Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ordered single active sites for cascade hydrogenation and hydroformylation reactions

Abstract

Metal single-atom catalysts offer improved activity and selectivity due to their unique electronic and coordination properties compared with bulk metals. However, many single-atom catalysts suffer from randomly dispersed active sites and limited electron-donating ability due to bonding with electronegative elements or less reactive metals. Here we demonstrate that Mg-rich intermetallic Mg29TM4 (TM = Pd, Rh, Ir, Pt) nanocatalysts overcome these limitations. These materials feature periodically dispersed, electron-rich single-atom sites of noble metals within a uniform chemical environment. Mg29TM4 exhibits high activity and selectivity in C2H2 semihydrogenation (Mg29Pd4) and olefin hydroformylation (Mg29Rh4), with Mg29Rh4 achieving high regioselectivity for branched aldehydes (branched:linear > 200:1). Kinetic and density functional theory studies suggest that the Mg–TM ensemble enables precise control over carbon–carbon multiple bond adsorption and activation, enhancing both activity and selectivity. Furthermore, the ternary Mg29Pd1.3Rh2.7 catalyst, with its synergistic Mg–Pd and Mg–Rh dual single-atom sites, efficiently catalyses a cascade reaction involving phenylacetylene hydrogenation followed by hydroformylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of atomically dispersed catalysts from disordered to ordered structures.
Fig. 2: Theoretical analysis of crystal and electronic structures.
Fig. 3: Schematic for the preparation and characterization of Mg29Pd4.
Fig. 4: Structural characterization of the Mg29Pd4 SAIMC.
Fig. 5: Elemental EDS mapping images and particle average size of representative Mg29TM4 compounds.
Fig. 6: Catalytic performance of Mg29Pd4 and Mg29Rh4 SAIMCs.
Fig. 7: Atomic cascade catalysis of the Mg29Pd1.3Rh2.7 SAIMC.

Similar content being viewed by others

Data availability

The data that support the findings of this article are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Guo, Y., Wang, M., Zhu, Q., Xiao, D. & Ma, D. Ensemble effect for single-atom, small cluster and nanoparticle catalysts. Nat. Catal. 5, 766–776 (2022).

    Article  CAS  Google Scholar 

  2. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Lucci, F. et al. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit. Nat. Commun. 6, 8550 (2015).

    Article  PubMed  Google Scholar 

  5. Hannagan, R. T. et al. First-principles design of a single-atom–alloy propane dehydrogenation catalyst. Science 372, 1444–1447 (2021).

    Article  CAS  Google Scholar 

  6. Réocreux, R. & Stamatakis, M. One decade of computational studies on single-atom alloys: is in silico design within reach? Acc. Chem. Res. 55, 87–97 (2022).

    Article  PubMed  Google Scholar 

  7. Thirumalai, H. & Kitchin, J. R. Investigating the reactivity of single atom alloys using density functional theory. Top. Catal. 61, 462–474 (2018).

    Article  CAS  Google Scholar 

  8. Gu, J. et al. Synergizing metal–support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat. Nanotechnol. 16, 1141–1149 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, P., Huang, X., Mance, D. & Copéret, C. Atomically dispersed iridium on MgO(111) nanosheets catalyses benzene–ethylene coupling towards styrene. Nat. Catal. 4, 968–975 (2021).

    Article  CAS  Google Scholar 

  10. Liu, W. et al. Discriminating catalytically active FeNx species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 139, 10790–10798 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Sun, K. et al. Co(CN)3 catalysts with well-defined coordination structure for the oxygen reduction reaction. Nat. Catal. 6, 1164–1173 (2023).

    Article  CAS  Google Scholar 

  12. Chen, M. et al. Intermetallic nanocatalyst for highly active heterogeneous hydroformylation. J. Am. Chem. Soc. 143, 20907–20915 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Gross, N., Kotzyba, G., Künnen, B. & Jeitschko, W. Binary compounds of rhodium and zinc: RhZn, Rh2Zn11, and RhZn13. Z. Anorg. Allg. Chem. 627, 155–163 (2001).

    Article  CAS  Google Scholar 

  14. Dasgupta, A., Zimmerer, E. K., Meyer, R. J. & Rioux, R. M. Generalized approach for the synthesis of silica supported Pd–Zn, Cu–Zn and Ni–Zn gamma brass phase nanoparticles. Catal. Today 334, 231–242 (2019).

    Article  CAS  Google Scholar 

  15. Dasgupta, A. et al. Atomic control of active-site ensembles in ordered alloys to enhance hydrogenation selectivity. Nat. Chem. 14, 523–529 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Ji, Y. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat. Catal. 5, 251–258 (2022).

    Article  CAS  Google Scholar 

  17. Han, A. et al. Isolating contiguous Pt atoms and forming Pt–Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nat. Commun. 10, 3787 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Niu, Y. et al. Patterning the consecutive Pd3 to Pd1 on Pd2Ga surface via temperature-promoted reactive metal–support interaction. Sci. Adv. 8, eabq5751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ye, T.-N. et al. Palladium-bearing intermetallic electride as an efficient and stable catalyst for Suzuki cross-coupling reactions. Nat. Commun. 10, 5653 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Agnarelli, L. et al. Mg29−xPt4+y: chemical bonding inhomogeneity and structural complexity. Inorg. Chem. 61, 16148–16155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ye, T.-N. et al. Copper-based intermetallic electride catalyst for chemoselective hydrogenation reactions. J. Am. Chem. Soc. 139, 17089–17097 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Biggins, J. S., Yazdi, S. & Ringe, E. Magnesium nanoparticle plasmonics. Nano Lett. 18, 3752–3758 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Cao, Y. et al. Adsorption site regulation to guide atomic design of Ni–Ga catalysts for acetylene semi-hydrogenation. Angew. Chem. Int. Ed. 59, 11647–11652 (2020).

    Article  CAS  Google Scholar 

  24. Fang, Q. et al. Isolated single-atom Pd sites in intermetallic nanostructures: high catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 139, 7294–7301 (2017).

    Article  Google Scholar 

  25. Muravev, V. et al. Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 4, 469–478 (2021).

    Article  CAS  Google Scholar 

  26. Huang, F. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 140, 13142–13146 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, F. et al. Low-temperature acetylene semi-hydrogenation over the Pd1–Cu1 dual-atom catalyst. J. Am. Chem. Soc. 144, 18485–18493 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, H., Park, J. & Jung, Y. The binding nature of light hydrocarbons on Fe/MOF-74 for gas separation. Phys. Chem. Chem. Phys. 15, 19644–19650 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Ma, S., Jin, Y. & Si, Y. Adsorption behavior of Pd-doped SnS2 monolayer upon H2 and C2H2 for dissolved gas analysis in transformer oil. Adsorption 25, 1587–1594 (2019).

    Article  CAS  Google Scholar 

  30. Guo, Q. et al. Enabling semihydrogenation of alkynes to alkenes by using a calcium palladium complex hydride. J. Am. Chem. Soc. 143, 20891–20897 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Abu-Reziq, R., Alper, H., Wang, D. & Post, M. L. Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts. J. Am. Chem. Soc. 128, 5279–5282 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, B., Huang, N., Wang, Y., Lan, X. & Wang, T. Promotion of inorganic phosphorus on Rh catalysts in styrene hydroformylation: geometric and electronic effects. ACS Catal. 11, 1787–1796 (2021).

    Article  CAS  Google Scholar 

  33. Liu, B., Wang, Y., Huang, N., Lan, X. & Wang, T. Activity promotion of Rh8−xCoxP4 bimetallic phosphides in styrene hydroformylation: dual influence of adsorption and surface reaction. ACS Catal. 11, 9850–9859 (2021).

    Article  CAS  Google Scholar 

  34. Amsler, J. et al. Prospects of heterogeneous hydroformylation with supported single atom catalysts. J. Am. Chem. Soc. 142, 5087–5096 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Lang, R. et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem. Int. Ed. 55, 16054–16058 (2016).

    Article  CAS  Google Scholar 

  36. Li, T. et al. Styrene hydroformylation with in situ hydrogen: regioselectivity control by coupling with the low-temperature water–gas shift reaction. Angew. Chem. Int. Ed. 59, 7430–7434 (2020).

    Article  CAS  Google Scholar 

  37. Gao, P. et al. Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Nat. Commun. 12, 4698 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun, Q. et al. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: synergistic effect of high ligand concentration and flexible framework. J. Am. Chem. Soc. 137, 5204–5209 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Xiong, Y. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15, 390–397 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Ferrari, P. et al. Controlling the adsorption of carbon monoxide on platinum clusters by dopant-induced electronic structure modification. Angew. Chem. Int. Ed. 55, 11059–11063 (2016).

    Article  CAS  Google Scholar 

  41. Kress, P. L. et al. A priori design of dual-atom alloy sites and experimental demonstration of ethanol dehydrogenation and dehydration on PtCrAg. J. Am. Chem. Soc. 145, 8401–8407 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Rehr, J. J., Kas, J. J., Vila, F. D., Prange, M. P. & Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12, 5503–5513 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Muñoz, M., Argoul, P. & Farges, F. Continuous Cauchy wavelet transform analyses of EXAFS spectra: a qualitative approach. Am. Mineral. 88, 694–700 (2003).

    Article  Google Scholar 

  45. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Dronskowski, R. & Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Article  CAS  Google Scholar 

  48. Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PU. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  50. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  51. Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).

    Article  CAS  Google Scholar 

  52. Rahm, J. M. & Erhart, P. WulffPack: a Python package for Wulff constructions. J. Open Source Softw. 5, 1944 (2020).

    Article  Google Scholar 

  53. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22275121, 21931005, 22105122 and 52272265), the National Key R&D Program of China (2023YFA1506300 and 2023YFB3809101) and the Shanghai Municipal Science and Technology Major Project. We also thank the Fundamental Research Funds for the Central Universities (23X010301599, 24X010301678), the project of Jiangxi Academy of Sciences (2023YSTZX01), Liuchuang Program of Chongqing Municipality (cx2022038), Guangdong Provincial University Science and Technology Program (2023KTSCX123) from the Department of Education of Guangdong Province, and Shenzhen Fundamental Research funding (JCYJ20220530114616036). We also thank the User Experiment Assist System of the Shanghai Synchrotron Radiation Facility (SSRF).

Author information

Authors and Affiliations

Authors

Contributions

T.-N.Y. conceived the idea and supervised the project. X.L., J.W., Y. Lu, W.L., J.L., M.X., Y. Liu, F.P. and T.-N.Y. performed the synthesis, characterization and catalytic measurements. X.H., Z.L. and T.K. conducted the model construction and DFT calculations. Y.Q. and Q.Z. helped with the STEM measurements. M.D. helped with the CO-DRIFT measurements. X.L., H.H., J.-S.C. and T.-N.Y. co-wrote the paper with input from all authors.

Corresponding authors

Correspondence to Jie-Sheng Chen or Tian-Nan Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Romain Réocreux and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–59, Tables 1–19, Notes 1 and 2 and references.

Supplementary Video 1

In situ TEM images.

Supplementary Data 1

Compressed zip file containing the crystal structures of Mg29Pd4, Mg29Rh4, Mg29Ir4 and Mg29Pt4.

Supplementary Data 2

Compressed zip file containing the geometric configurations of the intermediates of C2H2 hydrogenation on Mg29Pd4.

Supplementary Data 3

Compressed zip file containing the geometric configurations of the intermediates of styrene hydroformylation on Mg29Rh4.

Supplementary Data 4

Compressed zip file containing the geometric configurations for the insertion of H adatoms at the α- and β-sites of the vinyl group of styrene on Mg29Rh4.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Source Data Fig. 6

Source data for Fig. 6.

Source Data Fig. 7

Source data for Fig. 7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Wu, J., He, X. et al. Ordered single active sites for cascade hydrogenation and hydroformylation reactions. Nat Catal 8, 536–547 (2025). https://doi.org/10.1038/s41929-025-01346-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01346-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing