Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoinduced nickel-catalysed enantioconvergent sp3–sp3 coupling of unactivated olefins and aziridines

Abstract

Catalytic sp3–sp3 bond-forming reactions have been the subject of considerable interest in both academic and pharmaceutical laboratories. This is largely due to the observation that a higher content of sp3-hybridized carbons has recently been shown to improve several molecular attributes that contribute to clinical success. Although the ready availability of unactivated olefins and aziridines makes them ideal precursors to forge enantioenriched sp3–sp3 architectures with added-value amine functions, an enantioconvergent catalytic scenario of these counterparts has not yet been realized. Here we describe a nickel-catalysed blueprint that enables the enantioselective construction of amine-containing sp3–sp3 architectures via photoinduced enantioconvergent coupling of racemic aziridines with alkylzirconium reagents generated in situ from unactivated terminal and even internal olefins. The broad applicability of this protocol is illustrated in a series of late-stage diversification of advanced synthetic intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metal-catalysed enantioselective sp3–sp3 cross-coupling reactions.
Fig. 2: Optimization of the reaction conditions.
Fig. 3: Photoinduced enantioconvergent sp3–sp3 coupling of unactivated olefins with aziridines.
Fig. 4: Late-stage functionalization and synthetic applications.
Fig. 5: Control experiments.

Similar content being viewed by others

Data availability

Experimental procedures and characterization data for the synthesized compounds are included in the Supplementary Information. Crystallographic data are available from the Cambridge Crystallographic Data Centre with the following codes: 3w (CCDC 2360556) and 3ah (CCDC 2360555). Other data are available from the corresponding authors upon reasonable request.

References

  1. Geist, E., Kirschning, A. & Schmidt, T. sp3sp3 coupling reactions in the synthesis of natural products and biologically active molecules. Nat. Prod. Rep. 31, 441–448 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition metal-catalyzed cross-coupling reactions of organometallic reagents to construct C-C bonds. Chem. Rev. 115, 9587–9652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yus, M., Nájera, C., Foubelo, F. & Sansano, J. M. Metal-catalyzed enantioconvergent transformations. Chem. Rev. 123, 11817–11893 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou, J., Wang, D., Xu, W., Hu, Z. & Xu, T. Enantioselective C(sp3)–C(sp3) reductive cross-electrophile coupling of unactivated alkyl halides with α-chloroboronates via dual nickel/photoredox catalysis. J. Am. Chem. Soc. 145, 2081–2087 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, W.-T. & Shu, W. Enantioselective Csp3–Csp3 formation by nickel-catalyzed enantioconvergent cross-electrophile alkyl–alkyl coupling of unactivated alkyl halides. Sci. Adv. 9, eadg9898 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao, W.-T., Zhang, J.-X., Chen, B.-H. & Shu, W. Ligand-enabled Ni-catalysed enantioconvergent intermolecular alkyl–alkyl cross-coupling between distinct alkyl halides. Nat. Commun. 14, 2938 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fu, H. et al. An asymmetric sp3sp3 cross-electrophile coupling using ‘ene’-reductases. Nature 610, 302–307 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nguyen, K. D. et al. Metal-catalyzed reductive coupling of olefin-derived nucleophiles: reinventing carbonyl addition. Science 354, aah5133 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang, Y., He, Y. & Zhu, S. NiH-catalyzed functionalization of remote and proximal olefins: new reactions and innovative strategies. Acc. Chem. Res. 55, 3519–3536 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Z., Bera, S., Fan, C. & Hu, X. Streamlined alkylation via nickel-hydride-catalyzed hydrocarbonation of alkenes. J. Am. Chem. Soc. 144, 7015–7029 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, P.-F. & Shu, W. Asymmetric alkyl–alkyl cross-coupling enabled by earth-abundant metal-catalyzed hydroalkylations of olefins. Chem. Catal. 3, 100508 (2023).

    Article  CAS  Google Scholar 

  14. Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Sommer, H., Juliá-Hernández, F., Martin, R. & Marek, I. Walking metals for remote functionalization. ACS Cent. Sci. 4, 153–165 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, Y., He, Y. & Zhu, S. Nickel-catalyzed migratory cross-coupling reactions: new opportunities for selective C–H functionalization. Acc. Chem. Res. 56, 3475–3491 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Rodrigalvarez, J., Haut, F.-L. & Martin, R. Regiodivergent sp3 C–H functionalization via Ni-catalyzed chain-walking reactions. JACS Au 3, 3270–3282 (2023).

  18. Li, J. et al. Enantioselective alkylation of α-amino C(sp3)–H bonds via photoredox and nickel catalysis. Nat. Catal. 7, 889–899 (2024).

    Article  Google Scholar 

  19. Yudin, A. K. Aziridines and Epoxides in Organic Synthesis (Wiley, 2006).

  20. Huang, C. Y. & Doyle, A. G. The chemistry of transition metals with three-membered ring heterocycles. Chem. Rev. 114, 8153–8198 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Sabir, S., Kumar, G., Verma, V. P. & Jat, J. L. Aziridine ring opening: an overview of sustainable methods. ChemistrySelect 3, 3702–3711 (2018).

    Article  CAS  Google Scholar 

  22. Watson, I. D. G., Yu, L. & Yudin, A. K. Advances in nitrogen transfer reactions involving aziridines. Acc. Chem. Res. 39, 194–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Holst, D. E., Wang, D. J., Kim, M. J., Guzei, I. A. & Wickens, Z. K. Aziridine synthesis by coupling amines and alkenes via an electrogenerated dication. Nature 596, 74–79 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitchell, J. K., Hussain, W. A., Bansode, A. H., O’Connor, R. M. & Parasram, M. Aziridination via nitrogen-atom transfer to olefins from photoexcited azoxy-triazenes. J. Am. Chem. Soc. 146, 9499–9505 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lawrence, S. A. Amines: Synthesis Properties and Applications (Cambridge Univ. Press, 2004).

  26. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Ouyang, K., Hao, W., Zhang, W.-X. & Xi, Z. Transition metal-catalyzed cleavage of C-N single bonds. Chem. Rev. 115, 12045–12090 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Kong, D., Moon, P. J. & Lundgren, R. J. Radical coupling from alkyl amines. Nat. Catal. 2, 473–476 (2019).

    Article  CAS  Google Scholar 

  30. Woods, B. P., Orlandi, M., Huang, C. Y., Sigman, M. S. & Doyle, A. G. Nickel-catalyzed enantioselective reductive cross-coupling of styrenyl aziridines. J. Am. Chem. Soc. 139, 5688–5691 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Lau, S. H. et al. Ni/photoredox-catalyzed enantioselective cross-electrophile coupling of styrene oxides with aryl iodides. J. Am. Chem. Soc. 143, 15873–15881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, Y.-Z. et al. Nickel/biimidazole-catalyzed electrochemical enantioselective reductive cross-coupling of aryl aziridines with aryl iodides. Nat. Commun. 14, 2322 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu, X., Cheng-Sánchez, I., Cuesta-Galisteo, S. & Nevado, C. Nickel-catalyzed enantioselective electrochemical reductive cross-coupling of aryl aziridines with alkenyl bromides. J. Am. Chem. Soc. 145, 6270–6279 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang, C.-Y. & Doyle, A. G. Electron-deficient olefin ligands enable generation of quaternary carbons by Ni-catalyzed cross-coupling. J. Am. Chem. Soc. 137, 5638–5641 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Trowbridge, A., Walton, S. M. & Gaunt, M. J. New strategies for the transition metal-catalyzed synthesis of aliphatic amines. Chem. Rev. 120, 2613–2692 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Marek, I., Chinkov, N. & Levin, A. A zirconium promenade—an efficient tool in organic synthesis. Synlett 4, 501–514 (2006).

    Article  Google Scholar 

  37. Vasseur, A., Perrin, L., Eisenstein, O. & Marek, I. Remote functionalization of hydrocarbons with reversibility enhanced stereocontrol. Chem. Sci. 6, 2770–2776 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao, Y. et al. Visible-light-induced nickel-catalyzed cross-coupling with alkylzirconocenes from unactivated alkenes. Chem 6, 675–688 (2020).

    Article  CAS  Google Scholar 

  39. Yang, C., Gao, Y., Bai, S., Jiang, C. & Qi, X. Chemoselective cross-coupling of gem-borazirconocene alkanes with aryl halides. J. Am. Chem. Soc. 142, 11506–11513 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Hirao, Y., Katayama, Y., Mitsunuma, H. & Kanai, M. Chromium-catalyzed linear selective alkylation of aldehydes with alkenes. Org. Lett. 22, 8584–8588 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Ren, X., Gao, X., Min, Q.-Q., Zhang, S. & Zhang, X. (Fluoro)alkylation of alkenes promoted by photolysis of alkylzirconocenes. Chem. Sci. 13, 3454–3460 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, C., Bai, S., Gao, Y., Wu, Q. & Qi, X. Visible-light-induced enantioselective radical cross-coupling of C(sp3)-borazirconocene. Chem 9, 2222–2236 (2023).

    Article  CAS  Google Scholar 

  43. Fan, P., Jin, Y., Liu, J., Wang, R. & Wang, C. Nickel/photo-cocatalyzed regioselective ring opening of N-tosyl styrenyl aziridines with aldehydes. Org. Lett. 23, 7364–7369 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Lan, Y. et al. Nickel-catalyzed enantioselective C(sp3)–C(sp3) cross-electrophile coupling of N‑sulfonyl styrenyl aziridines with alkyl bromides. J. Am. Chem. Soc. 146, 25426–25432 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Meijere, A. D., Bräse, S. & Oestreich, M. Metal-Catalyzed Cross-Coupling Reactions and More (Wiley, 2014).

  46. Gao, Y. F. et al. Recent advances in intensified ethylene production—a review. ACS Catal. 9, 8592–8621 (2019).

    Article  CAS  Google Scholar 

  47. Lin, B. L., Clough, C. R. & Hillhouse, G. L. Interactions of aziridines with nickel complexes: oxidative-addition and reductive-elimination reactions that break and make C–N bonds. J. Am. Chem. Soc. 124, 2890–2891 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, J., Zhu, G. & Wu, Jie Recent advances in nickel-catalyzed ring opening cross-coupling of aziridines. Acta Chim. Sin. 82, 190–212 (2024).

    Article  CAS  Google Scholar 

  49. Somerville, R. et al. Ni(I)–alkyl complexes bearing phenanthroline ligands: experimental evidence for CO2 insertion at Ni(I) centers. J. Am. Chem. Soc. 142, 10936–10941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin, Q., Spielvogel, E. H. & Diao, T. Carbon-centered radical capture at nickel(II) complexes: spectroscopic evidence, rates, and selectivity. Chem 9, 1295–1308 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank ICIQ and FEDER/MCI PID2021-123801NB-I00 and MCI/AIE (Secero Ochoa Excellence Accreditation 2002-2023 CEX2019-000925-S) for financial support. L.Z. thanks the Deutsche Forschungsgemeinschaft (DFG) for a postdoctoral fellowship and H.W. and W.-J.Y. thank the China Scholarship Council (CSC) for a predoctoral fellowship. We also thank the ICIQ X-ray diffraction, NMR and mass spectrometry units.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. and R.M. conceived the project. L.Z. designed and performed experiments and analysed the data unless otherwise stated. R.M. supervised the project. H.W. performed parts of the late-stage functionalization experiments. T.G.S. performed a series of mechanistic experiments. W.-J.Y. performed parts of the synthetic application experiments. H.W., T.G.S. and W.-J.Y. contributed equally. L.Z. and R.M. wrote the paper. All authors participated in the discussion and preparation of the paper.

Corresponding author

Correspondence to Ruben Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Haohua Huo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, discussion and Tables 1–17.

Supplementary Tables 1–17

Supplementary Tables 1–17.

Supplementary Data 1

Crystallographic Information File (CIF) of compound 3w.

Supplementary Data 2

Crystallographic Information File (CIF) of compound 3ah.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, H., Santiago, T.G. et al. Photoinduced nickel-catalysed enantioconvergent sp3–sp3 coupling of unactivated olefins and aziridines. Nat Catal 8, 348–356 (2025). https://doi.org/10.1038/s41929-025-01319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01319-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing