Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Engineering bidirectional chloroplast promoters for tunable co-expression of multiple genes in microalgae (Chlamydomonas reinhardtii)
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 January 2026

Engineering bidirectional chloroplast promoters for tunable co-expression of multiple genes in microalgae (Chlamydomonas reinhardtii)

  • Arnold William Tazon1,
  • Natacha Mérindol  ORCID: orcid.org/0000-0001-6235-64651,
  • Elisa Fantino1,
  • Ayoub Bouhadada1,
  • Fatima Awwad1,
  • Fatma Meddeb-Mouelhi1 &
  • …
  • Isabel Desgagné-Penix  ORCID: orcid.org/0000-0002-4355-55031 

Communications Biology , Article number:  (2026) Cite this article

  • 2608 Accesses

  • 5 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Metabolic engineering
  • Transcriptional regulatory elements

Abstract

Chloroplasts offer significant potential for multigene engineering in microalgae, but the lack of well-characterized regulatory elements and limited understanding of plastid transcriptional mechanisms have hindered progress. Here, through a comparative conservation analysis across fifteen species of microalgae and higher plants, we identified bidirectional promoter (BDP) intergenic regions (IRs) showing diverse evolutionary trajectories, from lineage-specific rearrangements of atpA/rbcL (BDP1) and chlL/petB (BDP2), to strict conservation of the psbH/psbN IR (BDP3), and complete loss of rpoB-1/psbF (BDP4). Based on promoter signature analysis, we selected three candidate regions (BDP1, BDP2, and BDP3) from the Chlamydomonas reinhardtii chloroplast genome for functional characterization. A semi-rational screen revealed that BDP1 supports expression of two transgenes, mVenus and tdTomato in opposing orientations; BDP2 drives balanced expression, but low protein accumulation; and BDP3 exhibits minimal activity, suggesting UTR-dependent post-transcriptional regulation. Strikingly, methyl-jasmonate selectively enhanced tdTomato expression from BDP1, offering a chemical method to regulate chloroplast transgene expression. Collectively, these results underscore the evolutionary diversity and functional potential of natural BDPs, particularly BDP1, as powerful tools for multigene engineering and chemical modulation in microalgae and higher plants. This study also provides fundamental insights into chloroplast transcription, establishing a basis for future investigations into its regulatory mechanisms.

Similar content being viewed by others

A modular high-throughput approach for advancing synthetic biology in the chloroplast of Chlamydomonas

Article Open access 03 November 2025

Chloroplast and mitochondrial DNA editing in plants

Article Open access 01 July 2021

Comparative chloroplast genome analysis of four Polygonatum species insights into DNA barcoding, evolution, and phylogeny

Article Open access 01 October 2023

Data availability

All data supporting the findings of this study are included in the main text and Supplementary Information. Oligonucleotide sequences are listed in Supplementary Data 1. Next-generation sequencing (NGS) results for all plasmid constructs are provided in Supplementary Data 2. Flow cytometry, RT–qPCR, and confocal microscopy datasets are available in Supplementary Data 3. Raw NGS reads have been deposited in the NCBI Sequence Read Archive under BioProject accession number PRJNA1379576. The plasmid vectors pABDP1, pABDP2, pABDP3, pAMVe, and pATDt have been deposited in Addgene under accession numbers 249500, 249501, 249502, 249494, and 249499, respectively.

References

  1. Kumar, G. et al. Bioengineering of microalgae: recent advances, perspectives, and regulatory challenges for industrial application. Front. Bioeng. Biotechnol. 8, 914 (2020).

    Google Scholar 

  2. Rasala, B. A. & Mayfield, S. P. The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioeng. Bugs 2, 50–54 (2011).

    Google Scholar 

  3. Harris, E. H. Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 363–406 (2001).

    Google Scholar 

  4. Fabris, M. et al. Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy. Front. Plant Sci. 11, 279 (2020).

    Google Scholar 

  5. Taunt, H. N., Stoffels, L. & Purton, S. Green biologics: the algal chloroplast as a platform for making biopharmaceuticals. Bioengineered 9, 48–54 (2018).

    Google Scholar 

  6. Neupert, J. et al. An epigenetic gene silencing pathway selectively acting on transgenic DNA in the green alga Chlamydomonas. Nat. Commun. 11, 6269 (2020).

    Google Scholar 

  7. Purton, S. Tools and techniques for chloroplast transformation of Chlamydomonas. Adv. Exp. Med Biol. 616, 34–45 (2007).

    Google Scholar 

  8. Ramesh, V. M., Bingham, S. E. & Webber, A. N. A simple method for chloroplast transformation in Chlamydomonas reinhardtii. Methods Mol. Biol. 684, 313–320 (2011).

    Google Scholar 

  9. Mordaka, P. M. et al. Regulation of nucleus-encoded trans-acting factors allows orthogonal fine-tuning of multiple transgenes in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J n/a (2024). https://doi.org/10.1111/pbi.14557

  10. Larrea-Alvarez, M. & Purton, S. Multigenic engineering of the chloroplast genome in the green alga Chlamydomonas reinhardtii. Microbiology 166, 510–515 (2020).

    Google Scholar 

  11. Yeon, J., Miller, S. M. & Dejtisakdi, W. New synthetic operon vectors for expressing multiple proteins in the chlamydomonas reinhardtii chloroplast. Genes 14, 368 (2023).

    Google Scholar 

  12. Macedo-Osorio, K. S. et al. Intercistronic expression elements (IEE) from the chloroplast of Chlamydomonas reinhardtii can be used for the expression of foreign genes in synthetic operons. Plant Mol. Biol. 98, 303–317 (2018).

    Google Scholar 

  13. Guo, Y., Xiong, H., Fan, Q. & Duanmu, D. Heterologous gene expression in chlamydomonas reinhardtii chloroplast by heterologous promoters and terminators, intercistronic expression elements and minichromosome. Micro. Biotechnol. 17, e70069 (2024).

    Google Scholar 

  14. Melero-Cobo, X. et al. MoCloro: an extension of the Chlamydomonas reinhardtii modular cloning toolkit for microalgal chloroplast engineering. Physiol. Plant 177, e70088 (2025).

    Google Scholar 

  15. Inckemann, R. M. et al. A modular high-throughput approach for advancing synthetic biology in the chloroplast of Chlamydomonas. Nat, Plants (2025). https://doi.org/10.1038/s41477-025-02126-2

  16. Zhang, P. et al. Deep flanking sequence engineering for efficient promoter design using DeepSEED. Nat. Commun. 14, 6309 (2023).

    Google Scholar 

  17. Altendorfer, E., Mundlos, S. & Mayer, A. A transcription coupling model for how enhancers communicate with their target genes. Nat. Struct. Mol. Biol. 32, 598–606 (2025).

    Google Scholar 

  18. Johnson, C. H. & Schmidt, G. W. The psbB gene cluster of the Chlamydomonas reinhardtii chloroplast: sequence and transcriptional analyses of psbN and psbH. Plant Mol. Biol. 22, 645–658 (1993).

    Google Scholar 

  19. Stern, D. S., Higgs, D. C. & Yang, J. Transcription and translation in chloroplasts. Trends Plant Sci. 2, 308–315 (1997).

    Google Scholar 

  20. Klein, U., De Camp, J. D. & Bogorad, L. Two types of chloroplast gene promoters in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 89, 3453–3457 (1992).

    Google Scholar 

  21. Hatano-Iwasaki, A., Minagawa, J., Inoue, Y. & Takahashi, Y. Characterization of chloroplast psbA transformants of Chlamydomonas reinhardtii with impaired processing of a precursor of a photosystem II reaction center protein, D1. Plant Mol. Biol. 42, 353–363 (2000).

    Google Scholar 

  22. Rasala, B. A., Muto, M., Sullivan, J. & Mayfield, S. P. Improved heterologous protein expression in the chloroplast of Chlamydomonas reinhardtii through promoter and 5’ untranslated region optimization. Plant Biotechnol. J. 9, 674–683 (2011).

    Google Scholar 

  23. Drapier, D. et al. The chloroplast atpA gene cluster in Chlamydomonas reinhardtii. Functional analysis of a polycistronic transcription unit. Plant Physiol. 117, 629–641 (1998).

    Google Scholar 

  24. Shimmura, S. et al. Comparative analysis of chloroplast psbD promoters in terrestrial plants. Front Plant Sci. 8, 1186 (2017).

    Google Scholar 

  25. Nickelsen, J., Fleischmann, M., Boudreau, E., Rahire, M. & Rochaix, J.-D. Identification of cis-Acting RNA leader elements required for chloroplast psbD gene expression in chlamydomonas. Plant Cell 11, 957–970 (1999).

    Google Scholar 

  26. Klein, U., Salvador, M. L. & Bogorad, L. Activity of the Chlamydomonas chloroplast RBCL gene promoter is enhanced by a remote sequence element. Proc. Natl. Acad. Sci. 91, 10819–10823 (1994).

    Google Scholar 

  27. Scranton, M. A., Ostrand, J. T., Fields, F. J. & Mayfield, S. P. Chlamydomonas as a model for biofuels and bio-products production. Plant J. 82, 523–531 (2015).

    Google Scholar 

  28. Anthonisen, I. L., Salvador, M. L. & Klein, U. Specific sequence elements in the 5’ untranslated regions of rbcL and atpB gene mRNas stabilize transcripts in the chloroplast of Chlamydomonas reinhardtii. RNA 7, 1024–1033 (2001).

    Google Scholar 

  29. Cavaiuolo, M., Kuras, R., Wollman, F. A., Choquet, Y. Vallon, O. Small RNA profiling in Chlamydomonas: insights into chloroplast RNA metabolism. Nucleic Acids Res. 45, 10783–10799 (2017).

    Google Scholar 

  30. Loiselay, C. et al. Molecular identification and function of cis- and trans-acting determinants for petA transcript stability in Chlamydomonas reinhardtii chloroplasts. Mol. Cell Biol. 28, 5529–5542 (2008).

    Google Scholar 

  31. Johnson, X. et al. MRL1, a conserved Pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in chlamydomonas and arabidopsis. Plant Cell 22, 234–248 (2010).

    Google Scholar 

  32. Boudreau, E., Nickelsen, J., Lemaire, S. D., Ossenbühl, F. & Rochaix, J. D. The Nac2 gene of Chlamydomonas encodes a chloroplast TPR-like protein involved in psbD mRNA stability. Embo J. 19, 3366–3376 (2000).

    Google Scholar 

  33. Commault, A. S. et al. Methyl jasmonate treatment affects the regulation of the 2-C-methyl-D-erythritol 4-phosphate pathway and early steps of the triterpenoid biosynthesis in Chlamydomonas reinhardtii. Algal Res. 39, 101462 (2019).

    Google Scholar 

  34. Wang, R. et al. Isolation and functional characterization of bidirectional promoters in rice. Front Plant Sci. 7, 766 (2016).

    Google Scholar 

  35. In, S., Lee, H. A., Woo, J., Park, E. & Choi, D. Molecular characterization of a pathogen-inducible bidirectional promoter from hot pepper (Capsicum annuum). Mol. Plant Microbe Interact. 33, 1330–1339 (2020).

    Google Scholar 

  36. Liu, X. et al. The intergenic region of the maize defensin-like protein genes Def1 and Def2 functions as an embryo-specific asymmetric bidirectional promoter. J. Exp. Bot. 67, 4403–4413 (2016).

    Google Scholar 

  37. Thieffry, A. et al. Characterization of arabidopsis thaliana promoter bidirectionality and antisense RNAs by inactivation of nuclear RNA decay pathways. Plant Cell 32, 1845–1867 (2020).

    Google Scholar 

  38. Vogl, T. et al. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nat. Commun. 9, 3589 (2018).

    Google Scholar 

  39. Yang, S., Sleight, S. C. & Sauro, H. M. Rationally designed bidirectional promoter improves the evolutionary stability of synthetic genetic circuits. Nucleic Acids Res. 41, e33 (2013).

    Google Scholar 

  40. Kumar, S. et al. A combinatorial bidirectional and bicistronic approach for coordinated multi-gene expression in corn. Plant Mol. Biol. 87, 341–353 (2015).

    Google Scholar 

  41. Poliner, E., Clark, E., Cummings, C., Benning, C. & Farre, E. M. A high-capacity gene stacking toolkit for the oleaginous microalga, Nannochloropsis oceanica CCMP1779. Algal Res. 45, 101664 (2020).

    Google Scholar 

  42. Büschlen, S., Choquet, Y., Kuras, R. & Wollman, F.-A. Nucleotide sequences of the continuous and separated petA, petB and petD chloroplast genes in Chlamydomonas reinhardtii. FEBS Lett. 284, 257–262 (1991).

    Google Scholar 

  43. Sakamoto, W., Chen, X., Kindle, K. L. & Stern, D. B. Function of the Chlamydomonas reinhardtii petd 5’ untranslated region in regulating the accumulation of subunit IV of the cytochrome b6/f complex. Plant J. 6, 503–512 (1994).

    Google Scholar 

  44. Loizeau, K. et al. Small RNAs reveal two target sites of the RNA-maturation factor Mbb1 in the chloroplast of Chlamydomonas. Nucleic Acids Res. 42, 3286–3297 (2013).

    Google Scholar 

  45. Fong, S. E. & Surzycki, S. J. Organization and structure of plastome psbF, psbL, petG and ORF712 genes in Chlamydomonas reinhardtii. Curr. Genet. 21, 527–530 (1992).

    Google Scholar 

  46. Fong, S. E. & Surzycki, S. J. Chloroplast RNA polymerase genes of Chlamydomonas reinhardtii exhibit an unusual structure and arrangement. Curr. Genet 21, 485–497 (1992).

    Google Scholar 

  47. Solovyev, V. V. & Salamov, A. A. Recognition of 3'-processing sites of human mRNA precursors. Comput. Appl. Biosci. 13, 23–28 (1997).

  48. Ma, K., Deng, L., Wu, H. & Fan, J. Towards green biomanufacturing of high-value recombinant proteins using promising cell factory: chlamydomonas reinhardtii chloroplast. Bioresour. Bioprocess 9, 83 (2022).

    Google Scholar 

  49. Miro-Vinyals, B. et al. Chloroplast engineering of the green microalgae Chlamydomonas reinhardtii for the production of HAA, the lipid moiety of rhamnolipid biosurfactants. N. Biotechnol. 76, 1–12 (2023).

    Google Scholar 

  50. Di Rocco, G. et al. A PETase enzyme synthesised in the chloroplast of the microalga Chlamydomonas reinhardtii is active against post-consumer plastics. Sci. Rep. 13, 10028 (2023).

    Google Scholar 

  51. Barnes, D. et al. Contribution of 5’- and 3’-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol. Genet Genomics 274, 625–636 (2005).

    Google Scholar 

  52. Economou, C., Wannathong, T., Szaub, J. & Purton, S. A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii. Methods Mol. Biol. 1132, 401–411 (2014).

    Google Scholar 

  53. Nishimura, Y. & Stern, D. B. Differential replication of two chloroplast genome forms in heteroplasmic Chlamydomonas reinhardtii gametes contributes to alternative inheritance patterns. Genetics 185, 1167–1181 (2010).

    Google Scholar 

  54. Khan, A. et al. Plant synthetic promoters: advancement and prospective. Agriculture 13, 298 (2023).

    Google Scholar 

  55. Anwar, M., Wang, J., Li, J., Altaf, M. M. & Hu, Z. MYB transcriptional factors affects upstream and downstream MEP pathway and triterpenoid biosynthesis in chlamydomonas reinhardtii. Processes 12, 487 (2024).

    Google Scholar 

  56. Wasternack, C. & Hause, B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111, 1021–1058 (2013).

    Google Scholar 

  57. Goossens, J., Fernandez-Calvo, P., Schweizer, F. & Goossens, A. Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol. Biol. 91, 673–689 (2016).

    Google Scholar 

  58. Al Hoqani, U. H. A. Metabolic engineering of the algal chloroplast for terpenoid production. Doctoral thesis, UCL (University College London) (2017).

  59. Wichmann, J. et al. Farnesyl pyrophosphate compartmentalization in the green microalga Chlamydomonas reinhardtii during heterologous (E)-alpha-bisabolene production. Micro. Cell Fact. 21, 190 (2022).

    Google Scholar 

  60. Pérez-Martín, J. & de Lorenzo, V. Clues and consequences of DNA bending in transcription. Annu. Rev. Microbiol. 51, 593–628 (1997).

    Google Scholar 

  61. Summer, E. J., Schmid, V. H., Bruns, B. U. & Schmidt, G. W. Requirement for the H phosphoprotein in photosystem II of Chlamydomonas reinhardtii. Plant Physiol. 113, 1359–1368 (1997).

    Google Scholar 

  62. Torabi, S. et al. PsbN is required for assembly of the photosystem II reaction center in Nicotiana tabacum. Plant Cell 26, 1183–1199 (2014).

    Google Scholar 

  63. Rosales-Mendoza, S., Paz-Maldonado, L. M. T. & Soria-Guerra, R. E. Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. Plant Cell Rep. 31, 479–494 (2012).

    Google Scholar 

  64. Surzycki, R. et al. Factors effecting expression of vaccines in microalgae. Biologicals 37, 133–138 (2009).

    Google Scholar 

  65. Barnes, D. et al. Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol. Genet. Genomics 274, 625–636 (2005).

    Google Scholar 

  66. Wannathong, T., Waterhouse, J. C., Young, R. E., Economou, C. K. & Purton, S. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol. 100, 5467–5477 (2016).

    Google Scholar 

  67. Odom, O. W., Kang, S., Ferguson, C., Chen, C. & Herrin, D. L. Overcoming poor transgene expression in the wild-type chlamydomonas chloroplast: creation of highly mosquitocidal strains of chlamydomonas reinhardtii. Microorganisms 10, 1087 (2022).

    Google Scholar 

  68. Coragliotti, A. T., Beligni, M. V., Franklin, S. E. & Mayfield, S. P. Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii chloroplast. Mol. Biotechnol. 48, 60–75 (2011).

    Google Scholar 

  69. Barkan, A. Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol. 155, 1520–1532 (2011).

    Google Scholar 

  70. Kasai, S. et al. Effect of coding regions on chloroplast gene expression in Chlamydomonas reinhardtii. J. Biosci. Bioeng. 95, 276–282 (2003).

    Google Scholar 

  71. Kato, K., Ishikura, K., Kasai, S. & Shinmyo, A. Efficient translation destabilizes transcripts in chloroplasts of Chlamydomonas reinhardtii. J. Biosci. Bioeng. 101, 471–477 (2006).

    Google Scholar 

  72. Viola, S. et al. MDA1, a nucleus-encoded factor involved in the stabilization and processing of the atpA transcript in the chloroplast of Chlamydomonas. Plant J. 98, 1033–1047 (2019).

    Google Scholar 

  73. Eberhard, S. et al. Dual functions of the nucleus-encoded factor TDA1 in trapping and translation activation of atpA transcripts in Chlamydomonas reinhardtii chloroplasts. Plant J. 67, 1055–1066 (2011).

    Google Scholar 

  74. Chaux, F. et al. Chloroplast ATP synthase biogenesis requires peripheral stalk subunits AtpF and ATPG and stabilization of atpE mRNA by OPR protein MDE1. Plant J. 116, 1582–1599 (2023).

    Google Scholar 

  75. Anthonisen, I. L., Salvador, M. L. & Klein, U. W. E. Specific sequence elements in the 5′ untranslated regions of rbcL and atpB gene mRNAs stabilize transcripts in the chloroplast of Chlamydomonas reinhardtii. RNA 7, 1024–1033 (2001).

    Google Scholar 

  76. Hauser, C. R., Gillham, N. W. & Boynton, J. E. Translational regulation of chloroplast genes: proteins binding to the 5′-untranslated regions of chloroplast mrnas in chlamydomonas reinhardtii(∗). J. Biol. Chem. 271, 1486–1497 (1996).

    Google Scholar 

  77. Odom, O. W., Kang, S., Ferguson, C., Chen, C. & Herrin, D. L. Overcoming poor transgene expression in the wild-type chlamydomonas chloroplast: creation of highly mosquitocidal strains of chlamydomonas reinhardtii. Microorganisms 10 (2022). https://doi.org/10.3390/microorganisms10061087

  78. Miró-Vinyals, B. et al. Chloroplast engineering of the green microalgae Chlamydomonas reinhardtii for the production of HAA, the lipid moiety of rhamnolipid biosurfactants. N. Biotechnol. 76, 1–12 (2023).

    Google Scholar 

  79. Mordaka, P. M. et al. Regulation of nucleus-encoded trans-acting factors allows orthogonal fine-tuning of multiple transgenes in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol. J. 23, 1005–1018 (2025).

    Google Scholar 

  80. Kurowska, M. M. et al. Methyl Jasmonate Affects Photosynthesis Efficiency, Expression of HvTIP Genes and Nitrogen Homeostasis in Barley. Int J Mol Sci 21 (2020). https://doi.org/10.3390/ijms21124335

  81. Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M. & Turner, J. G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094 (1998).

    Google Scholar 

  82. Devoto, A. et al. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 32, 457–466 (2002).

    Google Scholar 

  83. Chini, A., Boter, M. & Solano, R. Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. FEBS J. 276, 4682–4692 (2009).

    Google Scholar 

  84. Staswick, P. E. JAZing up jasmonate signaling. Trends Plant Sci. 13, 66–71 (2008).

    Google Scholar 

  85. Fonseca, S., Chico, J. M. & Solano, R. The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr. Opin. Plant Biol. 12, 539–547 (2009).

    Google Scholar 

  86. Lohr, M., Schwender, J. & Polle, J. E. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci. 185-186, 9–22 (2012).

    Google Scholar 

  87. Higo, K., Ugawa, Y., Iwamoto, M. & Higo, H. PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res. 26, 358–359 (1998).

    Google Scholar 

  88. Jansen, R. K. et al. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol. 395, 348–384 (2005).

    Google Scholar 

  89. Barrera, D., Gimpel, J. & Mayfield, S. in Chloroplast Biotechnology: Methods and Protocols (ed Pal Maliga) 391-399 (Humana Press, 2014).

  90. Nouemssi, S. B. et al. Rapid and efficient colony-pcr for high throughput screening of genetically transformed chlamydomonas reinhardtii. Life 10, 186 (2020).

    Google Scholar 

  91. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Karen Cristine Goncalves dos Santos for her valuable technical advice and input during this study, and Melodie B. Plourde for her generous support and patience in assisting with confocal microscopy acquisition and analysis. During the preparation of this work, the authors used ChatGPT -4.0, a free AI language model, to correct grammatical errors and enhance readability. After using this tool, the authors reviewed and edited the content as needed and take full responsibility for the final version of this publication. This research was funded by Canada Research Chair on plant specialized metabolism Award No. CRC-2023 00353 to IDP. The authors extent their gratitude to the Canadian taxpayers and to the Canadian government for supporting the Canada Research Chairs Program. Additional funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) through award No. RGPIN/3218-2021 to IDP. This work was also supported by NSERC award No. EQPEQ 472990-2015 (Research tools and instruments program) for the acquisition of the qPCR system.

Author information

Authors and Affiliations

  1. Department of Biochemistry, Chemistry, Physics and Forensic Science, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada

    Arnold William Tazon, Natacha Mérindol, Elisa Fantino, Ayoub Bouhadada, Fatima Awwad, Fatma Meddeb-Mouelhi & Isabel Desgagné-Penix

Authors
  1. Arnold William Tazon
    View author publications

    Search author on:PubMed Google Scholar

  2. Natacha Mérindol
    View author publications

    Search author on:PubMed Google Scholar

  3. Elisa Fantino
    View author publications

    Search author on:PubMed Google Scholar

  4. Ayoub Bouhadada
    View author publications

    Search author on:PubMed Google Scholar

  5. Fatima Awwad
    View author publications

    Search author on:PubMed Google Scholar

  6. Fatma Meddeb-Mouelhi
    View author publications

    Search author on:PubMed Google Scholar

  7. Isabel Desgagné-Penix
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.W.T.: Conceptualization, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing-Original draft, Writing Reviewing and Editing; N.M.: Conceptualization, Formal analysis, Methodology, Project administration Supervision, Writing-Original draft, Writing Reviewing and Editing; E.F.: Formal analysis, Investigation, Methodology, Writing Reviewing and Editing; A.B.: Investigation, Methodology, Writing Reviewing and Editing; F.A.: Investigation, Writing Reviewing and Editing; F.M.-M.: Conceptualization, Methodology, Project administration, Writing Reviewing and Editing; I.D.P.: Conceptualization, Funding, acquisition, Methodology, Project administration, Resources, Supervision, Validation, Writing- Reviewing and Editing.

Corresponding author

Correspondence to Isabel Desgagné-Penix.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Bradley W. Abramson, Frédéric Chaux and Domitille Jarrige for their contribution to the peer review of this work. Primary Handling Editors: Leena Tripathi, George Inglis, and David Favero.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Description of additional supplementary files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tazon, A.W., Mérindol, N., Fantino, E. et al. Engineering bidirectional chloroplast promoters for tunable co-expression of multiple genes in microalgae (Chlamydomonas reinhardtii). Commun Biol (2026). https://doi.org/10.1038/s42003-025-09478-7

Download citation

  • Received: 20 May 2025

  • Accepted: 23 December 2025

  • Published: 03 January 2026

  • DOI: https://doi.org/10.1038/s42003-025-09478-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research