Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ambient solar thermal catalysis for polyolefin upcycling using copper encapsulated in silicon nanosheets and chloroaluminate ionic liquid

Abstract

The accumulation of plastic waste has become a global issue. Socially and industrially viable, sustainable technical solutions are therefore required. Here we report a solar thermal catalytic system for polyolefins upcycling using copper nanoparticles encapsulated by stacked two-dimensional silicon. In a chloroaluminate ionic liquid solvent, unlike conventional thermal techniques, the upcycling can proceed under a mild temperature (55 °C) created photothermally under 4 sun irradiation. The polyethylene can be completely transformed into distinct and separable fractions of alkanes (C3–C7) and cyclic hydrocarbons (C8–C26) within hours, with a total yield of 91%. Mechanistic studies show a pathway involved two β-scissions of C–C bonds and a rapid cyclization. The approach offers versatility in the upcycling of various real-world polyolefin waste and features excellent feasibility in outdoor practices. The analyses of a conceptual upcycling facility using this technology showcase its appeal in both economic and eco-friendliness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic preparation and characterization of Cu/2D Si catalyst.
Fig. 2: Performance and proposed reaction pathways for solar thermal catalytic plastic upcycling.
Fig. 3: Function of Cu NPs and 2D Si in solar thermal catalytic plastic upcycling.
Fig. 4: Function of light in solar thermal catalytic plastic upcycling.
Fig. 5: Robustness and demonstrations of solar thermal catalytic plastic upcycling system.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the study are provided with this paper or available from the authors on reasonable request. Source Data are provided with this paper.

References

  1. Ma, D. Transforming end-of-life plastics for a better world. Nat. Sustain. 6, 1142–1143 (2023).

    Article  Google Scholar 

  2. Zheng, K. et al. Progress and perspective for conversion of plastic wastes into valuable chemicals. Chem. Soc. Rev. 52, 8–29 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, Y. et al. Chemically recyclable polyolefin-like multiblock polymers. Science 382, 310–314 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xing, C., Cai, H., Kang, D. & Sun, W. Photothermal catalysis: an emerging green approach to upcycling plastic waste. Adv. Energy Sustain. Res. 4, 2300015 (2023).

    Article  CAS  Google Scholar 

  5. Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  CAS  Google Scholar 

  6. Zhang, M.-Q. et al. Catalytic strategies for upvaluing plastic wastes. Chem 8, 2912–2923 (2022).

    Article  CAS  Google Scholar 

  7. Uekert, T., Pichler, C. M., Schubert, T. & Reisner, E. Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 4, 383–391 (2020).

    Article  Google Scholar 

  8. Chu, M., Liu, Y., Lou, X., Zhang, Q. & Chen, J. Rational design of chemical catalysis for plastic recycling. ACS Catal. 12, 4659–4679 (2022).

    Article  CAS  Google Scholar 

  9. Duan, J. et al. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion. J. Am. Chem. Soc. 144, 14269–14277 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, X. et al. Upcycling to sustainably reuse plastics. Adv. Mater. 34, 2100843 (2021).

    Article  Google Scholar 

  11. Liu, Y. et al. Solar thermal catalysis for sustainable and efficient polyester upcycling. Matter 5, 1305–1317 (2022).

    Article  CAS  Google Scholar 

  12. Liu, Y. et al. Photothermal catalytic polyester upcycling over cobalt single-site catalyst. Adv. Funct. Mater. 33, 2210283 (2022).

    Article  Google Scholar 

  13. Zhang, W. et al. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation. Science 379, 807–811 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Cao, R. et al. Co-upcycling of polyvinyl chloride and polyesters. Nat. Sustain. 6, 1685–1692 (2023).

    Article  Google Scholar 

  15. Jiao, X. et al. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions. Angew. Chem. Int. Ed. 59, 15497 (2020).

    Article  CAS  Google Scholar 

  16. Xing, C. et al. Solar energy-driven upcycling of plastic waste on direct Z-scheme heterostructure of V-substituted phosphomolybdic acid/g-C3N4 nanosheets. Appl. Catal. B 315, 121496 (2022).

    Article  CAS  Google Scholar 

  17. Jiao, X. et al. Direct polyethylene photoreforming into exclusive liquid fuel over charge-asymmetrical dual sites under mild conditions. Nano Lett. 22, 10066–10072 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Miao, Y. et al. Photothermal recycling of waste polyolefin plastics into liquid fuels with high selectivity under solvent-free conditions. Nat. Commun. 14, 4242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, Y. et al. Integrated photochromic-photothermal processes for catalytic plastic upcycling. Angew. Chem. Int. Ed. 62, e202308930 (2023).

    Article  CAS  Google Scholar 

  20. Lou, X. et al. Grave-to-cradle photothermal upcycling of waste polyesters over spent LiCoO2. Nat. Commun. 15, 2730 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, S. et al. Stable Cu catalysts supported by two-dimensional SiO2 with strong metal–support interaction. Adv. Sci. 9, e2104972 (2022).

    Article  Google Scholar 

  22. Su, Y. et al. High surface area siloxene for photothermal and electrochemical catalysis. Nanoscale 15, 154–161 (2022).

    Article  PubMed  Google Scholar 

  23. Wang, S., Wang, C., Pan, W., Sun, W. & Yang, D. Two‐dimensional silicon for (photo)catalysis. Sol. RRL 5, 2000392 (2020).

    Article  Google Scholar 

  24. Qian, C. et al. Catalytic CO2 reduction by palladium-decorated silicon–hydride nanosheets. Nat. Catal. 2, 46–54 (2018).

    Article  Google Scholar 

  25. Cai, M. et al. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat. Energy 6, 807–814 (2021).

    Article  CAS  Google Scholar 

  26. Yao, D. et al. Scalable synthesis of Cu clusters for remarkable selectivity control of intermediates in consecutive hydrogenation. Nat. Commun. 14, 1123 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qu, Y. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 1, 781–786 (2018).

    Article  CAS  Google Scholar 

  28. Xie, P. et al. Oxo dicopper anchored on carbon nitride for selective oxidation of methane. Nat. Commun. 13, 1375 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chu, M. et al. Site-selective polyolefin hydrogenolysis on atomic Ru for methanation suppression and liquid fuel production. Research 6, 0032 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, Y., Li, B., Zhang, D., Cheng, L. & Xiang, Q. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano 14, 10552–10561 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Du, J. et al. Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons. Nat. Nanotechnol. 18, 772–779 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Li, Y. et al. General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy. Nat. Commun. 13, 776 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adams, C. J., Earle, M. J. & Seddon, K. R. Catalytic cracking reactions of polyethylene to light alkanes in ionic liquids. Green Chem. 2, 21–24 (2000).

    Article  CAS  Google Scholar 

  34. Sun, J. et al. Bifunctional tandem catalytic upcycling of polyethylene to surfactant-range alkylaromatics. Chem 9, 2318–2336 (2023).

    Article  CAS  Google Scholar 

  35. Li, L. et al. Converting plastic wastes to naphtha for closing the plastic loop. J. Am. Chem. Soc. 145, 1847–1854 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, G. & Li, Z. A highly ionic reaction environment achieving low-temperature polyethylene upcycling. Sci. China Chem. 66, 1237–1238 (2023).

    Article  CAS  Google Scholar 

  37. Jangam, A. et al. CO2 Hydrogenation to methanol over partially reduced Cu−SiO2P catalysts: the crucial role of hydroxyls for methanol selectivity. ACS Appl. Energy Mater. 4, 12149–12162 (2021).

    Article  CAS  Google Scholar 

  38. Sharma, A. S., Sharma, V. S. & Kaur, H. Graphitic carbon nitride decorated with Cu2O nanoparticles for the visible light activated synthesis of ynones, aminoindolizines, and pyrrolo [1,2-a] quinoline. ACS Appl. Nano Mater. 3, 1191–1202 (2019).

    Article  Google Scholar 

  39. Song, C., Wang, Z., Yin, Z., Xiao, D. & Ma, D. Principles and applications of photothermal catalysis. Chem. Catal. 2, 52–83 (2022).

    Article  CAS  Google Scholar 

  40. Li, Y. et al. Low temperature thermal and solar heating carbon-free hydrogen production from ammonia using nickel single atom catalysts. Adv. Energy Mater. 12, 2202459 (2022).

    Article  CAS  Google Scholar 

  41. Wang, J. et al. Synergetic effect of non-thermal plasma and supported cobalt catalyst in plasma-enhanced CO2 hydrogenation. Chem. Eng. J. 451, 138661 (2023).

    Article  CAS  Google Scholar 

  42. Conk, R. J. et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 377, 1561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, Y. et al. Characterization and hydrogenation removal of acid-soluble oil in ionic liquid catalysts for isobutane alkylation. Ind. Eng. Chem. Res. 60, 13764–13773 (2021).

    Article  CAS  Google Scholar 

  44. Hernández, B., Kots, P., Selvam, E., Vlachos, D. G. & Ierapetritou, M. G. Techno-economic and life cycle analyses of thermochemical upcycling technologies of low-density polyethylene waste. ACS Sustain. Chem. Eng. 11, 7170–7181 (2023).

    Article  Google Scholar 

  45. Qiu, Z. et al. A reusable, impurity-tolerant and noble metal–free catalyst for hydrocracking of waste polyolefins. Sci. Adv. 9, e5332 (2023).

    Article  Google Scholar 

  46. COMSOL Multiphysics v6.0. (COMSOL AB, 2021).

Download references

Acknowledgements

The project was supported by the National Key R&D Program of China (2021YFF0502000), the U of T-ZJU Joint Seed Fund, the Fundamental Research Funds for the Central Universities, China (226-2022-00200). Many thanks to G. Vezina of Hydrofuel Canada Inc., the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support. This work was also supported by the Natural Science Foundation of China (72374135), the Shanghai Rising-Star Program (23QA1404900), and the Natural Science Foundation of Shanghai (23ZR1434100).

Author information

Authors and Affiliations

Authors

Contributions

C.X., S.W., W.S. and G.A.O conceived and designed the experiments. C.X., L. Wu and S.W. peformed the synthesis experiments. C.X., D.Z. and D.K. performed the structural characterization of catalysts. C.X., W.S. performed and analysed the catalytic experiments. With the support of L. Wang, C.X. performed the hydrogenation experiments. Y.Z. and C.L. performed the heat transfer stimulation. C.X., C.M., Di Yang, W.G. and W.W. conducted the techno-economic analysis. C.X., W.S., C.M., Deren Yang and G.A.O. wrote the paper. W.S., G.A.O and Deren Yang supervised the project. All authors commented on the final paper.

Corresponding authors

Correspondence to Geoffrey A. Ozin, Deren Yang or Wei Sun.

Ethics declarations

Competing interests

A Chinese patent application (application no. 202410188427.2; Inventors: W.S., C.X., Deren.Y.) and a United States patent application (application no. 19057203; Inventors: W.S., C.X., G.A.O., Deren.Y.) related to part of this work are currently under examination. The other authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Kevin van Geem for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Figs. 1–48 and Tables 1–11.

Supplementary Table 1

Automatic qualitative identifications of upcycling products measured by 2D gas chromatography with mass spectrometry.

Source data

Source Data Fig. 1

Statistical source data of Fig. 1.

Source Data Fig. 2

Statistical source data of Fig. 2.

Source Data Fig. 3

Statistical source data of Fig. 3.

Source Data Fig. 4

Statistical source data of Fig. 4.

Source Data Fig. 5

Statistical source data of Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, C., Mao, C., Wang, S. et al. Ambient solar thermal catalysis for polyolefin upcycling using copper encapsulated in silicon nanosheets and chloroaluminate ionic liquid. Nat Catal 8, 556–568 (2025). https://doi.org/10.1038/s41929-025-01349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01349-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing