Abstract
Chloroplasts offer significant potential for multigene engineering in microalgae, but the lack of well-characterized regulatory elements and limited understanding of plastid transcriptional mechanisms have hindered progress. Here, through a comparative conservation analysis across fifteen species of microalgae and higher plants, we identified bidirectional promoter (BDP) intergenic regions (IRs) showing diverse evolutionary trajectories, from lineage-specific rearrangements of atpA/rbcL (BDP1) and chlL/petB (BDP2), to strict conservation of the psbH/psbN IR (BDP3), and complete loss of rpoB-1/psbF (BDP4). Based on promoter signature analysis, we selected three candidate regions (BDP1, BDP2, and BDP3) from the Chlamydomonas reinhardtii chloroplast genome for functional characterization. A semi-rational screen revealed that BDP1 supports expression of two transgenes, mVenus and tdTomato in opposing orientations; BDP2 drives balanced expression, but low protein accumulation; and BDP3 exhibits minimal activity, suggesting UTR-dependent post-transcriptional regulation. Strikingly, methyl-jasmonate selectively enhanced tdTomato expression from BDP1, offering a chemical method to regulate chloroplast transgene expression. Collectively, these results underscore the evolutionary diversity and functional potential of natural BDPs, particularly BDP1, as powerful tools for multigene engineering and chemical modulation in microalgae and higher plants. This study also provides fundamental insights into chloroplast transcription, establishing a basis for future investigations into its regulatory mechanisms.

Similar content being viewed by others
Data availability
All data supporting the findings of this study are included in the main text and Supplementary Information. Oligonucleotide sequences are listed in Supplementary Data 1. Next-generation sequencing (NGS) results for all plasmid constructs are provided in Supplementary Data 2. Flow cytometry, RT–qPCR, and confocal microscopy datasets are available in Supplementary Data 3. Raw NGS reads have been deposited in the NCBI Sequence Read Archive under BioProject accession number PRJNA1379576. The plasmid vectors pABDP1, pABDP2, pABDP3, pAMVe, and pATDt have been deposited in Addgene under accession numbers 249500, 249501, 249502, 249494, and 249499, respectively.
References
Kumar, G. et al. Bioengineering of microalgae: recent advances, perspectives, and regulatory challenges for industrial application. Front. Bioeng. Biotechnol. 8, 914 (2020).
Rasala, B. A. & Mayfield, S. P. The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioeng. Bugs 2, 50–54 (2011).
Harris, E. H. Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 363–406 (2001).
Fabris, M. et al. Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy. Front. Plant Sci. 11, 279 (2020).
Taunt, H. N., Stoffels, L. & Purton, S. Green biologics: the algal chloroplast as a platform for making biopharmaceuticals. Bioengineered 9, 48–54 (2018).
Neupert, J. et al. An epigenetic gene silencing pathway selectively acting on transgenic DNA in the green alga Chlamydomonas. Nat. Commun. 11, 6269 (2020).
Purton, S. Tools and techniques for chloroplast transformation of Chlamydomonas. Adv. Exp. Med Biol. 616, 34–45 (2007).
Ramesh, V. M., Bingham, S. E. & Webber, A. N. A simple method for chloroplast transformation in Chlamydomonas reinhardtii. Methods Mol. Biol. 684, 313–320 (2011).
Mordaka, P. M. et al. Regulation of nucleus-encoded trans-acting factors allows orthogonal fine-tuning of multiple transgenes in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J n/a (2024). https://doi.org/10.1111/pbi.14557
Larrea-Alvarez, M. & Purton, S. Multigenic engineering of the chloroplast genome in the green alga Chlamydomonas reinhardtii. Microbiology 166, 510–515 (2020).
Yeon, J., Miller, S. M. & Dejtisakdi, W. New synthetic operon vectors for expressing multiple proteins in the chlamydomonas reinhardtii chloroplast. Genes 14, 368 (2023).
Macedo-Osorio, K. S. et al. Intercistronic expression elements (IEE) from the chloroplast of Chlamydomonas reinhardtii can be used for the expression of foreign genes in synthetic operons. Plant Mol. Biol. 98, 303–317 (2018).
Guo, Y., Xiong, H., Fan, Q. & Duanmu, D. Heterologous gene expression in chlamydomonas reinhardtii chloroplast by heterologous promoters and terminators, intercistronic expression elements and minichromosome. Micro. Biotechnol. 17, e70069 (2024).
Melero-Cobo, X. et al. MoCloro: an extension of the Chlamydomonas reinhardtii modular cloning toolkit for microalgal chloroplast engineering. Physiol. Plant 177, e70088 (2025).
Inckemann, R. M. et al. A modular high-throughput approach for advancing synthetic biology in the chloroplast of Chlamydomonas. Nat, Plants (2025). https://doi.org/10.1038/s41477-025-02126-2
Zhang, P. et al. Deep flanking sequence engineering for efficient promoter design using DeepSEED. Nat. Commun. 14, 6309 (2023).
Altendorfer, E., Mundlos, S. & Mayer, A. A transcription coupling model for how enhancers communicate with their target genes. Nat. Struct. Mol. Biol. 32, 598–606 (2025).
Johnson, C. H. & Schmidt, G. W. The psbB gene cluster of the Chlamydomonas reinhardtii chloroplast: sequence and transcriptional analyses of psbN and psbH. Plant Mol. Biol. 22, 645–658 (1993).
Stern, D. S., Higgs, D. C. & Yang, J. Transcription and translation in chloroplasts. Trends Plant Sci. 2, 308–315 (1997).
Klein, U., De Camp, J. D. & Bogorad, L. Two types of chloroplast gene promoters in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 89, 3453–3457 (1992).
Hatano-Iwasaki, A., Minagawa, J., Inoue, Y. & Takahashi, Y. Characterization of chloroplast psbA transformants of Chlamydomonas reinhardtii with impaired processing of a precursor of a photosystem II reaction center protein, D1. Plant Mol. Biol. 42, 353–363 (2000).
Rasala, B. A., Muto, M., Sullivan, J. & Mayfield, S. P. Improved heterologous protein expression in the chloroplast of Chlamydomonas reinhardtii through promoter and 5’ untranslated region optimization. Plant Biotechnol. J. 9, 674–683 (2011).
Drapier, D. et al. The chloroplast atpA gene cluster in Chlamydomonas reinhardtii. Functional analysis of a polycistronic transcription unit. Plant Physiol. 117, 629–641 (1998).
Shimmura, S. et al. Comparative analysis of chloroplast psbD promoters in terrestrial plants. Front Plant Sci. 8, 1186 (2017).
Nickelsen, J., Fleischmann, M., Boudreau, E., Rahire, M. & Rochaix, J.-D. Identification of cis-Acting RNA leader elements required for chloroplast psbD gene expression in chlamydomonas. Plant Cell 11, 957–970 (1999).
Klein, U., Salvador, M. L. & Bogorad, L. Activity of the Chlamydomonas chloroplast RBCL gene promoter is enhanced by a remote sequence element. Proc. Natl. Acad. Sci. 91, 10819–10823 (1994).
Scranton, M. A., Ostrand, J. T., Fields, F. J. & Mayfield, S. P. Chlamydomonas as a model for biofuels and bio-products production. Plant J. 82, 523–531 (2015).
Anthonisen, I. L., Salvador, M. L. & Klein, U. Specific sequence elements in the 5’ untranslated regions of rbcL and atpB gene mRNas stabilize transcripts in the chloroplast of Chlamydomonas reinhardtii. RNA 7, 1024–1033 (2001).
Cavaiuolo, M., Kuras, R., Wollman, F. A., Choquet, Y. Vallon, O. Small RNA profiling in Chlamydomonas: insights into chloroplast RNA metabolism. Nucleic Acids Res. 45, 10783–10799 (2017).
Loiselay, C. et al. Molecular identification and function of cis- and trans-acting determinants for petA transcript stability in Chlamydomonas reinhardtii chloroplasts. Mol. Cell Biol. 28, 5529–5542 (2008).
Johnson, X. et al. MRL1, a conserved Pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in chlamydomonas and arabidopsis. Plant Cell 22, 234–248 (2010).
Boudreau, E., Nickelsen, J., Lemaire, S. D., Ossenbühl, F. & Rochaix, J. D. The Nac2 gene of Chlamydomonas encodes a chloroplast TPR-like protein involved in psbD mRNA stability. Embo J. 19, 3366–3376 (2000).
Commault, A. S. et al. Methyl jasmonate treatment affects the regulation of the 2-C-methyl-D-erythritol 4-phosphate pathway and early steps of the triterpenoid biosynthesis in Chlamydomonas reinhardtii. Algal Res. 39, 101462 (2019).
Wang, R. et al. Isolation and functional characterization of bidirectional promoters in rice. Front Plant Sci. 7, 766 (2016).
In, S., Lee, H. A., Woo, J., Park, E. & Choi, D. Molecular characterization of a pathogen-inducible bidirectional promoter from hot pepper (Capsicum annuum). Mol. Plant Microbe Interact. 33, 1330–1339 (2020).
Liu, X. et al. The intergenic region of the maize defensin-like protein genes Def1 and Def2 functions as an embryo-specific asymmetric bidirectional promoter. J. Exp. Bot. 67, 4403–4413 (2016).
Thieffry, A. et al. Characterization of arabidopsis thaliana promoter bidirectionality and antisense RNAs by inactivation of nuclear RNA decay pathways. Plant Cell 32, 1845–1867 (2020).
Vogl, T. et al. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nat. Commun. 9, 3589 (2018).
Yang, S., Sleight, S. C. & Sauro, H. M. Rationally designed bidirectional promoter improves the evolutionary stability of synthetic genetic circuits. Nucleic Acids Res. 41, e33 (2013).
Kumar, S. et al. A combinatorial bidirectional and bicistronic approach for coordinated multi-gene expression in corn. Plant Mol. Biol. 87, 341–353 (2015).
Poliner, E., Clark, E., Cummings, C., Benning, C. & Farre, E. M. A high-capacity gene stacking toolkit for the oleaginous microalga, Nannochloropsis oceanica CCMP1779. Algal Res. 45, 101664 (2020).
Büschlen, S., Choquet, Y., Kuras, R. & Wollman, F.-A. Nucleotide sequences of the continuous and separated petA, petB and petD chloroplast genes in Chlamydomonas reinhardtii. FEBS Lett. 284, 257–262 (1991).
Sakamoto, W., Chen, X., Kindle, K. L. & Stern, D. B. Function of the Chlamydomonas reinhardtii petd 5’ untranslated region in regulating the accumulation of subunit IV of the cytochrome b6/f complex. Plant J. 6, 503–512 (1994).
Loizeau, K. et al. Small RNAs reveal two target sites of the RNA-maturation factor Mbb1 in the chloroplast of Chlamydomonas. Nucleic Acids Res. 42, 3286–3297 (2013).
Fong, S. E. & Surzycki, S. J. Organization and structure of plastome psbF, psbL, petG and ORF712 genes in Chlamydomonas reinhardtii. Curr. Genet. 21, 527–530 (1992).
Fong, S. E. & Surzycki, S. J. Chloroplast RNA polymerase genes of Chlamydomonas reinhardtii exhibit an unusual structure and arrangement. Curr. Genet 21, 485–497 (1992).
Solovyev, V. V. & Salamov, A. A. Recognition of 3'-processing sites of human mRNA precursors. Comput. Appl. Biosci. 13, 23–28 (1997).
Ma, K., Deng, L., Wu, H. & Fan, J. Towards green biomanufacturing of high-value recombinant proteins using promising cell factory: chlamydomonas reinhardtii chloroplast. Bioresour. Bioprocess 9, 83 (2022).
Miro-Vinyals, B. et al. Chloroplast engineering of the green microalgae Chlamydomonas reinhardtii for the production of HAA, the lipid moiety of rhamnolipid biosurfactants. N. Biotechnol. 76, 1–12 (2023).
Di Rocco, G. et al. A PETase enzyme synthesised in the chloroplast of the microalga Chlamydomonas reinhardtii is active against post-consumer plastics. Sci. Rep. 13, 10028 (2023).
Barnes, D. et al. Contribution of 5’- and 3’-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol. Genet Genomics 274, 625–636 (2005).
Economou, C., Wannathong, T., Szaub, J. & Purton, S. A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii. Methods Mol. Biol. 1132, 401–411 (2014).
Nishimura, Y. & Stern, D. B. Differential replication of two chloroplast genome forms in heteroplasmic Chlamydomonas reinhardtii gametes contributes to alternative inheritance patterns. Genetics 185, 1167–1181 (2010).
Khan, A. et al. Plant synthetic promoters: advancement and prospective. Agriculture 13, 298 (2023).
Anwar, M., Wang, J., Li, J., Altaf, M. M. & Hu, Z. MYB transcriptional factors affects upstream and downstream MEP pathway and triterpenoid biosynthesis in chlamydomonas reinhardtii. Processes 12, 487 (2024).
Wasternack, C. & Hause, B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111, 1021–1058 (2013).
Goossens, J., Fernandez-Calvo, P., Schweizer, F. & Goossens, A. Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol. Biol. 91, 673–689 (2016).
Al Hoqani, U. H. A. Metabolic engineering of the algal chloroplast for terpenoid production. Doctoral thesis, UCL (University College London) (2017).
Wichmann, J. et al. Farnesyl pyrophosphate compartmentalization in the green microalga Chlamydomonas reinhardtii during heterologous (E)-alpha-bisabolene production. Micro. Cell Fact. 21, 190 (2022).
Pérez-Martín, J. & de Lorenzo, V. Clues and consequences of DNA bending in transcription. Annu. Rev. Microbiol. 51, 593–628 (1997).
Summer, E. J., Schmid, V. H., Bruns, B. U. & Schmidt, G. W. Requirement for the H phosphoprotein in photosystem II of Chlamydomonas reinhardtii. Plant Physiol. 113, 1359–1368 (1997).
Torabi, S. et al. PsbN is required for assembly of the photosystem II reaction center in Nicotiana tabacum. Plant Cell 26, 1183–1199 (2014).
Rosales-Mendoza, S., Paz-Maldonado, L. M. T. & Soria-Guerra, R. E. Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. Plant Cell Rep. 31, 479–494 (2012).
Surzycki, R. et al. Factors effecting expression of vaccines in microalgae. Biologicals 37, 133–138 (2009).
Barnes, D. et al. Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol. Genet. Genomics 274, 625–636 (2005).
Wannathong, T., Waterhouse, J. C., Young, R. E., Economou, C. K. & Purton, S. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol. 100, 5467–5477 (2016).
Odom, O. W., Kang, S., Ferguson, C., Chen, C. & Herrin, D. L. Overcoming poor transgene expression in the wild-type chlamydomonas chloroplast: creation of highly mosquitocidal strains of chlamydomonas reinhardtii. Microorganisms 10, 1087 (2022).
Coragliotti, A. T., Beligni, M. V., Franklin, S. E. & Mayfield, S. P. Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii chloroplast. Mol. Biotechnol. 48, 60–75 (2011).
Barkan, A. Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol. 155, 1520–1532 (2011).
Kasai, S. et al. Effect of coding regions on chloroplast gene expression in Chlamydomonas reinhardtii. J. Biosci. Bioeng. 95, 276–282 (2003).
Kato, K., Ishikura, K., Kasai, S. & Shinmyo, A. Efficient translation destabilizes transcripts in chloroplasts of Chlamydomonas reinhardtii. J. Biosci. Bioeng. 101, 471–477 (2006).
Viola, S. et al. MDA1, a nucleus-encoded factor involved in the stabilization and processing of the atpA transcript in the chloroplast of Chlamydomonas. Plant J. 98, 1033–1047 (2019).
Eberhard, S. et al. Dual functions of the nucleus-encoded factor TDA1 in trapping and translation activation of atpA transcripts in Chlamydomonas reinhardtii chloroplasts. Plant J. 67, 1055–1066 (2011).
Chaux, F. et al. Chloroplast ATP synthase biogenesis requires peripheral stalk subunits AtpF and ATPG and stabilization of atpE mRNA by OPR protein MDE1. Plant J. 116, 1582–1599 (2023).
Anthonisen, I. L., Salvador, M. L. & Klein, U. W. E. Specific sequence elements in the 5′ untranslated regions of rbcL and atpB gene mRNAs stabilize transcripts in the chloroplast of Chlamydomonas reinhardtii. RNA 7, 1024–1033 (2001).
Hauser, C. R., Gillham, N. W. & Boynton, J. E. Translational regulation of chloroplast genes: proteins binding to the 5′-untranslated regions of chloroplast mrnas in chlamydomonas reinhardtii(∗). J. Biol. Chem. 271, 1486–1497 (1996).
Odom, O. W., Kang, S., Ferguson, C., Chen, C. & Herrin, D. L. Overcoming poor transgene expression in the wild-type chlamydomonas chloroplast: creation of highly mosquitocidal strains of chlamydomonas reinhardtii. Microorganisms 10 (2022). https://doi.org/10.3390/microorganisms10061087
Miró-Vinyals, B. et al. Chloroplast engineering of the green microalgae Chlamydomonas reinhardtii for the production of HAA, the lipid moiety of rhamnolipid biosurfactants. N. Biotechnol. 76, 1–12 (2023).
Mordaka, P. M. et al. Regulation of nucleus-encoded trans-acting factors allows orthogonal fine-tuning of multiple transgenes in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol. J. 23, 1005–1018 (2025).
Kurowska, M. M. et al. Methyl Jasmonate Affects Photosynthesis Efficiency, Expression of HvTIP Genes and Nitrogen Homeostasis in Barley. Int J Mol Sci 21 (2020). https://doi.org/10.3390/ijms21124335
Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M. & Turner, J. G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094 (1998).
Devoto, A. et al. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 32, 457–466 (2002).
Chini, A., Boter, M. & Solano, R. Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. FEBS J. 276, 4682–4692 (2009).
Staswick, P. E. JAZing up jasmonate signaling. Trends Plant Sci. 13, 66–71 (2008).
Fonseca, S., Chico, J. M. & Solano, R. The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr. Opin. Plant Biol. 12, 539–547 (2009).
Lohr, M., Schwender, J. & Polle, J. E. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci. 185-186, 9–22 (2012).
Higo, K., Ugawa, Y., Iwamoto, M. & Higo, H. PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res. 26, 358–359 (1998).
Jansen, R. K. et al. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol. 395, 348–384 (2005).
Barrera, D., Gimpel, J. & Mayfield, S. in Chloroplast Biotechnology: Methods and Protocols (ed Pal Maliga) 391-399 (Humana Press, 2014).
Nouemssi, S. B. et al. Rapid and efficient colony-pcr for high throughput screening of genetically transformed chlamydomonas reinhardtii. Life 10, 186 (2020).
Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).
Acknowledgements
The authors thank Dr. Karen Cristine Goncalves dos Santos for her valuable technical advice and input during this study, and Melodie B. Plourde for her generous support and patience in assisting with confocal microscopy acquisition and analysis. During the preparation of this work, the authors used ChatGPT -4.0, a free AI language model, to correct grammatical errors and enhance readability. After using this tool, the authors reviewed and edited the content as needed and take full responsibility for the final version of this publication. This research was funded by Canada Research Chair on plant specialized metabolism Award No. CRC-2023 00353 to IDP. The authors extent their gratitude to the Canadian taxpayers and to the Canadian government for supporting the Canada Research Chairs Program. Additional funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) through award No. RGPIN/3218-2021 to IDP. This work was also supported by NSERC award No. EQPEQ 472990-2015 (Research tools and instruments program) for the acquisition of the qPCR system.
Author information
Authors and Affiliations
Contributions
A.W.T.: Conceptualization, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing-Original draft, Writing Reviewing and Editing; N.M.: Conceptualization, Formal analysis, Methodology, Project administration Supervision, Writing-Original draft, Writing Reviewing and Editing; E.F.: Formal analysis, Investigation, Methodology, Writing Reviewing and Editing; A.B.: Investigation, Methodology, Writing Reviewing and Editing; F.A.: Investigation, Writing Reviewing and Editing; F.M.-M.: Conceptualization, Methodology, Project administration, Writing Reviewing and Editing; I.D.P.: Conceptualization, Funding, acquisition, Methodology, Project administration, Resources, Supervision, Validation, Writing- Reviewing and Editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Biology thanks Bradley W. Abramson, Frédéric Chaux and Domitille Jarrige for their contribution to the peer review of this work. Primary Handling Editors: Leena Tripathi, George Inglis, and David Favero.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Tazon, A.W., Mérindol, N., Fantino, E. et al. Engineering bidirectional chloroplast promoters for tunable co-expression of multiple genes in microalgae (Chlamydomonas reinhardtii). Commun Biol (2026). https://doi.org/10.1038/s42003-025-09478-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42003-025-09478-7


