gas Control 119, 103715 (2022).

    Article  CAS  Google Scholar 

  10. Rezazadeh, F., Gale, W. F., Lin, Y. J. & Rochelle, G. T. Energy performance of advanced reboiled and flash stripper configurations for CO2 capture using monoethanolamine. Ind. Eng. Chem. Res. 55, 4622–4631 (2016).

    Article  CAS  Google Scholar 

  11. Rochelle, G. T. et al. Pilot plant demonstration of piperazine with the advanced flash stripper. Int. J. Greenh. Gas Control 84, 72–81 (2019).

    Article  CAS  Google Scholar 

  12. Oyenekan, B. A. & Rochelle, G. T. Performance of Innovative Stripper Options for CO2 Capture (American Institute of Chemical Engineers, 2005).

  13. Khalifa, O. et al. Modifying absorption process configurations to improve their performance for post-combustion CO2 capture—what have we learned and what is still missing? Chem. Eng. J. 430, 133096 (2022).

    Article  CAS  Google Scholar 

  14. Wang, Z., Fang, M., Pan, Y., Yan, S. & Luo, Z. Amine-based absorbents selection for CO2 membrane vacuum regeneration technology by combined absorption–desorption analysis. Chem. Eng. Sci. 93, 238–249 (2013).

    Article  CAS  Google Scholar 

  15. Machida, H., Esaki, T., Esaki, T., Yamaguchi, T. & Norinaga, K. Energy-saving CO2 capture by H2 gas stripping for integrating CO2 separation and conversion processes. ACS Sustain. Chem. Eng. 8, 8732–8740 (2020).

    Article  CAS  Google Scholar 

  16. Chowdhury, F. A., Okabe, H., Shimizu, S., Onoda, M. & Fujioka, Y. Development of novel tertiary amine absorbents for CO2 capture. Energy Procedia 1, 1241–1248 (2009).

    Article  CAS  Google Scholar 

  17. Chowdhury, F. A., Okabe, H., Yamada, H., Onoda, M. & Fujioka, Y. Synthesis and selection of hindered new amine absorbents for CO2 capture. Energy Procedia 4, 201–208 (2011).

    Article  CAS  Google Scholar 

  18. Singto, S. et al. Synthesis of new amines for enhanced carbon dioxide (CO2) capture performance: the effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration. Sep. Purif. Technol. 167, 97–107 (2016).

    Article  CAS  Google Scholar 

  19. Alivand, M. S. et al. Catalytic solvent regeneration for energy-efficient CO2 capture. ACS Sustain. Chem. Eng. 8, 18755–18788 (2020).

    Article  CAS  Google Scholar 

  20. Idem, R., Shi, H., Gelowitz, D. & Tontiwachwuthikul, P. Catalytic method and apparatus for separating a gas component from an incoming gas stream. WO patent 2011/120138 (2011).

  21. Zhou, C. et al. A critical revisit of zeolites for CO2 desorption in primary amine solution argues its genuine catalytic function. ACS Catal. 12, 11485–11493 (2022).

    Article  CAS  Google Scholar 

  22. Liu, H. et al. Investigation of CO2 regeneration in single and blended amine solvents with and without catalyst. Ind. Eng. Chem. Res. 56, 7656–7664 (2017).

    Article  CAS  Google Scholar 

  23. Zhang, X. et al. Reducing energy penalty of CO2 capture using Fe promoted SO42-/ZrO2/MCM-41 catalyst. Environ. Sci. Technol. 53, 6094–6102 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Prasongthum, N., Natewong, P., Reubroycharoen, P. & Idem, R. Solvent regeneration of a CO2-loaded BEA-AMP bi-blend amine solvent with the aid of a solid Brønsted Ce(SO4)2/ZrO2 superacid catalyst. Energy Fuels 33, 1334–1343 (2019).

    Article  CAS  Google Scholar 

  25. Bairq, Z. A. S., Gao, H., Murshed, F. A. M., Tontiwachwuthikul, P. & Liang, Z. Modified heterogeneous catalyst-aided regeneration of CO2 capture amines: a promising perspective for a drastic reduction in energy consumption. ACS Sustain. Chem. Eng. 8, 9526–9536 (2020).

    Article  CAS  Google Scholar 

  26. Gao, H. et al. Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution. Appl. Energy 259, 114179 (2020).

    Article  CAS  Google Scholar 

  27. Tan, Z. et al. Attapulgite as a cost-effective catalyst for low-energy consumption amine-based CO2 capture. Sep. Purif. Technol. 298, 121577 (2022).

    Article  CAS  Google Scholar 

  28. Alivand, M. S. et al. Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture. Nat. Commun. 13, 1–11 (2022).

    Article  Google Scholar 

  29. Bhatti, U. H. et al. Effects of transition metal oxide catalysts on MEA solvent regeneration for the post-combustion carbon capture process. ACS Sustain. Chem. Eng. 5, 5862–5868 (2017).

    Article  CAS  Google Scholar 

  30. Bhatti, U. H., Sivanesan, D., Nam, S., Park, S. Y. & Baek, I. H. Efficient Ag2O–Ag2CO3 catalytic cycle and its role in minimizing the energy requirement of amine solvent regeneration for CO2 capture. ACS Sustain. Chem. Eng. 7, 10234–10240 (2019).

    Article  CAS  Google Scholar 

  31. Ji, L. et al. Metal oxyhydroxide catalysts promoted CO2 absorption and desorption in amine-based carbon capture: a feasibility study. ACS Omega 7, 44620–44630 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lai, Q. et al. Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture. Nat. Commun. 9, 1–7 (2018).

    Article  Google Scholar 

  33. Danckwerts, P. V. The reaction of CO2 with ethanolamines. Chem. Eng. Sci. 34, 443–446 (1979).

    Article  CAS  Google Scholar 

  34. Srisang, W. et al. Evaluation of the heat duty of catalyst-aided amine-based post combustion CO2 capture. Chem. Eng. Sci. 170, 48–57 (2017).

    Article  CAS  Google Scholar 

  35. Mondal, A. & Ram, S. Monolithic t-ZrO2 nanopowder through a ZrO(OH)2·xH2O polymer precursor. J. Am. Ceram. Soc. 87, 2187–2194 (2004).

    Article  CAS  Google Scholar 

  36. Chen, J. et al. Interactions of oxide surfaces with water revealed with solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 11173–11182 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Boehm, H. P. Acidic and basic properties of hydroxylated metal oxide surfaces. Discuss. Faraday Soc. 52, 264–275 (1971).

    Article  Google Scholar 

  38. Hohl, H., Sigg, L. & Stumm, W. Characterization of surface chemical properties of oxides in natural waters. Adv. Chemistry 189, 1–31 (1980).

    Article  CAS  Google Scholar 

  39. Sun, C. & Berg, J. C. A review of the different techniques for solid surface acid–base characterization. Adv. Colloid Interface Sci. 105, 151–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Rose, J. et al. Aqueous zirconium complexes for gelling polymers. A combined X-ray absorption spectroscopy and quantum mechanical study. J. Phys. Chem. B 107, 2910–2920 (2003).

    Article  CAS  Google Scholar 

  41. Clearfield, A. The mechanism of hydrolytic polymerization of zirconyl solutions. J. Mater. Res. 5, 161–162 (1990).

    Article  CAS  Google Scholar 

  42. Chung, S. et al. Origin of active sites on silica-magnesia catalysts and control of reactive environment in the one-step ethanol-to-butadiene process. Nat. Catal. 6, 363–376 (2023).

    Article  CAS  Google Scholar 

  43. Zhang, R. et al. CuO modified KIT-6 as a high-efficiency catalyst for energy-efficient amine solvent regeneration. Sep. Purif. Technol. 300, 121702 (2022).

    Article  CAS  Google Scholar 

  44. Richner, G. Promoting CO2 absorption in aqueous amines with benzylamine. Energy Procedia 37, 423–430 (2013).

    Article  CAS  Google Scholar 

  45. Richner, G. & Puxty, G. Assessing the chemical speciation during CO2 absorption by aqueous amines using in situ FTIR. Ind. Eng. Chem. Res. 51, 14317–14324 (2012).

    Article  CAS  Google Scholar 

  46. Choi, W. J., Seo, J. B., Jang, S. Y., Jung, J. H. & Oh, K. J. Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process. J. Environ. Sci. 21, 907–913 (2009).

    Article  CAS  Google Scholar 

  47. D’Alessandro, D. M., Smit, B. & Long, J. R. Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 49, 6058–6082 (2010).

    Article  Google Scholar 

  48. Aronu, U. E. et al. Solubility of CO2 in 15, 30, 45 and 60 mass% MEA from 40 to 120 °C and model representation using the extended UNIQUAC framework. Chem. Eng. Sci. 66, 6393–6406 (2011).

    Article  CAS  Google Scholar 

  49. Mathias, P. M. & Gilmartin, J. P. Effect of uncertainty in property models on the simulated performance of solvent-based CO2-capture—study of aqueous AMP as solvent. Int. J. Greenh. Gas Control 109, 103334 (2021).

    Article  CAS  Google Scholar 

  50. Huang, B. et al. Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station. Appl. Energy 87, 3347–3354 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Vermandel and L. Utiu for kind technical support. Y.L. thanks the National Natural Science Foundation of China (52176213), C.Z. thanks the Chinese Scholarship Council (201906310137) for financial support, M.D. acknowledges FWO infrastructure projects (AKUL13/19 and I000920N) and B.F.S. acknowledges TotalEnergies for financial support.

Author information

Authors and Affiliations

Authors

Contributions

C.Z., Y.L. and B.F.S. designed the experiments. C.Z., M.T.B. and F.R. performed the experiments. C.Z., M.T.B., Y.L. and B.F.S. analysed the data. C.Z. wrote the paper with guidance from B.F.S., Y.L., P.K., M.L., W.V. and M.D. provided valuable input in data analysis and comments on the paper.

Corresponding authors

Correspondence to Yuhe Liao or Bert F. Sels.

Ethics declarations

Competing interests

This work is partly funded by TotalEnergies.

Peer review

Peer review information

Nature Catalysis thanks Maohong Fan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–22, Tables 1–4 and Refs. 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Beydokhti, M.T., Rammal, F. et al. Proximity-independent acid–base synergy in a solid ZrOxHy catalyst for amine regeneration in post-combustion CO2 capture. Nat Catal 8, 270–281 (2025). https://doi.org/10.1038/s41929-025-01307-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01307-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing