Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atom-economic enantioselective photoenzymatic radical hydroalkylation via single-electron oxidation of carbanions

Abstract

Established strategies for enantioselective hydroalkylation for C(sp3)–C(sp3) bond formation usually require prefunctionalized substrates as radical precursors in both transition-metal and photoenzymatic catalysis. Here, based on a sequential proton transfer/electron transfer strategy, we show a cooperative photoenzymatic system consisting of a flavin-dependent ‘ene’-reductase and an organophotoredox catalyst fluorescein (FI) to achieve atom-economic enantiodivergent hydroalkylation of electron-deficient C(sp3)–H with olefins. Mechanistic studies revealed a pathway for radical intermediate formation via excited-state FI*-induced single-electron oxidation of carbanions under alkaline conditions. The overall catalytic efficiency is enhanced by the electron transfer between FMNox and FI−•, while the stereoselectivity is controlled by ene-reductases through enantioselective hydrogen atom transfer. We anticipate that this mode of photoenzymatic catalysis will inspire new pathways for generating free radical intermediates and foster innovative strategies for achieving photoenzymatic new-to-nature reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different photoenzymatic modes for enantioselective hydrofunctionalization.
Fig. 2: Substrate scope and molecular docking results.
Fig. 3: Proposed catalytic cycle.
Fig. 4: Mechanistic experiments.
Fig. 5: Mechanistic studies.

Similar content being viewed by others

Data availability

Data relating to the materials and methods, experimental procedures, mechanistic studies and computational calculations, HPLC spectra and NMR spectra are available in the Supplementary Information or from the authors on reasonable request. The coordinates of QM/MM and DFT calculations and configurations for MD simulations are available via GitHub at https://github.com/calculations01/The-coordinates-of-QM-MM-and-DFT-calculations. Source data are provided with this paper.

References

  1. Wang, J. Z., Lyon, W. L. & MacMillan, D. W. C. Alkene dialkylation by triple radical sorting. Nature 628, 104–109 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zetzsche, L. E. & Narayan, A. R. H. Broadening the scope of biocatalytic C–C bond formation. Nat. Rev. Chem. 4, 334–346 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Denes, F., Perez-Luna, A. & Chemla, F. Addition of metal enolate derivatives to unactivated carbon–carbon multiple bonds. Chem. Rev. 110, 2366–2447 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Yamashita, Y., Ogasawara, Y., Banik, T. & Kobayashi, S. Photoinduced efficient catalytic α‑alkylation reactions of active methylene and methine compounds with nonactivated alkenes. J. Am. Chem. Soc. 145, 23160–23166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kranthikumar, R. Recent advances in C(sp3)–C(sp3) cross-coupling chemistry: a dominant performance of nickel catalysts. Organometallics 41, 667–679 (2022).

    Article  CAS  Google Scholar 

  7. Le, C., Liang, Y., Evans, R. W., Li, X. & MacMillan, D. W. C. Selective sp3 C–H alkylation via polarity-match-based cross-coupling. Nature 547, 79–83 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao, D.-W. et al. Cascade CuH-catalysed conversion of alkynes into enantioenriched 1,1-disubstituted products. Nat. Catal. 3, 23–29 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Romano, C. & Martin, R. Ni-catalysed remote C(sp3)–H functionalization using chain-walking strategies. Nat. Rev. Chem. 8, 833–850 (2024).

    Article  PubMed  Google Scholar 

  10. Zhang, W. & Lin, S. Electroreductive carbofunctionalization of alkenes with alkyl bromides via a radical-polar crossover mechanism. J. Am. Chem. Soc. 142, 20661–20670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, Y. et al. Enantioselective alkene hydroalkylation overcoming heteroatom constraints via cobalt catalysis. Nat. Synth. 3, 1134–1144 (2024).

    Article  CAS  Google Scholar 

  12. Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seath, C. P., Vogt, D. B., Xu, Z., Boyington, A. J. & Jui, N. T. Radical hydroarylation of functionalized olefins and mechanistic investigation of photocatalytic pyridyl radical reactions. J. Am. Chem. Soc. 140, 15525–15534 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Su, Y.-L. et al. Radical-mediated strategies for the functionalization of alkenes with diazo compounds. J. Am. Chem. Soc. 142, 13846–13855 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Wheatley, E., Melnychenko, H. & Silvi, M. Iterative one-carbon homologation of unmodified carboxylic acids. J. Am. Chem. Soc. 146, 34285–34291 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bian, K.-J. et al. Photocatalytic hydrofluoroalkylation of alkenes with carboxylic acids. Nat. Chem. 15, 1683–1692 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu, Q. & Nocera, D. G. Photocatalytic hydromethylation and hydroalkylation of olefins enabled by titanium dioxide mediated decarboxylation. J. Am. Chem. Soc. 142, 17913–17918 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, T. et al. Chemoselective union of olefins, organohalides, and redox-active esters enables regioselective alkene dialkylation. J. Am. Chem. Soc. 142, 21410–21419 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Chowdhury, R. et al. Decarboxylative alkyl coupling promoted by NADH and blue light. J. Am. Chem. Soc. 142, 20143–20151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, J.-X., Fu, M.-C., Yan, L.-Y., Lu, X. & Fu, Y. Photoinduced triphenylphosphine and iodide salt promoted reductive decarboxylative coupling. Adv. Acids. 11, 2307241 (2024).

    CAS  Google Scholar 

  21. Zhou, Z. et al. Direct stereoselective C(sp3)–H alkylation of saturated heterocycles using olefins. Nat. Chem. 17, 344–355 (2025).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Z. et al. Enantioselective propargylic amination and related tandem sequences to α-tertiary ethynylamines and azacycles. Nat. Chem. 16, 521–532 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, P., Zhou, F., Zhu, L. & Zhou, J. Catalytic desymmetrization reactions to synthesize all-carbon quaternary stereocentres. Nat. Synth. 2, 1020–1036 (2023).

    Article  CAS  Google Scholar 

  24. Kar, S., Sanderson, H., Roy, K., Benfenati, E. & Leszczynski, J. Green chemistry in the synthesis of pharmaceuticals. Chem. Rev. 122, 3637–3710 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Yi, H. et al. Recent advances in radical C–H activation/radical cross-coupling. Chem. Rev. 117, 9016–9085 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Rivas, M., Palchykov, V., Jia, X. & Gevorgyan, V. Recent advances in visible light-induced C(sp3)–N bond formation. Nat. Rev. Chem. 6, 544–561 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Page, C. G. et al. Quaternary charge-transfer complex enables photoenzymatic intermolecular hydroalkylation of olefins. J. Am. Chem. Soc. 143, 97–102 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Huang, X. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Li, M., Harrison, W., Zhang, Z., Yuan, Y. & Zhao, H. Remote stereocontrol with azaarenes via enzymatic hydrogen atom transfer. Nat. Chem. 16, 277–284 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Li, M., Yuan, Y., Harrison, W., Zhang, Z. & Zhao, H. Asymmetric photoenzymatic incorporation of fluorinated motifs into olefins. Science 385, 416–421 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Bender, S. G. & Hyster, T. K. Pyridylmethyl radicals for enantioselective alkene hydroalkylation using “ene”-reductases. ACS Catal. 13, 14680–14684 (2023).

    Article  CAS  Google Scholar 

  33. Huang, X. et al. Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition. Nat. Catal. 5, 586–593 (2022).

    Article  CAS  Google Scholar 

  34. Duan, X. et al. A photoenzymatic strategy for radical-mediated stereoselective hydroalkylation with diazo compounds. Angew. Chem. Int. Ed. Engl. 63, e202214135 (2023).

    Google Scholar 

  35. Sun, S.-Z. et al. Enantioselective decarboxylative alkylation using synergistic photoenzymatic catalysis. Nat. Catal. 7, 35–42 (2024).

    Article  CAS  Google Scholar 

  36. Yu, J. et al. Repurposing visible-light-excited ene-reductases for diastereo-and enantioselective lactones synthesis. Angew. Chem. Int. Ed. Engl. 63, e202402673 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Zhao, B. et al. Direct visible-light-excited flavoproteins for redox-neutral asymmetric radical hydroarylation. Nat. Catal. 6, 996–1004 (2023).

    Article  CAS  Google Scholar 

  38. Jiang, L. et al. Photoenzymatic redox-neutral radical hydrosulfonylation initiated by FMN. ACS Catal. 14, 6710–6716 (2024).

    Article  CAS  Google Scholar 

  39. Shi, Q. et al. Single-electron oxidation-initiated enantioselective hydrosulfonylation of olefins enabled by photoenzymatic catalysis. J. Am. Chem. Soc. 146, 2748–2756 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Liang, Y.-F. et al. Carbon–carbon bond cleavage for late-stage functionalization. Chem. Rev. 123, 12313–12370 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. O’Brien, T. E., Morris, A. O., Villela, L. F. & Barriault, L. Synthetic applications of photochemically generated radicals from protic C(sp3)–H bonds. ChemCatChem 15, e202300989 (2023).

    Article  Google Scholar 

  42. Dong, M.-Y. et al. Hydrogen-evolution allylic C(sp3)–H alkylation with protic C(sp3)–H bonds via triplet synergistic Brønsted base/Cobalt/photoredox catalysis. ACS Catal. 12, 9533–9539 (2022).

    Article  CAS  Google Scholar 

  43. Bas, S., Yamashita, Y. & Kobayashi, S. Development of Brønsted base-photocatalyst hybrid systems for highly efficient C–C bond formation reactions of malonates with styrenes. ACS Catal. 10, 10546–10550 (2020).

    Article  CAS  Google Scholar 

  44. Palomo, C., Oiarbide, M. & Garcia, J. M. Current progress in the asymmetric aldol addition reaction. Chem. Soc. Rev. 33, 65–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Schetter, B. & Mahrwald, R. Modern aldol methods for the total synthesis of polyketides. Angew. Chem. Int. Ed. Engl. 45, 7506–7525 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Tian, J. & Zhou, L. Photoredox radical/polar crossover enables C–H gem-difunctionalization of 1,3-benzodioxoles for the synthesis of monofluorocyclohexenes. Chem. Sci. 14, 6045–6051 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pitzer, L., Schwarz, J. L. & Glorius, F. Reductive radical-polar crossover: traditional electrophiles in modern radical reactions. Chem. Sci. 10, 8285–8291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Black, M. J. et al. Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent ‘ene’-reductases. Nat. Chem. 12, 71–75 (2020).

    Article  PubMed  Google Scholar 

  49. Evans, E. W. et. al. Magnetic field effects in flavoproteins and related systems. Interface Focus 3, 20130037 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Su, D., Kabir, M. P., Orozco-Gonzalez, Y., Gozem, S. & Gadda, G. Fluorescence properties of flavin semiquinone radicals in nitronate monooxygenase. ChemBioChem 20, 1646–1652 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Bowry, V. W. & Inlgold, K. U. Kinetics of nitroxide radical trapping. 2. Structural effects. J. Am. Chem. Soc. 114, 4992–4996 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant no. 2022YFA0912000 to Y.W.), the Center of Synthetic Biology and Integrated Bioengineering (grant nos. WU2022A006, WU2022A007 and WU2023A009 to Y.W.), the Research Center for Industries of the Future (grant number WU2022C032 to Y.W.) and National Natural Science Foundation of China (grant no. 22121001 to B.W.). We thank the Instrumentation and Service Center for Molecular Sciences at Westlake University for the assistance in measurement and data interpretation. We thank Y. Chen for the assistance with HRMS, Y. Chen for the assistance with circular dichroism, X. Lou for the assistance with TAS and D. Gu for the assistance with EPR.

Author information

Authors and Affiliations

Contributions

J.Z. and Y.W. conceived and designed the overall project. J.Z. performed all synthetic experiments and wet mechanism experiments. T.G., X.L. and Mingzhe Ma created mutations. Q.Z. and X.W. carried out the computational studies and the calculation of absolute configuration (ECD) under the supervision of B.W. B.C. completed the calculation of redox potentials and Gibbs reaction energy (ΔG) for SET of Int. A. Mingjie Ma performed the purification of some GluER variants. J.Z., B.W. and Y.W. wrote the paper with input of all authors.

Corresponding authors

Correspondence to Binju Wang or Yajie Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Qi Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–14, Figs. 1–53 and Tables 1–17.

Reporting Summary

Supplementary Data 1

This data file corresponds to and provides the source data for Supplementary Figs. 10–16, 18–22, 24–28 and 46–51.

Source data

Source Data Fig. 1

Unprocessed statistical source data of Fig. 4a–c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Zhang, Q., Gu, T. et al. Atom-economic enantioselective photoenzymatic radical hydroalkylation via single-electron oxidation of carbanions. Nat Catal 8, 1188–1197 (2025). https://doi.org/10.1038/s41929-025-01434-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01434-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing