Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stable acidic oxygen-evolving catalyst discovery through mixed accelerations

Abstract

Ruthenium oxides (RuOx) are promising alternatives to iridium catalysts for the oxygen-evolution reaction in proton-exchange membrane water electrolysis but lack stability in acid. Alloying with other elements can improve stability and performance but enlarges the search space. Material acceleration platforms combining high-throughput experiments with machine learning can accelerate catalyst discovery, yet predicting and co-optimizing synthesizability, activity and stability remain challenging. A predictive featurization workflow that links a hypothesized catalyst to its actual single- or mixed-phase synthesis and acidic oxygen-evolution reaction properties has not been reported. Here we report a hierarchical workflow, termed mixed acceleration, integrating theoretical and experimental descriptors to predict synthesis, activity and stability. Guided by mixed acceleration through 379 experiments, we identified seven ruthenium-based oxides surpassing the Pareto frontier of activity and stability. The most balanced composition, Ru0.5Zr0.1Zn0.4Ox, achieved an overpotential of 194 mV at 10 mA cm−2 with a ruthenium dissolution rate 12 times lower than that of RuO2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MA workflow.
Fig. 2: Mixed-metal ruthenium oxide sol–gel synthesis.
Fig. 3: OER performance evaluation.
Fig. 4: OER stability predictions with MA.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and the Supplementary Information files, or from the corresponding authors upon request. Data used in ML models are available from GitHub via https://github.com/kangming-li/Stable-OER-Catalyst-Discovery-Through-Mixed-Acceleration.

Code availability

The code used in this work is available from GitHub via https://github.com/kangming-li/Stable-OER-Catalyst-Discovery-Through-Mixed-Acceleration.

References

  1. Global Hydrogen Review 2024 www.iea.org (International Energy Agency, 2024).

  2. Jiao, K. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Wan, R. et al. Earth-abundant electrocatalysts for acidic oxygen evolution. Nat. Catal. 7, 1288–1304 (2024).

    Article  CAS  Google Scholar 

  4. An, L. et al. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 33, 2006328 (2021).

    Article  CAS  Google Scholar 

  5. Abed, J. et al. Pourbaix machine learning framework identifies acidic water oxidation catalysts exhibiting suppressed ruthenium dissolution. J. Am. Chem. Soc. 146, 15740–15750 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Li, J. et al. A review on highly efficient Ru-based electrocatalysts for acidic oxygen evolution reaction. Energy Fuels 38, 11521–11540 (2024).

    Article  CAS  Google Scholar 

  7. Park, H., Onwuli, A., Butler, K. T. & Walsh, A. Mapping inorganic crystal chemical space. Faraday Discuss. 256, 601–613 (2025).

    Article  PubMed  Google Scholar 

  8. Yao, Z. et al. Machine learning for a sustainable energy future. Nat. Rev. Mater. 8, 202–215 (2023).

    Article  PubMed  Google Scholar 

  9. Sasmal, S. et al. Materials descriptors for advanced water dissociation catalysts in bipolar membranes. Nat. Mater. 23, 1421–1427 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, X., Cai, C., Zhao, W., Peng, H. J. & Wang, T. Machine learning-assisted screening of stepped alloy surfaces for C1 catalysis. ACS Catal. 12, 4252–4260 (2022).

    Article  CAS  Google Scholar 

  11. Chen, Z. W., Chen, L. X., Gariepy, Z., Yao, X. & Singh, C. V. High-throughput and machine-learning accelerated design of high entropy alloy catalysts. Trends Chem. 4, 577–579 (2022).

    Article  CAS  Google Scholar 

  12. Vasudevan, R. K. et al. Materials science in the artificial intelligence age: high-throughput library generation, machine learning, and a pathway from correlations to the underpinning physics. MRS Commun. 9, 821–838 (2019).

    Article  CAS  Google Scholar 

  13. Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 6059–6072 (2021).

    Article  CAS  Google Scholar 

  14. Tran, R. et al. The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts. ACS Catal. 13, 3066–3084 (2023).

    Article  CAS  Google Scholar 

  15. Erucar, I. & Keskin, S. High-throughput molecular simulations of metal organic frameworks for CO2 separation: opportunities and challenges. Front Mater. 5, 1–6 (2018).

    Article  Google Scholar 

  16. Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheetham, A. K. & Seshadri, R. Artificial intelligence driving materials discovery? Perspective on the article: scaling deep learning for materials discovery. Chem. Mater. 36, 3490–3495 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moon, J. et al. Active learning guides discovery of a champion four-metal perovskite oxide for oxygen evolution electrocatalysis. Nat. Mater. 23, 108–115 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Abed, J. et al. AMPERE: automated modular platform for expedited and reproducible electrochemical testing. Digit. Discov. 3, 2265–2274 (2024).

    Article  CAS  Google Scholar 

  20. Janani, R., Farmilo, N., Roberts, A. & Sammon, C. Sol-gel synthesis pathway and electrochemical performance of ionogels: A deeper look into the importance of alkoxysilane precursor. J. Non Cryst. Solids 569, 120971 (2021).

    Article  CAS  Google Scholar 

  21. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Ward, L. et al. Matminer: an open source toolkit for materials data mining. Comput Mater. Sci. 152, 60–69 (2018).

    Article  Google Scholar 

  23. Onwuli, A., Hegde, A. V., Nguyen, K. V. T., Butler, K. T. & Walsh, A. Element similarity in high-dimensional materials representations. Digit. Discov. 2, 1558–1564 (2023).

    Article  CAS  Google Scholar 

  24. Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 31, 3564–3572 (2019).

    Article  CAS  Google Scholar 

  25. Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kessler, V. G. & Seisenbaeva, G. A. Molecular mechanisms of the metal oxide sol-gel process and their application in approaches to thermodynamically challenging complex oxide materials. J. Solgel Sci. Technol. 107, 190–200 (2023).

    Article  CAS  Google Scholar 

  27. Baumann, T. F., Gash, A. E., Satcher, J. H., Leventis, N. & Steiner, S. A. in Springer Handbook of Aerogels (eds Aegerter, M. A., Leventis, N., Koebel, M. & Steiner, S. A., III) 419–435 https://doi.org/10.1007/978-3-030-27322-4_17 (Springer, 2023).

  28. Rouwhorst, J., Ness, C., Stoyanov, S., Zaccone, A. & Schall, P. Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction. Nat. Commun. 11, 3558 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, C., Lu, W., Mata, A., Nishinari, K. & Fang, Y. Ions-induced gelation of alginate: mechanisms and applications. Int J. Biol. Macromol. 177, 578–588 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Edgington, J., Deberghes, A. & Seitz, L. C. Glassy carbon substrate oxidation effects on electrode stability for oxygen evolution reaction catalysis stability benchmarking. ACS Appl Energy Mater. 5, 12206–12218 (2022).

    Article  CAS  Google Scholar 

  31. Du, K. et al. Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation. Nat. Commun. 13, 1–9 (2022).

    Google Scholar 

  32. Ikeda, H. et al. Microscopic high-speed video observation of oxygen bubble generation behavior and effects of anode electrode shape on OER performance in alkaline water electrolysis. Int J. Hydrog. Energy 47, 11116–11127 (2022).

    Article  CAS  Google Scholar 

  33. Geiger, S. et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 1, 508–515 (2018).

    Article  CAS  Google Scholar 

  34. Oener, S. Z., Bergmann, A. & Cuenya, B. R. Designing active oxides for a durable oxygen evolution reaction. Nat. Synth. 2, 817–827 (2023).

    Article  CAS  Google Scholar 

  35. Gao, G. et al. Recent advances in Ru/Ir-based electrocatalysts for acidic oxygen evolution reaction. Appl Catal. B 343, 123584 (2024).

    Article  CAS  Google Scholar 

  36. Anantharaj, S., Kundu, S. & Noda, S. The Fe effect: a review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 80, 105514 (2021).

    Article  CAS  Google Scholar 

  37. Wang, N. et al. Doping shortens the metal/metal distance and promotes OH coverage in non-noble acidic oxygen evolution reaction catalysts. J. Am. Chem. Soc. 145, 7829–7836 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Qin, Y. et al. RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance. Nat. Commun. 13, 3784 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, D. et al. Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media. Nat. Commun. 14, 2517 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu, W. et al. Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium–iridium oxide. Nat. Commun. 14, 5365 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, H. et al. Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media. Joule 7, 558–573 (2023).

    Article  CAS  Google Scholar 

  42. Sadeghi, M. A., Zhang, R. & Hattrick-Simpers, J. AutoEIS: automated equivalent circuit modeling from electrochemical impedance spectroscopy data using statistical machine learning. J. Open Source Softw. 10, 6256 (2025).

    Article  Google Scholar 

  43. Jiang, X. et al. Interstitial-substitutional-mixed solid solution of RuO2 nurturing a new pathway beyond the activity-stability linear constraint in acidic water oxidation. Adv. Mater. 37, 2503354 (2025).

    Article  CAS  Google Scholar 

  44. Patel, A. M., Nørskov, J. K., Persson, K. A. & Montoya, J. H. Efficient Pourbaix diagrams of many-element compounds. Phys. Chem. Chem. Phys. 21, 25323–25327 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 https://doi.org/10.1145/2939672.2939785 (ACM, 2016).

  46. Zhu, W. et al. Direct dioxygen radical coupling driven by octahedral ruthenium–oxygen–cobalt collaborative coordination for acidic oxygen evolution reaction. J. Am. Chem. Soc. 145, 17995–18006 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Li, L. et al. Spin-polarization strategy for enhanced acidic oxygen evolution activity. Adv. Mater. 35, 2302966 (2023).

    Article  CAS  Google Scholar 

  48. Shen, Y. et al. Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis. Nat. Commun. 15, 7861 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Alliance for AI-Accelerated Materials Discovery (A3MD), which includes funding from Total Energies SE, Meta and BP. This research was undertaken thanks in part to funding provided to the University of Toronto’s Acceleration Consortium from the Canada First Research Excellence Fund (grant number CFREF-2022-00042).

Author information

Authors and Affiliations

Authors

Contributions

J.H.-S. and E.H.S. supervised the project. Y.B. and K.L. conceived the project idea and workflow. Y.B. performed materials synthesis, OER performance measurements and characterization investigations. K.L. built the ML workflow and models. N.H. performed OER performance measurements and characterization investigations. J.K. performed XRF measurements. R.Z. performed characterization investigations. S.M. performed XRD measurements. A.S.Z. performed X-ray photoelectron spectroscopy measurements. Y.L. performed OER measurements. S.H., J.E.H. and D.S. provided suggestions and feedback on the materials synthesis and mechanistic investigations. Y.B., K.L., A.S.Z., B.R.S., K.C., E.H.S. and J.H.-S. wrote and edited the paper. All the authors contributed to the discussion of the results and the final paper preparation.

Corresponding authors

Correspondence to Edward H. Sargent or Jason Hattrick-Simpers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Milad Abolhasani, Olga Kasian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Figs. 1–49 and Tables 1 and 2.

Supplementary Data 1

This spreadsheet contains the synthesis parameters for all materials reported in the study, including precursor identities, precursor ratios, solvent compositions, calcination programs, reaction temperatures, reaction times, and other experimental conditions used in each synthesis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Li, K., Han, N. et al. Stable acidic oxygen-evolving catalyst discovery through mixed accelerations. Nat Catal 9, 28–36 (2026). https://doi.org/10.1038/s41929-025-01463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01463-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing