Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cobaltosilicate zeolite beyond platinum catalysts for propane dehydrogenation

Abstract

Propane dehydrogenation has been used industrially as a non-oil-based propylene production process, but it strongly depends on precious-metal catalysts such as supported Pt materials, which dominate most propane dehydrogenation processes currently used in industry. Catalysts with earth-abundant metals have been explored with a view to replacing Pt, but their performances remain inadequate. Here we report a cobaltosilicate zeolite catalyst, which has solely tetrahedral cobalt sites and none of the unstable cobalt species in the zeolite crystals that are characteristic of conventional cobaltosilicate materials. This catalyst exhibits properties that could be attractive for industrial application, including sufficient propylene productivity, high stability and facile regenerability. Moreover, this system outperforms the benchmark supported Pt–Sn catalysts under equivalent conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic evaluation in PDH.
Fig. 2: Durability and activity evaluation of CoS-1 in PDH.
Fig. 3: Characterization of isolated Co in CoS-1.
Fig. 4: Modelling of the mechanism.

Similar content being viewed by others

Data availability

All data that led us to understand the results presented here are available with the paper or from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E. & Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114, 10613–10653 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, S. et al. Propane dehydrogenation: catalyst development, new chemistry and emerging technologies. Chem. Soc. Rev. 50, 3315–3354 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Yan, W., Sun, Q. & Yu, J. Dehydrogenation of propane marches on. Matter 4, 2642–2644 (2021).

    Article  CAS  Google Scholar 

  4. Otroshchenko, T., Jiang, G., Kondratenko, V. A., Rodemerck, U. & Kondratenko, E. V. Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts. Chem. Soc. Rev. 50, 473–527 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Hannagan, R. T. et al. First-principles design of a single-atom-alloy propane dehydrogenation catalyst. Science 372, 1444–1447 (2021).

    Article  CAS  Google Scholar 

  6. Yan, H. et al. Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science 371, 1257–1260 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Gomez, E., Yan, B., Kattel, S. & Chen, J. G. Carbon dioxide reduction in tandem with light-alkane dehydrogenation. Nat. Rev. Chem. 3, 638–649 (2019).

    Article  CAS  Google Scholar 

  8. Martino, M., Meloni, E., Festa, G. & Palma, V. Propylene synthesis: recent advances in the use of Pt-based catalysts for propane dehydrogenation reaction. Catalysts 11, 1070 (2021).

    Article  CAS  Google Scholar 

  9. Liu, L. et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nat. Catal. 3, 628–638 (2020).

    Article  CAS  Google Scholar 

  10. Motagamwala, A. H., Almallahi, R., Wortman, J., Igenegbai, V. O. & Linic, S. Stable, selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 373, 217–222 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Shi, L., Deng, G.-M., Li, W.-C., Miao, S. & Lu, A.-H. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew. Chem. Int. Ed. 54, 13994–13998 (2015).

    Article  CAS  Google Scholar 

  12. Ryoo, R. et al. Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 585, 221–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Nakaya, Y., Xing, F., Ham, H., Shimizu, K. & Furukawa, S. Doubly decorated platinum–gallium intermetallics as stable catalysts for propane dehydrogenation. Angew. Chem. Int. Ed. 60, 19715–19719 (2021).

    Article  CAS  Google Scholar 

  14. Sun, Q. et al. Subnanometer bimetallic platinum–zinc clusters in zeolites for propane dehydrogenation. Angew. Chem. Int. Ed. 59, 19450–19459 (2020).

    Article  CAS  Google Scholar 

  15. Searles, K. et al. Highly productive propane dehydrogenation catalyst using silica-supported Ga–Pt nanoparticles generated from single-sites. J. Am. Chem. Soc. 140, 11674–11679 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, S. et al. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 7, 387–405 (2021).

    Article  CAS  Google Scholar 

  17. Qi, L. et al. Propane dehydrogenation catalyzed by isolated Pt atoms in ≡SiOZn−OH nests in dealuminated zeolite beta. J. Am. Chem. Soc. 143, 21364–21378 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, D. et al. In situ formation of ZnOx species for efficient propane dehydrogenation. Nature 599, 234–238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cai, W. et al. Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Sci. Adv. 4, eaar5418 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schreiber, M. W. et al. Lewis–Brønsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes. J. Am. Chem. Soc. 140, 4849–4859 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, G., Su, Y., Duan, X. & Xie, K. High-density Lewis acid sites in porous single-crystalline monoliths to enhance propane dehydrogenation at reduced temperatures. Angew. Chem. Int. Ed. 60, 9311–9315 (2021).

    Article  CAS  Google Scholar 

  22. Song, S. et al. In situ encapsulated subnanometric CoO clusters within silicalite-1 zeolite for efficient propane dehydrogenation. AIChE J. 68, e17451 (2022).

    Article  CAS  Google Scholar 

  23. Bian, Z. et al. Mesoporous-silica-stabilized cobalt (II) oxide nanoclusters for propane dehydrogenation. ACS Appl. Nano Mater. 4, 1112–1125 (2021).

    Article  CAS  Google Scholar 

  24. Wang, Y., Suo, Y., Ren, J.-T., Wang, Z. & Yuan, Z.-Y. Spatially isolated cobalt oxide sites derived from MOFs for direct propane dehydrogenation. J. Colloid Interface Sci. 594, 113–121 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Hu, Z.-P. et al. Atomic insight into the local structure and microenvironment of isolated Co-motifs in MFI zeolite frameworks for propane dehydrogenation. J. Am. Chem. Soc. 147, 12127–12137 (2022).

    Article  Google Scholar 

  26. Chen, C., Zhang, S., Wang, Z. & Yuan, Z.-Y. Ultrasmall Co confined in the silanols of dealuminated beta zeolite: a highly active and selective catalyst for direct dehydrogenation of propane to propylene. J. Catal. 383, 77–87 (2020).

    Article  CAS  Google Scholar 

  27. Wu, L. et al. Atomically dispersed Co2+ sites incorporated into a silicalite‑1 zeolite framework as a high-performance and coking-resistant catalyst for propane nonoxidative dehydrogenation to propylene. ACS Appl. Mater. Interfaces 13, 48934–48948 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, L. et al. Rivet of cobalt in siliceous zeolite for catalytic ethane dehydrogenation. Chem 9, 637–649 (2023).

    Article  CAS  Google Scholar 

  29. Lin, L., Zhang, T., Zang, J. & Xu, Z. Dynamic process of carbon deposition on Pt and Pt-Sn catalysts for alkane dehydrogenation. Appl. Catal. 67, 11–23 (1990).

    Article  CAS  Google Scholar 

  30. Otroshchenko, T. et al. ZrO2-based alternatives to conventional propane dehydrogenation catalysts: active sites, design and performance. Angew. Chem. Int. Ed. 54, 15880–15883 (2015).

    Article  CAS  Google Scholar 

  31. Romeo, E., Saeys, M., Monzón, A. & Borgna, A. Carbon nanotube formation during propane decomposition on boron-modified Co/Al2O3 catalysts: a kinetic study. Int. J. Hydrog. Energy 39, 18016–18026 (2014).

    Article  CAS  Google Scholar 

  32. Bethune, D. S. et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993).

    Article  CAS  Google Scholar 

  33. Shen, B. et al. A single-molecule van der Waals compass. Nature 592, 541–544 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Jiang, H. et al. Atomic-resolution characterization on the structure of strontium doped barium titanate nanoparticles. Nano Res. 14, 4802–4807 (2021).

    Article  CAS  Google Scholar 

  35. Li, S. et al. Composite Si-O-metal network catalysts with uneven electron distribution: enhanced activity and electron transfer for catalytic ozonation of carbamazepine. Appl. Catal. B Environ. 263, 118311 (2020).

    Article  CAS  Google Scholar 

  36. Schwartz, V., Prins, R., Wang, X. & Sachtler, W. M. H. Characterization by EXAFS of Co/MFI catalysts prepared by sublimation. J. Phys. Chem. B 106, 7210–7217 (2002).

    Article  CAS  Google Scholar 

  37. Ahn, H. S., Yano, J. & Tilley, T. D. Photocatalytic water oxidation by very small cobalt domains on a silica surface. Energy Environ. Sci. 6, 3080–3087 (2013).

    Article  CAS  Google Scholar 

  38. Yang, M.-L., Zhu, Y.-A., Zhou, X.-G., Sui, Z.-J. & Chen, D. First-principles calculations of propane dehydrogenation over PtSn catalysts. ACS Catal. 2, 1247–1258 (2012).

    Article  CAS  Google Scholar 

  39. Wang, J. et al. On the role of Sn segregation of Pt-Sn catalysts for propane dehydrogenation. ACS Catal. 11, 4401–4410 (2021).

    Article  CAS  Google Scholar 

  40. Stegelmann, C., Andreasen, A. & Campbell, C. T. Degree of rate control: how much the energies of intermediates and transition states control rates. J. Am. Chem. Soc. 131, 8077–8082 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Nykänen, L. & Honkala, K. Selectivity in propene dehydrogenation on Pt and Pt3Sn surfaces from first principles. ACS Catal. 3, 3026–3030 (2013).

    Article  Google Scholar 

  42. Jiao, Y. et al. Creation of Al-enriched mesoporous ZSM-5 nanoboxes with high catalytic activity: converting tetrahedral extra-framework Al into framework sites by post treatment. Angew. Chem. Int. Ed. 59, 19478–19486 (2020).

    Article  CAS  Google Scholar 

  43. Wang, C. et al. Extra-framework aluminum-assisted initial C-C bond formation in methanol-to-olefins conversion on zeolite H-ZSM-5. Angew. Chem. Int. Ed. 130, 10354–10358 (2018).

    Article  Google Scholar 

  44. Ravi, M., Sushkevich, V. L. & van Bokhoven, J. A. Towards a better understanding of Lewis acidic aluminium in zeolites. Nat. Mater. 19, 1047–1056 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  48. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  49. Blöchl, P. E., Jepsen, O. & Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223–16233 (1994).

    Article  Google Scholar 

  50. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  51. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  52. Selcuk, S. & Selloni, A. DFT + U study of the surface structure and stability of Co3O4 (110): dependence on U. J. Phys. Chem. C 119, 9973–9979 (2015).

    Article  CAS  Google Scholar 

  53. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985).

    Article  CAS  Google Scholar 

  54. Woo, T. K., Margl, P. M., Blöchl, P. E. & Ziegler, T. A. Combined Car−Parrinello QM/MM implementation for ab initio molecular dynamics simulations of extended systems: application to transition metal catalysis. J. Phys. Chem. B 101, 7877–7880 (1997).

    Article  CAS  Google Scholar 

  55. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997).

    Article  CAS  Google Scholar 

  56. Sprik, M. & Ciccotti, G. Free energy from constrained molecular dynamics. J. Chem. Phys. 109, 7737–7744 (1998).

    Article  CAS  Google Scholar 

  57. Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977).

    Article  CAS  Google Scholar 

  58. Andersen, H. Rattle: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983).

    Article  CAS  Google Scholar 

  59. Searle, M. S. & Williams, D. H. The cost of conformational order: entropy changes in molecular associations. J. Am. Chem. Soc. 114, 10690–10697 (1992).

    Article  CAS  Google Scholar 

  60. Kemball, C. Entropy of adsorption. Adv. Catal. 2, 233–250 (1950).

    Article  CAS  Google Scholar 

  61. Carlsson, J. & Åqvist, J. Absolute and relative entropies from computer simulation with applications to ligand binding. J. Phys. Chem. B 109, 6448–6456 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, Y. & Maginn, E. J. A simple AIMD approach to derive atomic charges for condensed phase simulation of ionic liquids. J. Phys. Chem. B 116, 10036–10048 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Pham, T. D. & Lobo, R. F. Adsorption equilibria of CO2 and small hydrocarbons in AEI-, CHA-, STT- and RRO-type siliceous zeolites. Micropor. Mesopor. Mater. 236, 100–108 (2016).

    Article  CAS  Google Scholar 

  64. Kadam, S. A., Li, H., Wormsbecher, R. F. & Travert, A. Impact of zeolite structure on entropic–enthalpic contributions to alkane monomolecular cracking: an IR operando study. Chem. Eur. J. 24, 5489–5492 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Medford, A. J. et al. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345, 197–200 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Baerlocher, C. & McCusker, L. B. Database of Zeolite Structures http://www.iza-structure.org/databases/ (IZA Structure Commission, 2016).

  67. Chen, J., Jia, M., Hu, P. & Wang, H. CATKINAS: a large-scale catalytic microkinetic analysis software for mechanism auto-analysis and catalyst screening. J. Comput. Chem. 42, 379–391 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge beamtime at Beijing Synchrotron Radiation Facility (beamline 1W1B) and Shanghai Synchrotron Radiation Facility (SSRF, beamline BL14 W1) and are grateful for help with XANES and EXAFS characterization. We thank F. Chen for helping with SEM characterization. This work was supported by the National Key Research and Development Program of China (2022YFA1504500, 2021YFA1500700 and 2022YFE0108000), the National Natural Science Foundation of China (22288101, 22241801, 22321002, 22425207 and 22202177) and a Start-up Grant from Ningbo Innovation Center, Zhejiang University (NBHG2023X012). This work was also supported by the User Experiment Assist System of SSRF.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. performed the catalyst preparation, characterization and catalytic tests. H.L. and J.X. performed the theoretical simulation and wrote the corresponding section. S.C., X.T. and L.L. performed the XANES and EXAFS characterization and analysed the data. J.Q., Z.R., A.C., X.L. and L.C. performed TEM characterization and identified the isolated cobalt. Lujie Liu, Lu Liu, X.Q., J.S., J.H. and S.X. participated in the characterization, catalysis and discussion. Y.H., Y.Q., L.S., Q.Y. and B.H. provided help with discussion on the catalyst structure. Y.D. and J.M. performed the ToF-MS characterization. L.W. and F.-S.X. designed the study, analysed the data and wrote the paper. All authors discussed the results and improved the paper.

Corresponding authors

Correspondence to Liang Wang, Xi Liu, Jianping Xiao or Feng-Shou Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–68, Tables 1–6 and References.

Supplementary Data

Atomic coordinate details.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Li, H., Wang, L. et al. Cobaltosilicate zeolite beyond platinum catalysts for propane dehydrogenation. Nat Catal 8, 357–367 (2025). https://doi.org/10.1038/s41929-025-01320-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01320-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing