Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Radical ligand transfer catalysis of photoexcited dinuclear gold complexes

Abstract

Radical ligand transfer (RLT), a process in which alkyl radicals capture ligands from high-valent metal species, has emerged as a powerful synthetic approach in organic chemistry. While RLT processes mediated by 3d transition metals have been developed, the application of 5d transition metals remains underexplored due to the limited flexibility in their oxidation states. Here we present a catalytic approach leveraging sequential photoinduced electron transfer in dinuclear gold complexes to achieve an efficient RLT process. This strategy facilitates formal additions of gem-dichloroalkanes and Freon-22 bearing unactivated C(sp3)–Cl bonds to different kinds of alkenes, with high reactivity, excellent atom economy and broad scope. Combined mechanistic and theoretical investigations reveal a latent AuIIAuII pathway. The success originates from sequential excitation of dinuclear gold complexes for the formation of a covalent Au–Au bond, which can markedly weaken the Au–Cl bond and facilitate ligand transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges and strategies of radical ligand transfer catalysis of gold complexes.
Fig. 2: Optimization of reaction conditions.
Fig. 3: Control experiments for mechanistic studies.
Fig. 4: Computational mechanistic studies and proposed mechanisms.
Fig. 5: Substrate scope of alkenes.
Fig. 6: Substrate scope of alkenes with Freon-22.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the paper and its Supplementary Information or from the corresponding authors upon request.

References

  1. Che, C.-M., Lo, V. K.-Y., Zhou, C.-Y. & Huang, J.-S. Selective functionalisation of saturated C–H bonds with metalloporphyrin catalysts. Chem. Soc. Rev. 40, 1950–1975 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, Z., Chen, P. & Liu, G. Copper-catalyzed radical relay in C(sp3)–H functionalization. Chem. Soc. Rev. 51, 1640–1658 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Li, Z.-L., Fang, G.-C., Gu, Q.-S. & Liu, X.-Y. Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes. Chem. Soc. Rev. 49, 32–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Nemoto, D. T., Bian, K.-J., Kao, S.-C. & West, J. G. Radical ligand transfer: a general strategy for radical functionalization. Beilstein J. Org. Chem. 19, 1225–1233 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, Y.-F. et al. Asymmetric amination of alkyl radicals with two minimally different alkyl substituents. Science 388, 283–291 (2025).

    Article  CAS  PubMed  Google Scholar 

  6. Zhong, F., Li, R., Mai, B. K., Liu, P. & Fu, G.-C. Photoinduced copper-catalysed deracemization of alkyl halides. Nature 640, 107–113 (2025).

    Article  CAS  PubMed  Google Scholar 

  7. Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 516–521 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Ortiz de Montellano, P. R. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110, 932–948 (2009).

    Article  Google Scholar 

  10. Williams, T. M. & Stephenson, C. R. J. in Visible Light Photocatalysis in Organic Chemistry (eds Stephenson, C. R. J. et al.) 73–92 (Wiley-Blackwell, 2018).

  11. Bian, K. J., Kao, S. C., Nemoto, D., Chen, X. W. & West, J. G. Photochemical diazidation of alkenes enabled by ligand-to-metal charge transfer and radical ligand transfer. Nat. Commun. 13, 7881 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bian, K.-J. et al. Modular difunctionalization of unactivated alkenes through bio-inspired radical ligand transfer catalysis. J. Am. Chem. Soc. 144, 11810–11821 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Fu, N., Sauer, G. S., Saha, A., Loo, A. & Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Science 357, 575–579 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, P., Xie, J., Wang, D.-S. & Zhang, X. P. Metalloradical approach for concurrent control in intermolecular radical allylic C–H amination. Nat. Chem. 15, 498–507 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kochi, J. K. The mechanism of oxidative decarboxylation with lead(IV) acetate. J. Am. Chem. Soc. 87, 1811–1812 (1967).

    Article  Google Scholar 

  16. Nakanishi, W., Yamanaka, M. & Nakamura, E. Reactivity and stability of organocopper(I), silver(I), and gold(I) ate compounds and their trivalent derivatives. J. Am. Chem. Soc. 127, 1446–1453 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, W. et al. Dinuclear gold catalysis. Chem. Soc. Rev. 50, 1874–1912 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Chintawar, C. C., Yadav, A. K., Kumar, A., Sancheti, S. P. & Patil, N. T. Divergent gold catalysis: unlocking molecular diversity through catalyst control. Chem. Rev. 121, 8478–8558 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Wu, J. et al. Photosensitized gold-catalyzed cross-couplings of aryl bromides. J. Am. Chem. Soc. 147, 5839–5850 (2025).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, S., Wunsch, J. F., Rudolph, M., Rominger, F. & Hashmi, A. S. K. Selective coupling of β-(borylvinyl)silanes by a gold-catalyzed Hiyama reaction—an easy way to diaryl-substituted vinyl boronates. Angew. Chem. Int. Ed. Engl. 63, e202406856 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Melder, J. J. et al. Easy access to functionalized indolines and tetrahydroquinolines via a photochemical cascade cyclization reaction. J. Am. Chem. Soc. 146, 14521–14527 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Revol, G., McCallum, T., Morin, M., Gagosz, F. & Barriault, L. Photoredox transformations with dimeric gold complexes. Angew. Chem. Int. Ed. Engl. 52, 13342–13345 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. McCallum, T. & Barriault, L. Direct alkylation of heteroarenes with unactivated bromoalkanes using photoredox gold catalysis. Chem. Sci. 7, 4754–4758 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pyykkö, P. Theoretical chemistry of gold. III. Chem. Soc. Rev. 37, 1967–1997 (2008).

    Article  PubMed  Google Scholar 

  25. Ji, C.-L. et al. Photoinduced gold-catalyzed divergent dechloroalkylation of gem-dichloroalkanes. Nat. Catal. 5, 1098–1109 (2022).

    Article  CAS  Google Scholar 

  26. Ji, C.-L. et al. Dinuclear gold-catalyzed divergent dechlorinative radical borylation of gem-dichloroalkanes. Nat. Commun. 15, 3721 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Che, C.-M., Kwong, H.-L., Yam, V. W.-W. & Cho, K.-C. Spectroscopic properties and redox chemistry of the phosphorescent excited state of [Au2(dppm)2]2+[dppm = bis(diphenylphosphino)methane]. J. Chem. Soc. Chem. Commun. 13, 885−886 (1989).

  28. Che, C.-M., Kwong, H.-L., Poon, C.-K. & Yam, V. W.-W. Spectroscopy and redox properties of the luminescent excited state of [Au2(dppm)2]2+(dppm = Ph2PCH2PPh2). J. Chem. Soc. Dalton Trans. 11, 3215–3219 (1990).

  29. Li, D., Che, C.-M., Kwong, H.-L. & Yam, V. W.-W. Photoinduced C–C bond formation from alkyl halides catalysed by luminescent dinuclear gold(I) and copper(I) complexes. J. Chem. Soc. Dalton Trans. 23, 3325–3329 (1992).

    Article  Google Scholar 

  30. Wang, K. & Bao, X. Computational insights into the photoinduced dimeric gold-catalyzed divergent dechloroalkylation of gem-dichloroalkanes with alkenes. J. Am. Chem. Soc. 146, 7679–7689 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, G., Yu, J.-T. & Pan, C. Recent advances in polychloromethylation reactions. Adv. Synth. Catal. 363, 305–327 (2021).

    Article  Google Scholar 

  32. Fang, Q.-Y. et al. Trinuclear gold-catalyzed 1,2-difunctionalization of alkenes. Angew. Chem. Int. Ed. Engl. 62, e202305121 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Fang, Q.-Y. et al. Trinuclear gold-catalyzed site-selective alkylation of peptides. Sci. China Chem. 68, 249–256 (2025).

    Article  CAS  Google Scholar 

  34. Mageed, A. H., Skelton, B. W., Sobolev, A. N. & Baker, M. V. Formation of dinuclear AuII and AuI/AuIII mixed-valence complexes is directed by structural constraints imposed by cyclophane-NHC ligands. Eur. J. Inorg. Chem. 1, 109–120 (2018).

  35. Ghosh, I., Ghosh, T., Bardagi, J. I. & König, B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 346, 725–728 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Kancherla, R. et al. Photoexcitation of distinct divalent palladium complexes in cross-coupling amination under air. Angew. Chem. Int. Ed. Engl. 63, e202314508 (2023).

    Article  PubMed  Google Scholar 

  37. Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2011).

    Article  Google Scholar 

  38. Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161, 082503 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Zidan, M., McCallum, T., Swann, R. & Barriault, L. Formal bromine atom transfer radical addition of nonactivated bromoalkanes using photoredox gold catalysis. Org. Lett. 22, 8401–8406 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Zeng, X. et al. Copper difluorocarbene enables catalytic difluoromethylation. J. Am. Chem. Soc. 146, 16902–16911 (2024).

    Article  CAS  Google Scholar 

  41. Zhang, X.-Y. et al. Reductive catalytic difluorocarbene transfer via palladium catalysis. Angew. Chem. Int. Ed. Engl. 62, e202306501 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, Z.-Q. et al. Difluoromethylation of unactivated alkenes using Freon-22 through tertiary amine-borane-triggered halogen atom transfer. J. Am. Chem. Soc. 144, 14288–14296 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank National Natural Science Foundation of China (22471121, 22471122, 22271144), National Key Research and Development Program of China (2022YFA150320), the Fundamental Research Funds for the Central Universities (grant no. 0020514380327) and the Open Project of State Key Laboratory of Natural Medicines (SKLNMKF202401) for financial support. All theoretical calculations were performed at the High-Performance Computing Center (HPCC) of Nanjing University. We thank W. Wang, Q. Fang, B. Ling and G. Dong at Nanjing University for reproduction of the experimental procedures for products 33, 18, 59 and 64.

Author information

Authors and Affiliations

Authors

Contributions

J.X. conceived the work and designed the experiments. Y. Cheng, Y. Chen, Y.T and C.Z. performed the experiments and analysed the experimental data. C.G. performed the density functional theory calculations and discussed the results with J.H., and J.X. co-wrote the paper with input from all the other authors.

Corresponding authors

Correspondence to Jie Han or Jin Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Dominik Munz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–218 and Tables 1–4.

Supplementary Data 1

Cartesian coordinates of all the optimized geometries.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Gu, C., Han, J. et al. Radical ligand transfer catalysis of photoexcited dinuclear gold complexes. Nat Catal 9, 18–27 (2026). https://doi.org/10.1038/s41929-025-01462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01462-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing