Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Mitochondrial proteostasis regulated by CRL5Ozz and Alix modulates skeletal muscle metabolism and fiber type
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 22 December 2025

Mitochondrial proteostasis regulated by CRL5Ozz and Alix modulates skeletal muscle metabolism and fiber type

  • Yvan Campos  ORCID: orcid.org/0000-0002-9820-03391,
  • Gustavo Palacios  ORCID: orcid.org/0009-0001-2483-37742,
  • Elida Gomero1,
  • Diantha van de Vlekkert  ORCID: orcid.org/0000-0001-7498-12921,
  • Krishnan Venkataraman3,
  • Jaison John  ORCID: orcid.org/0009-0000-2825-06753,
  • Jason Andrew Weesner1,5,
  • Randall Wakefield  ORCID: orcid.org/0000-0002-6233-81094,
  • Xiaohui Qiu  ORCID: orcid.org/0000-0002-5767-04221,
  • Ricardo Rodriguez-Enriquez  ORCID: orcid.org/0000-0003-1997-06085,
  • Stephanie Rockfield5,
  • Jeroen Demmers  ORCID: orcid.org/0000-0002-8757-96116,
  • Joseph T. Opferman  ORCID: orcid.org/0000-0002-1147-56215,
  • Cam Robinson  ORCID: orcid.org/0000-0002-7277-692X4,
  • Khaled Khairy  ORCID: orcid.org/0000-0002-9274-59283,
  • Tulio Bertorini7,
  • Gerard C. Grosveld  ORCID: orcid.org/0000-0002-6583-12651 &
  • …
  • Alessandra d’Azzo  ORCID: orcid.org/0000-0003-1747-75021 

Communications Biology , Article number:  (2025) Cite this article

  • 1778 Accesses

  • 4 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Protein quality control
  • Ubiquitin ligases

Abstract

High-energy-demanding tissues, such as skeletal muscle, rely on mitochondrial proteostasis for proper function. Two key quality-control mechanisms -the ubiquitin proteasome system (UPS) and the release of mitochondria-derived vesicles- help maintain mitochondrial proteostasis, but whether these processes interact remains unclear. Here, we show that CRL5Ozz and its substrate, Alix, localize to mitochondria and together regulate the levels and distribution of the mitochondrial solute carrier Slc25A4, which is essential for ATP production. In Ozz−/− or Alix−/− mice, skeletal muscle mitochondria exhibit similar morphological abnormalities, including swelling and dysmorphism, along with partially overlapping metabolomic alterations. We demonstrate that CRL5Ozz ubiquitinates Slc25A4, targeting it for proteasomal degradation, while Alix facilitates Slc25A4 loading into exosomes for lysosomal degradation. Loss of Ozz or Alix in vivo disrupts the steady-state levels of Slc25A4, impairing mitochondrial metabolism and triggering a switch in muscle fiber composition from oxidative, mitochondria-rich slow to glycolytic fast fibers.

Similar content being viewed by others

Biophysical and functional study of CRL5Ozz, a muscle specific ubiquitin ligase complex

Article Open access 12 May 2022

Creatine transporter (SLC6A8) knockout mice exhibit reduced muscle performance, disrupted mitochondrial Ca2+ homeostasis, and severe muscle atrophy

Article Open access 14 February 2025

Selective activation of antioxidant resources and energy deficiency in Marinesco–Sjögren syndrome fibroblasts as an adaptive biological response to Sil1 loss

Article Open access 11 April 2025

Data availability

All data supporting the findings of this study are available in the article and its supplementary information. Additional information can be obtained from the corresponding authors upon request. Metabolomics data have been uploaded to the Metabolomics Workbench; the accession number is: ST004190. All numerical source data underlying Figs. 3–6 and Supplementary Figs. S3, S4, S6, and S7, together with the complete metabolomic dataset, are supplied in the Supplementary Data. Uncropped blot and gel images can be found in the Supplementary Information.

References

  1. Mukund, K. & Subramaniam, S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 12, e1462 (2020).

    Google Scholar 

  2. Schiaffino, S. & Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 91, 1447–1531 (2011).

    Google Scholar 

  3. Ortenblad, N. et al. The muscle fiber profiles, mitochondrial content, and enzyme activities of the exceptionally well-trained arm and leg muscles of elite cross-country skiers. Front. Physiol. 9, 1031 (2018).

    Google Scholar 

  4. A. Damirchi, P. Babaei, M. Gholamali, K. Ranjbar mitochondrial biogenesis in skeletal muscle: exercise and aging, in Skeletal Muscle - From Myogenesis to Clinical Relations (IntechOpen, 2012).

  5. Hood, D. A., Memme, J. M., Oliveira, A. N. & Triolo, M. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu. Rev. Physiol. 81, 19–41 (2019).

    Google Scholar 

  6. Mishra, P., Varuzhanyan, G., Pham, A. H. & Chan, D. C. Mitochondrial dynamics is a distinguishing feature of skeletal muscle fiber types and regulates Organellar compartmentalization. Cell Metab. 22, 1033–1044 (2015).

    Google Scholar 

  7. Krylova, S.V. & Feng, D. The machinery of exosomes: biogenesis, release, and uptake. Int. J. Mol. Sci. 24 (2023).

  8. Picca, A. et al. Mitochondrial-derived vesicles in skeletal muscle remodeling and adaptation. Semin. Cell Dev. Biol. 143, 37–45 (2023).

    Google Scholar 

  9. Romanello, V. The interplay between mitochondrial morphology and Myomitokines in aging Sarcopenia. Int. J. Mol. Sci. 22 (2020).

  10. Ahmed, S. T., Craven, L., Russell, O. M., Turnbull, D. M. & Vincent, A. E. Diagnosis and treatment of mitochondrial myopathies. Neurotherapeutics 15, 943–953 (2018).

    Google Scholar 

  11. Brunel-Guitton, C., Levtova, A. & Sasarman, F. Mitochondrial diseases and Cardiomyopathies. Can. J. Cardiol. 31, 1360–1376 (2015).

    Google Scholar 

  12. Gehrig, S. M. et al. Altered skeletal muscle (mitochondrial) properties in patients with mitochondrial DNA single deletion myopathy. Orphanet J. Rare Dis. 11, 105 (2016).

    Google Scholar 

  13. Bragoszewski, P., Turek, M. & Chacinska, A. Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system. Open Biol. 7 (2017).

  14. Lehmann, G., Udasin, R. G. & Ciechanover, A. On the linkage between the ubiquitin-proteasome system and the mitochondria. Biochem. Biophys. Res. Commun. 473, 80–86 (2016).

    Google Scholar 

  15. Jeon, H. B. et al. A proteomics approach to identify the ubiquitinated proteins in mouse heart. Biochem. Biophys. Res. Commun. 357, 731–736 (2007).

    Google Scholar 

  16. Lavie, J. et al. Ubiquitin-dependent degradation of mitochondrial proteins regulates energy metabolism. Cell Rep. 23, 2852–2863 (2018).

    Google Scholar 

  17. Alsayyah, C., Ozturk, O., Cavellini, L., Belgareh-Touze, N. & Cohen, M. M. The regulation of mitochondrial homeostasis by the ubiquitin proteasome system. Biochim. Biophys. Acta Bioenerg. 1861, 148302 (2020).

    Google Scholar 

  18. Dimmer, K. S. & Scorrano, L. (De)constructing mitochondria: what for?. Physiology 21, 233–241 (2006).

    Google Scholar 

  19. Soubannier, V. et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22, 135–141 (2012).

    Google Scholar 

  20. Boudreau, L. H. et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 124, 2173–2183 (2014).

    Google Scholar 

  21. Mathivanan, S., Fahner, C. J., Reid, G. E. & Simpson, R. J. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 40, D1241–D1244 (2012).

    Google Scholar 

  22. Ng, M. Y. W., Wai, T. & Simonsen, A. Quality control of the mitochondrion. Dev. Cell 56, 881–905 (2021).

    Google Scholar 

  23. Puhm, F. et al. Mitochondria are a subset of extracellular vesicles released by activated monocytes and Induce Type I IFN and TNF responses in endothelial cells. Circ. Res. 125, 43–52 (2019).

    Google Scholar 

  24. Ashrafi, G. & Schwarz, T. L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20, 31–42 (2013).

    Google Scholar 

  25. Chen, C. C. W., Erlich, A. T., Crilly, M. J. & Hood, D. A. Parkin is required for exercise-induced mitophagy in muscle: impact of aging. Am. J. Physiol. Endocrinol. Metab. 315, E404–E415 (2018).

    Google Scholar 

  26. Ma, K. et al. Mitophagy, mitochondrial homeostasis, and cell fate. Front. Cell Dev. Biol. 8, 467 (2020).

    Google Scholar 

  27. Pickles, S., Vigie, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial. Maint. Curr. Biol. 28, R170–R185 (2018).

    Google Scholar 

  28. Romanello, V. & Sandri, M. Mitochondrial quality control and muscle mass maintenance. Front. Physiol. 6, 422 (2015).

    Google Scholar 

  29. Song, J., Herrmann, J. M. & Becker, T. Quality control of the mitochondrial proteome. Nat. Rev. Mol. Cell Biol. 22, 54–70 (2021).

    Google Scholar 

  30. Campos, Y. et al. Biophysical and functional study of CRL5(Ozz), a muscle-specific ubiquitin ligase complex. Sci. Rep. 12, 7820 (2022).

    Google Scholar 

  31. Nastasi, T. et al. Ozz-E3, a muscle-specific ubiquitin ligase, regulates beta-catenin degradation during myogenesis. Dev. Cell 6, 269–282 (2004).

    Google Scholar 

  32. Lee, J. et al. Neur1 and Neur2 are required for hippocampus-dependent spatial memory and synaptic plasticity. Hippocampus 30, 1158–1166 (2020).

    Google Scholar 

  33. Liu, S. & Boulianne, G. L. The NHR domains of Neuralized and related proteins: Beyond Notch signalling. Cell Signal 29, 62–68 (2017).

    Google Scholar 

  34. Campos, Y. et al. Ozz-E3 ubiquitin ligase targets sarcomeric embryonic myosin heavy chain during muscle development. PloS One 5, e9866 (2010).

    Google Scholar 

  35. Bongiovanni, A. et al. Alix protein is substrate of Ozz-E3 ligase and modulates actin remodeling in skeletal muscle. J. Biol. Chem. 287, 12159–12171 (2012).

    Google Scholar 

  36. Cabezas, A., Bache, K. G., Brech, A. & Stenmark, H. Alix regulates cortical actin and the spatial distribution of endosomes. J. Cell Sci. 118, 2625–2635 (2005).

    Google Scholar 

  37. Campos, Y. et al. Alix-mediated assembly of the actomyosin-tight junction polarity complex preserves epithelial polarity and epithelial barrier. Nat. Commun. 7, 11876 (2016).

    Google Scholar 

  38. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    Google Scholar 

  39. Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nat. Rev. Mol. Cell Biol. 3, 893–905 (2002).

    Google Scholar 

  40. Martin-Serrano, J., Yarovoy, A., Perez-Caballero, D. & Bieniasz, P. D. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc. Natl. Acad. Sci. USA 100, 12414–12419 (2003).

    Google Scholar 

  41. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007).

    Google Scholar 

  42. Pan, S. et al. Involvement of the conserved adaptor protein Alix in actin cytoskeleton assembly. J. Biol. Chem. 281, 34640–34650 (2006).

    Google Scholar 

  43. Raiborg, C., Rusten, T. E. & Stenmark, H. Protein sorting into multivesicular endosomes. Curr. Opin. Cell Biol. 15, 446–455 (2003).

    Google Scholar 

  44. Schmidt, M. H. H., Chen, B., Randazzo, L. M. & Bogler, O. SETA/CIN85/Ruk and its binding partner AIP1 associate with diverse cytoskeletal elements, including FAKs, and modulate cell adhesion. J. Cell Sci. 116, 2845–2855 (2003).

    Google Scholar 

  45. Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H. G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).

    Google Scholar 

  46. Sun, S. et al. ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction. Cell Discov. 1, 15018 (2015).

    Google Scholar 

  47. Romancino, D. P. et al. Identification and characterization of the nano-sized vesicles released by muscle cells. FEBS Lett. 587, 1379–1384 (2013).

    Google Scholar 

  48. Drake, J. C. & Yan, Z. Mitophagy in maintaining skeletal muscle mitochondrial proteostasis and metabolic health with ageing. J. Physiol. 595, 6391–6399 (2017).

    Google Scholar 

  49. Guan, Y., Drake, J. C. & Yan, Z. Exercise-induced mitophagy in skeletal muscle and heart. Exerc. Sport Sci. Rev. 47, 151–156 (2019).

    Google Scholar 

  50. Leduc-Gaudet, J.P., Hussain, S.N.A., Barreiro, E. & Gouspillou, G. Mitochondrial dynamics and mitophagy in skeletal muscle health and aging. Int. J. Mol. Sci. 22 (2021).

  51. McWilliams, T. G. et al. mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol. 214, 333–345 (2016).

    Google Scholar 

  52. Gutierrez-Aguilar, M. & Baines, C. P. Physiological and pathological roles of mitochondrial SLC25 carriers. Biochem J. 454, 371–386 (2013).

    Google Scholar 

  53. Kunji, E. R. S., King, M. S., Ruprecht, J. J. & Thangaratnarajah, C. The SLC25 carrier family: important transport proteins in mitochondrial physiology and pathology. Physiology 35, 302–327 (2020).

    Google Scholar 

  54. Palmieri, F. Mitochondrial transporters of the SLC25 family and associated diseases: a review. J. Inherit. Metab. Dis. 37, 565–575 (2014).

    Google Scholar 

  55. Ruprecht, J. J. & Kunji, E. R. S. The SLC25 Mitochondrial Carrier Family: Structure and Mechanism. Trends Biochem Sci. 45, 244–258 (2020).

    Google Scholar 

  56. Chandel, N.S. Glycolysis. Cold Spring Harb. Perspect. Biol. 13 (2021).

  57. Moreno-Justicia, R. et al. Human skeletal muscle fiber heterogeneity beyond myosin heavy chains. Nat. Commun. 16, 1764 (2025).

    Google Scholar 

  58. de Boer, E. et al. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 100, 7480–7485 (2003).

    Google Scholar 

  59. Driegen, S. et al. A generic tool for biotinylation of tagged proteins in transgenic mice. Transgen. Res 14, 477–482 (2005).

    Google Scholar 

  60. van de Vlekkert, D. et al. Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Sci. Adv. 5, eaav3270 (2019).

    Google Scholar 

  61. Jezek, P., Jaburek, M., Holendova, B., Engstova, H. & Dlaskova, A. Mitochondrial Cristae morphology reflecting metabolism, superoxide formation, redox homeostasis, and pathology. Antioxid. Redox Signal 39, 635–683 (2023).

    Google Scholar 

  62. Joubert, F. & Puff, N. Mitochondrial Cristae Architecture and Functions: Lessons from Minimal Model Systems. Membranes 11 (2021).

  63. Patten, D. A. et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 33, 2676–2691 (2014).

    Google Scholar 

  64. Nederveen, J. P. et al. Variability in skeletal muscle fibre characteristics during repeated muscle biopsy sampling in human vastus lateralis. Appl Physiol. Nutr. Metab. 45, 368–375 (2020).

    Google Scholar 

  65. Van de Casteele, F. et al. Does one biopsy cut it? Revisiting human muscle fiber type composition variability using repeated biopsies in the vastus lateralis and gastrocnemius medialis. J. Appl Physiol. (1985) 137, 1341–1353 (2024).

    Google Scholar 

  66. Liu, J. et al. Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnip1/AMPK circuit. EMBO Mol. Med. 8, 1212–1228 (2016).

    Google Scholar 

  67. Coyne, L. P. & Chen, X. J. Consequences of inner mitochondrial membrane protein misfolding. Mitochondrion 49, 46–55 (2019).

    Google Scholar 

  68. Gariballa, N. & Ali, B. R. Endoplasmic Reticulum Associated Protein Degradation (ERAD) in the Pathology of Diseases Related to TGFbeta Signaling Pathway: Future Therapeutic Perspectives. Front. Mol. Biosci. 7, 575608 (2020).

    Google Scholar 

  69. Olzmann, J.A., Kopito, R.R. & Christianson, J.C. The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb. Perspect. Biol. 5 (2013).

  70. Azzu, V. & Brand, M. D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 123, 578–585 (2010).

    Google Scholar 

  71. Azzu, V., Mookerjee, S. A. & Brand, M. D. Rapid turnover of mitochondrial uncoupling protein 3. Biochem. J. 426, 13–17 (2010).

    Google Scholar 

  72. Mookerjee, S. A. & Brand, M. D. Characteristics of the turnover of uncoupling protein 3 by the ubiquitin proteasome system in isolated mitochondria. Biochim. Biophys. Acta 1807, 1474–1481 (2011).

    Google Scholar 

  73. Klingenberg, M. The ADP and ATP transport in mitochondria and its carrier. Biochim. Biophys. Acta 1778, 1978–2021 (2008).

    Google Scholar 

  74. Hers, H. G. & Van Schaftingen, E. Fructose 2,6-bisphosphate 2 years after its discovery. Biochem. J. 206, 1–12 (1982).

    Google Scholar 

  75. Maldonado, E. N. & Lemasters, J. J. ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect. Mitochondrion 19 Pt A, 78–84 (2014).

    Google Scholar 

  76. Mor, I., Cheung, E. C. & Vousden, K. H. Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb. Symp. Quant. Biol. 76, 211–216 (2011).

    Google Scholar 

  77. Clemencon, B., Babot, M. & Trezeguet, V. The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction. Mol. Asp. Med. 34, 485–493 (2013).

    Google Scholar 

  78. Graham, B. H. et al. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat. Genet. 16, 226–234 (1997).

    Google Scholar 

  79. Wang, X. & Chen, X. J. A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature 524, 481–484 (2015).

    Google Scholar 

  80. Liu, Y. et al. Mitochondrial carrier protein overloading and misfolding induce aggresomes and proteostatic adaptations in the cytosol. Mol. Biol. Cell 30, 1272–1284 (2019).

    Google Scholar 

  81. Thompson, K. et al. Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number. Am. J. Hum. Genet. 99, 860–876 (2016).

    Google Scholar 

  82. Park, K. P. et al. SLC25A4 and C10ORF2 mutations in autosomal dominant progressive external Ophthalmoplegia. J. Clin. Neurol. 7, 25–30 (2011).

    Google Scholar 

  83. Hua, Y., Laserstein, P. & Helmstaedter, M. Large-volume en-bloc staining for electron microscopy-based connectomics. Nat. Commun. 6, 7923 (2015).

    Google Scholar 

  84. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).

    Google Scholar 

  85. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    Google Scholar 

  86. Chiu, C.-L. C.N. Napari: a Python Multi-Dimensional Image Viewer Platform for the Research Community. Microsc. Microanal. 28, 1576–1577 (2022).

    Google Scholar 

  87. Lewiner, T., Lopes, H., Vieira, A. W. & Tavares, G. Efficient implementation of Marching Cubes’ cases with topological guarantees. J. Graph. Tools 8, 1–15 (2003).

    Google Scholar 

  88. Wadell, H. Volume, shape, and roundness of quartz particles. J. Geol. 43, 250–280 (1935).

    Google Scholar 

  89. Wieckowski, M. R., Giorgi, C., Lebiedzinska, M., Duszynski, J. & Pinton, P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat. Protoc. 4, 1582–1590 (2009).

    Google Scholar 

  90. Hollenbach, A. D., McPherson, C. J., Lagutina, I. & Grosveld, G. The EF-hand calcium-binding protein calmyrin inhibits the transcriptional and DNA-binding activity of Pax3. Biochim. Biophys. Acta 1574, 321–328 (2002).

    Google Scholar 

  91. Milne, S. B., Mathews, T. P., Myers, D. S., Ivanova, P. T. & Brown, H. A. Sum of the parts: mass spectrometry-based metabolomics. Biochemistry 52, 3829–3840 (2013).

    Google Scholar 

  92. Doppler, M. et al. Stable isotope-assisted plant metabolomics: combination of global and tracer-based labeling for enhanced untargeted profiling and compound annotation. Front. Plant Sci. 10, 1366 (2019).

    Google Scholar 

  93. Malik, A. N., Czajka, A. & Cunningham, P. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences. Mitochondrion 29, 59–64 (2016).

    Google Scholar 

  94. Hallett, P. J., Collins, T. L., Standaert, D. G. & Dunah, A. W. Biochemical fractionation of brain tissue for studies of receptor distribution and trafficking. Curr. Protoc. Neurosci. Chapter 1, Unit 1 16 (2008).

    Google Scholar 

  95. Muller, L., Kutzner, C.E., Balaji, V. & Hoppe, T. In Vitro Analysis of E3 Ubiquitin Ligase Function. J. Vis. Exp. (2021).

Download references

Acknowledgements

We would like to thank Dr. George Campbell of the St. Jude Cell and Tissue Imaging Center for help with image acquisitions. We gratefully acknowledge Dr. Tommaso Nastasi for his valuable contributions during the initial phase of this project and Dr. Angela McArthur (St. Jude Department of Scientific Editing) for editing the manuscript. The C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/GanlH mice were obtained from the MRC Harwell Institute, which distributes this strain on behalf of the European Mouse Mutant Archive (EMMA: www.infrafrontier.eu). The repository number is EM:11343. The C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/GanlH mice were originally produced at The University of Dundee. A. d’Azzo holds an endowed chair in Genetics and Gene Therapy from the Jewelry Charity Fund. This study was funded in part by the National Institutes of Health grants AR049867, GM104981, and CA021764, the Assisi Foundation of Memphis, and the American Lebanese Syrian Associated Charities (ALSAC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

  1. Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, USA

    Yvan Campos, Elida Gomero, Diantha van de Vlekkert, Jason Andrew Weesner, Xiaohui Qiu, Gerard C. Grosveld & Alessandra d’Azzo

  2. Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA

    Gustavo Palacios

  3. Center for Bioimage Informatics, St. Jude Children’s Research Hospital, Memphis, TN, USA

    Krishnan Venkataraman, Jaison John & Khaled Khairy

  4. Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA

    Randall Wakefield & Cam Robinson

  5. Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA

    Jason Andrew Weesner, Ricardo Rodriguez-Enriquez, Stephanie Rockfield & Joseph T. Opferman

  6. Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands

    Jeroen Demmers

  7. Department of Neurology, University of Tennessee Heath Science Center, Memphis, TN, USA

    Tulio Bertorini

Authors
  1. Yvan Campos
    View author publications

    Search author on:PubMed Google Scholar

  2. Gustavo Palacios
    View author publications

    Search author on:PubMed Google Scholar

  3. Elida Gomero
    View author publications

    Search author on:PubMed Google Scholar

  4. Diantha van de Vlekkert
    View author publications

    Search author on:PubMed Google Scholar

  5. Krishnan Venkataraman
    View author publications

    Search author on:PubMed Google Scholar

  6. Jaison John
    View author publications

    Search author on:PubMed Google Scholar

  7. Jason Andrew Weesner
    View author publications

    Search author on:PubMed Google Scholar

  8. Randall Wakefield
    View author publications

    Search author on:PubMed Google Scholar

  9. Xiaohui Qiu
    View author publications

    Search author on:PubMed Google Scholar

  10. Ricardo Rodriguez-Enriquez
    View author publications

    Search author on:PubMed Google Scholar

  11. Stephanie Rockfield
    View author publications

    Search author on:PubMed Google Scholar

  12. Jeroen Demmers
    View author publications

    Search author on:PubMed Google Scholar

  13. Joseph T. Opferman
    View author publications

    Search author on:PubMed Google Scholar

  14. Cam Robinson
    View author publications

    Search author on:PubMed Google Scholar

  15. Khaled Khairy
    View author publications

    Search author on:PubMed Google Scholar

  16. Tulio Bertorini
    View author publications

    Search author on:PubMed Google Scholar

  17. Gerard C. Grosveld
    View author publications

    Search author on:PubMed Google Scholar

  18. Alessandra d’Azzo
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.C. conceived the study, designed the experiments, analyzed the data, generated the mouse models, coordinated the efforts of all authors, and drafted the manuscript. G.P. designed, performed, and analyzed the soleus metabolomics and TCA data, and helped with the interpretation of the data and explanation of the methodology. E.G. maintained the animal colonies and performed surgeries. D.v.d.V. performed the isolation, purification, and analyses of exosomes from WT and mutant muscles, and helped with statistical analyses, and the editing of the manuscript and figures. K.V., J.J., and K.K. performed the 3D segmentation, rendering, and statistical analyses of muscle mitochondria from WT and mutant mice. J.W. wrote the macros for ImageJ/Fiji software used to analyze and quantify mitophagy, to determine the MyHC content in myofibers from WT and mutant muscle,s and to quantify ATPase activity in different fiber types. R. W. and C. R. obtained and processed TEM and SEM images. R.R. and S.R. helped with the mitochondrial OCR assays and the analyses of ΔΨm. X.Q. purified anti-Ozz and anti-Alix antibodies, prepared and maintained primary myoblast cultures, and performed Alix overexpression studies in C2C12 cells. J.D. performed proteomic analyses of C2C12 overexpressing tagged Ozz. J.T.O. and T.B. provided intellectual insights. G.C.G. provided intellectual insights, advised on the CRISPR/CAS9 mutagenesis, and edited the manuscript. A. d’A. conceived the study, designed the experiments, analyzed the data, oversaw all experiments, coordinated the efforts of all authors, secured the funding for this project, and wrote and edited the manuscript.

Corresponding authors

Correspondence to Yvan Campos or Alessandra d’Azzo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Giulia Bertolin and Dario Ummarino. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Description of Additional Supplementary Files

Supplementary data 1

Supplementary data 2

Supplementary data 3

Supplementary data 4

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

CB 2025-reporting-summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, Y., Palacios, G., Gomero, E. et al. Mitochondrial proteostasis regulated by CRL5Ozz and Alix modulates skeletal muscle metabolism and fiber type. Commun Biol (2025). https://doi.org/10.1038/s42003-025-09363-3

Download citation

  • Received: 01 March 2025

  • Accepted: 27 November 2025

  • Published: 22 December 2025

  • DOI: https://doi.org/10.1038/s42003-025-09363-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing