Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Palladium-catalysed asymmetric anti-Michael-type addition of α,β-unsaturated carboxylic acids with carboranes

Abstract

The catalytic asymmetric Michael addition of α,β-unsaturated carbonyl compounds is one of the most valuable methods for constructing the β-carbon chirality centre because of its atom economy and efficiency. However, the catalytic asymmetric reverse α-addition of a nucleophile to an α,β-unsaturated carbonyl compound is much less common. Here we realize a palladium-catalysed asymmetric α-carboranylation of α,β-unsaturated carboxylic acids via an inverse electron-demand nucleophilic addition. The reaction features good B(9)-site selectivity of o/m-carboranes, precise α-regioselectivity towards α,β-unsaturated carboxylic acids, wide functional group tolerance and excellent enantioselectivities. A detailed reaction mechanism is proposed based on experimental and computational results that elucidates the origin of the enantioselectivity and α-selectivity. This finding has a guiding significance for the catalytic asymmetric anti-Michael-type addition of α,β-unsaturated carbonyl compounds and provides a different avenue for synthesizing α-chiral carboxylic acids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Applications of carboranes and catalytic asymmetric Michael and anti-Michael addition.
Fig. 2: Screening of ligands.
Fig. 3: Scope of α,β-unsaturated carboxylic acids.
Fig. 4: Scope of carboranes.
Fig. 5: Synthetic applications.
Fig. 6: Mechanistic studies.
Fig. 7: DFT calculations.
Fig. 8: Proposed mechanism.

Similar content being viewed by others

Data availability

Crystallographic data for compounds 1, 36, (S)-48, (R)-48, 66 and 72 have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers CCDC 2380830-2380835. Additional optimization, experimental procedures, characterization of compounds and all other data supporting the findings are available in the Supplementary Information and from the corresponding author upon request.

References

  1. Grimes, R. N. Carboranes 3rd edn (Elsevier, 2016).

  2. Marfavi, A., Kavianpour, P. & Rendina, L. M. Carboranes in drug discovery, chemical biology and molecular imaging. Nat. Rev. Chem. 6, 486–504 (2022).

    Article  PubMed  Google Scholar 

  3. Stockmann, P., Gozzi, M., Kuhnert, R., Sárosi, M. B. & Hey-Hawkins, E. New keys for old locks: carborane-containing drugs as platforms for mechanism-based therapies. Chem. Soc. Rev. 48, 3497–3512 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Ochi, J., Tanaka, K. & Chujo, Y. Recent progress in the development of solid-state luminescent o-carboranes with stimuli responsivity. Angew. Chem. Int. Ed. 59, 9841–9855 (2020).

    Article  CAS  Google Scholar 

  5. Ready, A. D., Nelson, Y. A., Pomares, D. F. T. & Spokoyny, A. M. Redox-active boron clusters. Acc. Chem. Res. 57, 1310–1324 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He, T., Klare, H. F. T. & Oestreich, M. Arenium-ion-catalysed halodealkylation of fully alkylated silanes. Nature 623, 538–543 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Kona, C. N. et al. Aromatic halogenation using carborane catalyst. Chem. 10, 402–413 (2024).

    Article  CAS  Google Scholar 

  8. Hawthorne, M. F. & Maderna, A. Applications of radiolabeled boron clusters to the diagnosis and treatment of cancer. Chem. Rev. 99, 3421–3434 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Issa, F., Kassiou, M. & Rendina, L. M. Boron in drug discovery: carboranes as unique pharmacophores in biologically active compounds. Chem. Rev. 111, 5701–5722 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Xu, Y., Yang, Y., Liu, Y., Li, Z. & Wang, H. Boron-catalysed hydrogenolysis of unactivated C(aryl)–C(alkyl) bonds. Nat. Catal. 6, 16–22 (2023).

    Article  CAS  Google Scholar 

  11. Keener, M. et al. Redox-switchable carboranes for uranium capture and release. Nature 577, 652–655 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Bawari, D., Toami, D., Jaiswal, K. & Dobrovetsky, R. Hydrogen splitting at a single phosphorus centre and its use for hydrogenation. Nat. Chem. 16, 1261–1266 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. Ma, W. et al. Luminescence modulation in boron-cluster-based luminogens via boron isotope effects. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202410430 (2024).

    Article  Google Scholar 

  14. Qiu, Z. & Xie, Z. Functionalization of o-carboranes via carboryne intermediates. Chem. Soc. Rev. 51, 3164–3180 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Q. et al. Visible-light-induced photoreduction of carborane phosphonium salts: efficient synthesis of carborane-oxindole-pharmaceutical hybrids. Angew. Chem. Int. Ed. 62, e202305088 (2023).

    Article  Google Scholar 

  16. Spokoyny, A. M. et al. A coordination chemistry dichotomy for icosahedral carborane-based ligands. Nat. Chem. 3, 590–596 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Yu, W.-B., Cui, P.-F., Gao, W.-X. & Jin, G.-X. B–H activation of carboranes induced by late transition metals. Coord. Chem. Rev. 350, 300–319 (2017).

    Article  CAS  Google Scholar 

  18. Quan, Y. & Xie, Z. Controlled functionalization of o-carborane via transition metal catalyzed B–H activation. Chem. Soc. Rev. 48, 3660–3673 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, X. & Yan, H. Transition metal-induced B–H functionalization of o-carborane. Coord. Chem. Rev. 378, 466–482 (2019).

    Article  CAS  Google Scholar 

  20. Qiu, Z. & Xie, Z. A strategy for selective catalytic B–H functionalization of o-carboranes. Acc. Chem. Res. 54, 4065–4079 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, L., Zhang, Z.-J., Jei, B. B. & Ackermann, L. Electrochemical cage activation of carboranes. Angew. Chem. Int. Ed. 61, e202200323 (2022).

    Article  CAS  Google Scholar 

  22. Ren, H. et al. Dative bonding activation enables precise functionalization of the remote B–H bond of nido-carborane clusters. J. Am. Chem. Soc. 146, 26543–26555 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, S. et al. Photoinduced selective B–H activation of nido-carboranes. J. Am. Chem. Soc. 146, 7791–7802 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Guo, C., Zhang, J., Ge, Y., Qiu, Z. & Xie, Z. Asymmetric palladium migration for synthesis of chiral-at-cage o-carboranes. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202416987 (2024).

    Article  Google Scholar 

  25. Cheng, R., Zhang, J., Zhang, H., Qiu, Z. & Xie, Z. Ir-catalyzed enantioselective B–H alkenylation for asymmetric synthesis of chiral-at-cage o-carboranes. Nat. Commun. 12, 7146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng, R. et al. Enantioselective Synthesis of chiral-at-cage o-carboranes via Pd-catalyzed asymmetric B–H substitution. J. Am. Chem. Soc. 140, 4508–4511 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Guo, W., Guo, C., Ma, Y.-N. & Chen, X. Practical synthesis of B(9)-halogenated carboranes with N-haloamides in hexafluoroisopropanol. Inorg. Chem. 61, 5326–5334 (2022).

    Article  PubMed  Google Scholar 

  28. Ma, Y.-N. et al. B(9)-OH-o-carboranes: synthesis, mechanism, and property exploration. J. Am. Chem. Soc. 145, 7331–7342 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Y. et al. Highly selective electrophilic B(9)-amination of o-carborane driven by HOTf and HFIP. Org. Chem. Front. 9, 4975–4980 (2022).

    Article  CAS  Google Scholar 

  30. Wang, Y., Li, Y.-G., Chen, F., Ma, Y.-N. & Chen, X. HSAB theory guiding electrophilic substitution reactions of o-carborane. Org. Chem. Front. https://doi.org/10.1039/d4qo01546k (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ma, Y.-N. et al. Palladium-catalyzed regioselective B(9)-amination of o-carboranes and m-carboranes in HFIP with broad nitrogen sources. J. Am. Chem. Soc. 144, 8371–8378 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Schnitzer, T., Budinská, A. & Wennemers, H. Organocatalysed conjugate addition reactions of aldehydes to nitroolefins with anti selectivity. Nat. Catal. 3, 143–147 (2020).

    Article  CAS  Google Scholar 

  33. Deng, T. et al. Organocatalytic asymmetric α-C–H functionalization of alkyl amines. Nat. Catal. 7, 1076–1085 (2024).

    Article  CAS  Google Scholar 

  34. Zhao, M. et al. Cobalt-catalyzed enantioselective reductive arylation, heteroarylation, and alkenylation of michael acceptors via an elementary mechanism of 1,4-addition. J. Am. Chem. Soc. 146, 20477–20493 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Vastakaite, G., Budinská, A., Bögli, C. L., Boll, L. B. & Wennemers, H. Kinetic resolution of β-branched aldehydes through peptide-catalyzed conjugate addition reactions. J. Am. Chem. Soc. 146, 19101–19107 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, L. et al. Asymmetric nucleophilic additions promoted by quaternary phosphonium ion-pair catalysts. CCS Chem. 6, 2110–2130 (2024).

    Article  CAS  Google Scholar 

  37. Su, W. et al. Copper-catalysed asymmetric hydroboration of alkenes with 1,2-benzazaborines to access chiral naphthalene isosteres. Nat. Chem. 16, 1312–1319 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Rossiter, B. E. & Swingle, N. M. Asymmetric conjugate addition. Chem. Rev. 92, 771–806 (1992).

    Article  CAS  Google Scholar 

  39. Jerphagnon, T., Pizzuti, M. G., Minnaard, A. J. & Feringa, B. L. Recent advances in enantioselective copper-catalyzed 1,4-addition. Chem. Soc. Rev. 38, 1039–1075 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Berger, M., Ma, D., Baumgartner, Y., Wong, T. H.-F. & Melchiorre, P. Stereoselective conjugate cyanation of enals by combining photoredox and organocatalysis. Nat. Catal. 6, 332–338 (2023).

    Article  CAS  Google Scholar 

  41. Schnurr, M., Rackl, J. W. & Wennemers, H. Overcoming deactivation of amine-based catalysts: access to fluoroalkylated γ-nitroaldehydes. J. Am. Chem. Soc. 145, 23275–23280 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Suzuki, H., Moro, R. & Matsuda, T. Palladium-catalyzed anti-Michael-type (Hetero)arylation of acrylamides. J. Am. Chem. Soc. 146, 13697–13702 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Kang, G., Strassfeld, D. A., Sheng, T., Chen, C.-Y. & Yu, J.-Q. Transannular C–H functionalization of cycloalkane carboxylic acids. Nature 618, 519–525 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, T. et al. Enantioselective remote methylene C−H (hetero)arylation of cycloalkane carboxylic acids. Science 384, 793–798 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, T.-C. et al. Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling. Nature 629, 98–104 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ren, H. et al. Direct B–H functionalization of icosahedral carboranes via hydrogen atom transfer. J. Am. Chem. Soc. 145, 7638–7647 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, Q., Wu, L.-S. & Shi, B.-F. Forging C−heteroatom bonds by transition-metal-catalyzed enantioselective C–H functionalization. Chem. 8, 384–413 (2022).

    Article  Google Scholar 

  48. Zhang, Q. & Shi, B.-F. 2-(Pyridin-2-yl)isopropyl (PIP) amine: an enabling directing group for divergent and asymmetric functionalization of unactivated methylene C(sp3)-H bonds. Acc. Chem. Res. 54, 2750–2763 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Wakchaure, V. N. et al. Catalytic asymmetric cationic shifts of aliphatic hydrocarbons. Nature 625, 287–292 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wagen, C. C., McMinn, S. E., Kwan, E. E. & Jacobsen, E. N. Screening for generality in asymmetric catalysis. Nature 610, 680–686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singh, V. K. et al. Taming secondary benzylic cations in catalytic asymmetric SN1 reactions. Science 382, 325–329 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Dziedzic, R. M. et al. Cage-walking: vertex differentiation by palladium-catalyzed isomerization of B(9)-bromo-meta-carborane. J. Am. Chem. Soc. 139, 7729–7732 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Frisch, M. J. et al. Gaussian 16, Revision B.01 (Gaussian Inc., 2016).

  54. Gao, T. et al. Stereodivergent synthesis through catalytic asymmetric reversed hydroboration. J. Am. Chem. Soc. 141, 4670–4677 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991).

    Article  CAS  Google Scholar 

  56. Zhang, X. et al. B–H···π interaction: a new type of nonclassical hydrogen bonding. J. Am. Chem. Soc. 138, 4334–4337 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (grant nos. 22271256 to Y.-N.M.; U23A2078 and 22171246 to X.C.; 22473100 to D.W.), Natural Science Foundation of Henan Province (grant nos. 232301420046 and 232300421088 to Y.-N.M.) and the Key Project of the Joint Fund for Science and Technology Research and Development in Henan Province (grant no. 232301420008 to D.W.).

Author information

Authors and Affiliations

Authors

Contributions

Y.-N.M. and X.C. conceived and designed the study. D.W. directed the DFT calculations and mechanism analysis. C.L. and W.L. conducted most experiments on the asymmetric reactions. T.S. conducted the DFT calculations. Y.-X.W. conducted the experiments on the synthesis of ligands. M.H. conducted the experiments on the synthesis of substrates. Y.-N.M. and X.C. prepared the manuscript. C.L. prepared the Supplementary Information.

Corresponding authors

Correspondence to Donghui Wei, Yan-Na Ma or Xuenian Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–49, Tables 1–19 and Spectra of NMR and HPLC.

Supplementary Data

CIF files of compounds 1, 36, (S)-48, 66, 72 and (R)-48.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, C., Lu, W., Shen, T. et al. Palladium-catalysed asymmetric anti-Michael-type addition of α,β-unsaturated carboxylic acids with carboranes. Nat Catal (2026). https://doi.org/10.1038/s41929-026-01480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41929-026-01480-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing