Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Genomics of Shiga toxin-producing Escherichia coli from asymptomatic carriers in Japan highlights risk-adaptive control
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 December 2025

Genomics of Shiga toxin-producing Escherichia coli from asymptomatic carriers in Japan highlights risk-adaptive control

  • Imai Yumi1,
  • Miki Okuno  ORCID: orcid.org/0000-0002-6164-18781,
  • Yuki Hoshiko  ORCID: orcid.org/0000-0003-2941-72081,2,
  • Hiroshi Kaneko3,
  • Toshio Sato3,
  • Akio Noguchi3,
  • Ken-ichi Lee  ORCID: orcid.org/0000-0002-4765-09894,
  • Takeshi Yamamoto1,
  • Haruyuki Nakayama-Imaohji5,
  • Tomomi Kuwahara5,
  • Sunao Iyoda4 &
  • …
  • Yoshitoshi Ogura  ORCID: orcid.org/0000-0002-4509-26531 

Communications Biology , Article number:  (2025) Cite this article

  • 1095 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bacteriology
  • Infection

Abstract

Shiga toxin-producing Escherichia coli (STEC) is detected in healthy individuals, who face work restrictions to prevent secondary transmission. To assess the virulence potential, we sequence 495 STEC isolates from healthy food handlers and social welfare workers in 2021 and compare them with 250 isolates from symptomatic patients. Nineteen serotypes (e.g., O156:H25, O174:H21, O105:H7) are significantly associated with asymptomatic carriers (SAAC), while five serotypes (O157:H7, O26:H11, O111:H8, O121:H19, O145:H28) are significantly associated with symptomatic patients (SAPA). SAPA strains frequently carry major virulence factors, including the LEE-encoded type III secretion system (100%) and Shiga toxin 2a (63.2%), which are less common in SAAC strains (38.3% and 3.7%). Among the 495 carrier isolates, 35 (7.1%) are high-risk, 178 (36.0%) moderate-risk, and 282 (57.0%) low-risk based on serotype and virulence markers. These findings suggest many strains in asymptomatic carriers have limited virulence, underscoring the need for risk-based strategies that avoid unnecessary restrictions.

Similar content being viewed by others

Identification, Shiga toxin subtypes and prevalence of minor serogroups of Shiga toxin-producing Escherichia coli in feedlot cattle feces

Article Open access 21 April 2021

Impact of Shiga-toxin encoding gene transduction from O80:H2 Shiga toxigenic Escherichia coli (STEC) on non-STEC strains

Article Open access 14 December 2022

Isolation, characterization, and receptor-binding protein specificity of phages PAS7, PAS59 and PAS61 infecting Shiga toxin-producing Escherichia coli O103 and O146

Article Open access 30 October 2024

Data availability

All sequence data generated in this study have been deposited in the NCBI BioProject database under accession number PRJDB18641. The source data underlying all figures and analyses in the manuscript are provided in Supplementary Data 1. Any additional data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Terajima, J., Izumiya, H., Hara-Kudo, Y. & Ohnishi, M. Shiga Toxin (Verotoxin)-producing Escherichia coli and Foodborne Disease: A Review. Food Saf (Tokyo) 5, 35–53 (2017).

    Google Scholar 

  2. Freedman, S. B., van de Kar, N. & Tarr, P. I. Shiga Toxin-Producing Escherichia coli and the Hemolytic-Uremic Syndrome. N Engl J Med 389, 1402–1414 (2023).

    Google Scholar 

  3. Bai, X., Scheutz, F., Dahlgren, H. M., Hedenstrom, I. & Jernberg, C. Characterization of Clinical Escherichia coli Strains Producing a Novel Shiga Toxin 2 Subtype in Sweden and Denmark. Microorganisms 9, 2374 (2021).

  4. Gill, A. et al. Characterization of Atypical Shiga Toxin Gene Sequences and Description of Stx2j, a New Subtype. J Clin Microbiol 60, e0222921 (2022).

    Google Scholar 

  5. Hughes, A. C. et al. Structural and Functional Characterization of Stx2k, a New Subtype of Shiga Toxin 2. Microorganisms 8, 4 (2019).

  6. Scheutz, F. et al. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 50, 2951–2963 (2012).

    Google Scholar 

  7. Yang, X. et al. Genomic Characterization of Escherichia coli O8 Strains Producing Shiga Toxin 2l Subtype. Microorganisms 10, 1245 (2022).

  8. Schmidt, H. Shiga-toxin-converting bacteriophages. Res Microbiol 152, 687–695 (2001).

    Google Scholar 

  9. De Rauw, K., Buyl, R., Jacquinet, S. & Pierard, D. Risk determinants for the development of typical haemolytic uremic syndrome in Belgium and proposition of a new virulence typing algorithm for Shiga toxin-producing Escherichia coli. Epidemiol Infect 147, e6 (2018).

    Google Scholar 

  10. Tack, D. M. et al. Shiga Toxin-Producing Escherichia coli Outbreaks in the United States, 2010–2017. Microorganisms 9, 1529 (2021).

  11. Buchholz, U. et al. German outbreak of Escherichia coli O104:H4 associated with sprouts. N Engl J Med. 365, 1763–1770 (2011).

    Google Scholar 

  12. Brooks, J. T. et al. Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983-2002. J Infect Dis. 192, 1422–1429 (2005).

    Google Scholar 

  13. Schmidt, M. A. LEEways: tales of EPEC, ATEC and EHEC. Cell Microbiol 12, 1544–1552 (2010).

    Google Scholar 

  14. Tobe, T. et al. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci USA 103, 14941–14946 (2006).

    Google Scholar 

  15. Hayashi, T. et al. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8, 11–22 (2001).

    Google Scholar 

  16. Armstrong, G. L., Hollingsworth, J. & Morris, J. G. Jr Emerging foodborne pathogens: Escherichia coli O157:H7 as a model of entry of a new pathogen into the food supply of the developed world. Epidemiol Rev. 18, 29–51 (1996).

    Google Scholar 

  17. Karmali, M. A. Infection by verocytotoxin-producing Escherichia coli. Clin Microbiol Rev 2, 15–38 (1989).

    Google Scholar 

  18. Kintz, E., Brainard, J., Hooper, L. & Hunter, P. Transmission pathways for sporadic Shiga-toxin producing E. coli infections: A systematic review and meta-analysis. Int J Hyg Environ Health 220, 57–67 (2017).

    Google Scholar 

  19. Sayk, F., Hauswaldt, S., Knobloch, J. K., Rupp, J. & Nitschke, M. Do asymptomatic STEC-long-term carriers need to be isolated or decolonized? New evidence from a community case study and concepts in favor of an individualized strategy. Front Public Health 12, 1364664 (2024).

    Google Scholar 

  20. Terajima, J., Iyoda, S., Ohnishi, M. & Watanabe, H. Shiga Toxin (Verotoxin)-Producing Escherichia coli in Japan. Microbiol Spectr 2, (2014).

  21. Harada, T. et al. Laboratory investigation of an Escherichia coli O157:H7 strain possessing a vtx2c gene with an IS1203 variant insertion sequence isolated from an asymptomatic food handler in Japan. Diagn Microbiol Infect Dis. 77, 176–178 (2013).

    Google Scholar 

  22. Baba, H. et al. Genomic analysis of Shiga toxin-producing Escherichia coli from patients and asymptomatic food handlers in Japan. PLoS One 14, e0225340 (2019).

    Google Scholar 

  23. Morita-Ishihara, T., Iyoda, S., Iguchi, A. & Ohnishi, M. Secondary Shiga Toxin-Producing Escherichia coli Infection, Japan, 2010-2012. Emerg Infect Dis. 22, 2181–2184 (2016).

    Google Scholar 

  24. Sui, X. et al. Characteristics of Shiga Toxin-Producing Escherichia coli Circulating in Asymptomatic Food Handlers. Toxins (Basel) 15, 640 (2023).

  25. Iyoda, S. et al. Phylogenetic Clades 6 and 8 of Enterohemorrhagic Escherichia coli O157:H7 With Particular stx Subtypes are More Frequently Found in Isolates From Hemolytic Uremic Syndrome Patients Than From Asymptomatic Carriers. Open Forum Infect Dis. 1, ofu061 (2014).

    Google Scholar 

  26. Manning, S. D. et al. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc Natl Acad Sci USA 105, 4868–4873 (2008).

    Google Scholar 

  27. Bizot, E. et al. Shiga toxin-producing Escherichia coli carriage in 959 healthy French infants. Arch Dis Child 106, 1239–1240 (2021).

    Google Scholar 

  28. Harries, M., Dreesman, J., Rettenbacher-Riefler, S. & Mertens, E. Faecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae and Shiga toxin-producing Escherichia coli in asymptomatic nursery children in Lower Saxony (Germany), 2014. Epidemiol Infect 144, 3540–3548 (2016).

    Google Scholar 

  29. Tarr, P. I. & Freedman, S. B. Why antibiotics should not be used to treat Shiga toxin-producing Escherichia coli infections. Curr Opin Gastroenterol 38, 30–38 (2022).

    Google Scholar 

  30. Bai, X. et al. Comparative Genomics of Shiga Toxin-Producing Escherichia coli Strains Isolated from Pediatric Patients with and without Hemolytic Uremic Syndrome from 2000 to 2016 in Finland. Microbiol Spectr 10, e0066022 (2022).

    Google Scholar 

  31. Blankenship, H. M. et al. Population structure and genetic diversity of non-O157 Shiga toxin-producing Escherichia coli (STEC) clinical isolates from Michigan. Sci Rep. 11, 4461 (2021).

    Google Scholar 

  32. Kalalah, A. A., Koenig, S. S. K., Bono, J. L., Bosilevac, J. M. & Eppinger, M. Pathogenomes and virulence profiles of representative big six non-O157 serogroup Shiga toxin-producing Escherichia coli. Front Microbiol 15, 1364026 (2024).

    Google Scholar 

  33. Karmali, M. A. et al. Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J Clin Microbiol 41, 4930–4940 (2003).

    Google Scholar 

  34. Melton-Celsa, A. R. & O’Brien, A. D. Animal models for STEC-mediated disease. Methods Mol Med 73, 291–305 (2003).

    Google Scholar 

  35. Ritchie, J. M. Infant Rabbit Model for Studying Shiga Toxin-Producing Escherichia coli. Methods Mol Biol 2291, 365–379 (2021).

    Google Scholar 

  36. Thorpe, C. M., Pulsifer, A. R., Osburne, M. S., Vanaja, S. K. & Leong, J. M. Citrobacter rodentium(varphiStx2dact), a murine infection model for enterohemorrhagic Escherichia coli. Curr Opin Microbiol 65, 183–190 (2022).

    Google Scholar 

  37. Kajitani, R. et al. Platanus_B: an accurate de novo assembler for bacterial genomes using an iterative error-removal process. DNA Res 27, dsaa014 (2020).

  38. Bessonov, K. et al. ECTyper: in silico Escherichia coli serotype and species prediction from raw and assembled whole-genome sequence data. Microb. Genom 7, 000728 (2021).

  39. Inouye, M. et al. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 6, 90 (2014).

    Google Scholar 

  40. Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    Google Scholar 

  41. Page, A. J. et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2, e000056 (2016).

    Google Scholar 

  42. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    Google Scholar 

  43. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Google Scholar 

  44. Riordan, J. T., Viswanath, S. B., Manning, S. D. & Whittam, T. S. Genetic differentiation of Escherichia coli O157:H7 clades associated with human disease by real-time PCR. J Clin Microbiol 46, 2070–2073 (2008).

    Google Scholar 

  45. Berger, M., Aijaz, I., Berger, P., Dobrindt, U. & Koudelka, G. Transcriptional and Translational Inhibitors Block SOS Response and Shiga Toxin Expression in Enterohemorrhagic Escherichia coli. Sci Rep. 9, 18777 (2019).

    Google Scholar 

  46. Yang, X. et al. Characterization of Escherichia coli strains producing Shiga Toxin 2f subtype from domestic Pigeon. Sci Rep. 14, 24481 (2024).

    Google Scholar 

Download references

Acknowledgements

We thank Ayaka Wakakuwa for providing technical assistance.

Author information

Authors and Affiliations

  1. Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan

    Imai Yumi, Miki Okuno, Yuki Hoshiko, Takeshi Yamamoto & Yoshitoshi Ogura

  2. Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, Kanagawa, Japan

    Yuki Hoshiko

  3. Japan Microbiological Laboratory, Miyagi, Japan

    Hiroshi Kaneko, Toshio Sato & Akio Noguchi

  4. Department of Bacteriology I, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan

    Ken-ichi Lee & Sunao Iyoda

  5. Department of Molecular Microbiology, Kagawa University Faculty of Medicine, Kagawa, Japan

    Haruyuki Nakayama-Imaohji & Tomomi Kuwahara

Authors
  1. Imai Yumi
    View author publications

    Search author on:PubMed Google Scholar

  2. Miki Okuno
    View author publications

    Search author on:PubMed Google Scholar

  3. Yuki Hoshiko
    View author publications

    Search author on:PubMed Google Scholar

  4. Hiroshi Kaneko
    View author publications

    Search author on:PubMed Google Scholar

  5. Toshio Sato
    View author publications

    Search author on:PubMed Google Scholar

  6. Akio Noguchi
    View author publications

    Search author on:PubMed Google Scholar

  7. Ken-ichi Lee
    View author publications

    Search author on:PubMed Google Scholar

  8. Takeshi Yamamoto
    View author publications

    Search author on:PubMed Google Scholar

  9. Haruyuki Nakayama-Imaohji
    View author publications

    Search author on:PubMed Google Scholar

  10. Tomomi Kuwahara
    View author publications

    Search author on:PubMed Google Scholar

  11. Sunao Iyoda
    View author publications

    Search author on:PubMed Google Scholar

  12. Yoshitoshi Ogura
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.I., K.L., T.S., S.I., and Y.O. conceptualized the study. Y.I., M.O., Y.H., T.Y., and Y.O. curated the data. Y.I., Y.H., H.K., A.N., T.Y., H.N.I., and T.K. performed the investigation. T.S. and Y.O. administered the project. Y.I. and Y.O. wrote the original draft. All the authors were responsible for reviewing and editing the manuscript. All the authors had access to the data presented in this study and had final responsibility for the decision to submit for publication.

Corresponding author

Correspondence to Yoshitoshi Ogura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Yanwen Xiong, Ying Hua and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Yu-Wei Wu and Tobias Goris. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary_Information

Description of Additional Supplementary Files

Supplementary Data 1

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yumi, I., Okuno, M., Hoshiko, Y. et al. Genomics of Shiga toxin-producing Escherichia coli from asymptomatic carriers in Japan highlights risk-adaptive control. Commun Biol (2025). https://doi.org/10.1038/s42003-025-09369-x

Download citation

  • Received: 21 May 2025

  • Accepted: 04 December 2025

  • Published: 17 December 2025

  • DOI: https://doi.org/10.1038/s42003-025-09369-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology