Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Effects of speech periodicity and speech rate on auditory-motor coupling during speech comprehension
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

Effects of speech periodicity and speech rate on auditory-motor coupling during speech comprehension

  • Sojeong Kwon  ORCID: orcid.org/0009-0009-4661-69631,2 na1,
  • Christina Lubinus1,2 na1,
  • Christian A. Kell  ORCID: orcid.org/0000-0002-6299-00762,
  • Anne Keitel  ORCID: orcid.org/0000-0003-4498-01463 na2 &
  • …
  • Johanna M. Rimmele  ORCID: orcid.org/0000-0002-2065-97721,2 na2 

Communications Biology , Article number:  (2026) Cite this article

  • 1209 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Language
  • Perception

Abstract

According to neural oscillatory accounts, periodicity at the syllabic scale enhances speech comprehension through theta brain rhythms. Natural speech, however, is not strictly periodic and stronger periodicity, such as under conditions of fast speech, may hinder comprehension. Using magnetoencephalography, we investigate how natural variation in syllabic-level periodicity affects comprehension and auditory-motor coupling in brain areas related to temporal speech processing. We model speech periodicity and rate independently. Theta-band phase coupling between the posterior superior temporal gyrus (pSTG) and speech motor areas is assessed using Gaussian-Copula Mutual Information (GCMI). We find that faster syllabic rates and lower periodicity are associated with stronger coupling between the pSTG and inferior precentral gyrus, but also inferior frontal gyrus and supplementary motor areas. Comprehension improves with lower periodicity and declines at faster rates. The syllabic rate and periodicity moderate the coupling-comprehension relationship, possibly reflecting a complex interplay of lower-level auditory processing and higher-level prediction from the speech motor cortices. These findings suggest a sweet spot for natural, less periodic speech rhythms that support optimal processing and emphasize the necessity to investigate natural speech.

Similar content being viewed by others

Mu rhythm motor–auditory delay in imagined speech mirrors overt speech timing

Article Open access 28 January 2026

Evaluating the temporal order of motor and auditory systems in speech production using intracranial EEG

Article Open access 08 October 2025

Auditory-motor synchronization and perception suggest partially distinct time scales in speech and music

Article Open access 03 January 2024

Data availability

The anonymized preprocessed MEG and behavioral data are available on the Open Science Framework (OSF) as stated in Lubinus et al. 91. Due to restrictions, the pseudonymized raw MRI and MEG data, as well as the unprocessed stimulus material, are not publicly available. The data required to reproduce the results are available on OSF107.

Code availability

All custom code central to the conclusions is available on OSF107.

References

  1. Ahissar, E. et al. Speech comprehension is correlated with temporal response patterns recorded from the auditory cortex. Proc. Natl. Acad. Sci. USA 98, 13367–13372 (2001).

    Google Scholar 

  2. Goswami, U. & Leong, V. Speech rhythm and temporal structure: Converging perspectives? Lab. Phonol. 4, 67–92 (2013).

    Google Scholar 

  3. Greenberg, S., Arai, T. & Silipo, R. Speech intelligibility derived from exceedingly sparse spectral information. In Proc. 5th International Conference on Spoken Language Processing, ICSLP 1998 https://doi.org/10.21437/ICSLP.1998-473 (1998).

  4. Greenberg, S., Carvey, H., Hitchcock, L. & Chang, S. Temporal properties of spontaneous speech—a syllable-centric perspective. J. Phon. 31, 465–485 (2003).

    Google Scholar 

  5. Shannon, R. V., Zeng, F.-G., Kamath, V., Wygonski, J. & Ekelid, M. Speech recognition with primarily temporal cues. Science 270, 303–304 (1995).

    Google Scholar 

  6. Ghitza, O. & Greenberg, S. On the possible role of brain rhythms in speech perception: intelligibility of time-compressed speech with periodic and aperiodic insertions of silence. Phonetica 66, 113–126 (2009).

    Google Scholar 

  7. Ten Oever, S. & Martin, A. E. An oscillating computational model can track pseudo-rhythmic speech by using linguistic predictions. ELife 10, e68066 (2021).

  8. Dellwo, V., Leemann, A., Kolly, M.-J. & Kolly, M.-J. Rhythmic variability between speakers: articulatory, prosodic, and linguistic factors. J. Acoust. Soc. Am. 137, 1513–1528 (2015).

    Google Scholar 

  9. Goswami, U. Language acquisition and speech rhythm patterns: an auditory neuroscience perspective. R. Soc. Open Sci. 9, 211855 (2022).

  10. Varnet, L. et al. A cross-linguistic study of speech modulation spectra. J. Acoust. Soc. Am. 142, 1976–1989 (2017).

    Google Scholar 

  11. Dellwo, V. & Szigeti, I. Rhythm And Speech Rate: A Variation Coefficient for Deltac (Peter Lang, 2006).

  12. Dellwo, V., Wagner, P., Solé, M. J., Recasens, D. & Romero, J. Relations between language rhythm and speech rate. In Proceedings of the International Congress of Phonetic Sciences, 471–474 (International Phonetic Association, 2003).

  13. Quené, H. & Port, R. F. Effects of timing regularity and metrical expectancy on spoken-word perception. Phonetica 62, 1–13 (2005).

    Google Scholar 

  14. Robson, H., Thomasson, H., Upton, E., Leff, A. P. & Davis, M. H. The impact of speech rhythm and rate on comprehension in aphasia. Cortex 180, 126–146 (2024).

    Google Scholar 

  15. Aubanel, V., Davis, C. & Kim, J. Exploring the role of brain oscillations in speech perception in noise: Intelligibility of isochronously retimed speech. Front. Hum. Neurosci. 10, 195284 (2016).

    Google Scholar 

  16. Aubanel, V. & Schwartz, J. L. The role of isochrony in speech perception in noise. Sci. Rep. 10, 19580 (2020).

    Google Scholar 

  17. Ghitza, O. On the role of theta-driven syllabic parsing in decoding speech: Intelligibility of speech with a manipulated modulation spectrum. Front. Psychol. 3, 29386 (2012).

    Google Scholar 

  18. Ghitza, O. Linking speech perception and neurophysiology: speech decoding guided by cascaded oscillators locked to the input rhythm. Front. Psychol. 2, 9259 (2011).

    Google Scholar 

  19. Giraud, A. L. & Poeppel, D. Cortical oscillations and speech processing: emerging computational principles and operations. Nat. Neurosci. 15, 511–517 (2012).

    Google Scholar 

  20. Gross, J. et al. Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLoS Biol. 11, e1001752 (2013).

    Google Scholar 

  21. Schroeder, C. E. & Lakatos, P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 32, 9–18 (2009).

    Google Scholar 

  22. Lakatos, P. et al. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J. Neurophysiol. 94, 1904–1911 (2005).

    Google Scholar 

  23. Ding, N., Melloni, L., Zhang, H., Tian, X. & Poeppel, D. Cortical tracking of hierarchical linguistic structures in connected speech. Nat. Neurosci. 19, 158–164 (2015).

    Google Scholar 

  24. Doelling, K. B., Arnal, L. H., Ghitza, O. & Poeppel, D. Acoustic landmarks drive delta–theta oscillations to enable speech comprehension by facilitating perceptual parsing. NeuroImage 85, 761–768 (2014).

    Google Scholar 

  25. Luo, H. & Poeppel, D. Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 54, 1001–1010 (2007).

    Google Scholar 

  26. Schönwiesner, M. & Zatorre, R. J. Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI. Proc. Natl. Acad. Sci. USA 106, 14611–14616 (2009).

    Google Scholar 

  27. Oderbolz, C., Stark, E., Sauppe, S. & Meyer, M. Concurrent processing of the prosodic hierarchy is supported by cortical entrainment and phase-amplitude coupling. Cereb. Cortex 34, bhae479 (2024).

  28. Large, E. W. & Jones, M. R. The dynamics of attending: how people track time-varying events. Psychol. Rev. 106, 119–159 (1999).

    Google Scholar 

  29. Solli, S. et al. Rhythm-based temporal expectations: unique contributions of predictability and periodicity. J. Cogn. Neurosci. 1–27 https://doi.org/10.1162/JOCN_A_02261. (2024).

  30. Morillon, B. & Baillet, S. Motor origin of temporal predictions in auditory attention. Proc. Natl. Acad. Sci. USA 114, E8913–E8921 (2017).

    Google Scholar 

  31. Keitel, A., Gross, J. & Kayser, C. Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. PLoS Biol. 16, e2004473 (2018).

    Google Scholar 

  32. Lamekina, Y., Titone, L., Maess, B. & Meyer, L. Speech prosody serves temporal prediction of language via contextual entrainment. J. Neurosci. 44, e1041232024 (2024).

  33. Gehrig, J. et al. Left perisylvian rhythms encode prosody and syntax during delayed sentence repetition. J. Neurosci. e2160242025 https://doi.org/10.1523/JNEUROSCI.2160-24.2025 (2025).

  34. Arnal, L. H. & Giraud, A. L. Cortical oscillations and sensory predictions. Trends Cogn. Sci. 16, 390–398 (2012).

    Google Scholar 

  35. Park, H., Thut, G. & Gross, J. Predictive entrainment of natural speech through two fronto-motor top-down channels. Lang., Cogn. Neurosci. 35, 739 (2020).

    Google Scholar 

  36. Rimmele, J. M., Morillon, B., Poeppel, D. & Arnal, L. H. Proactive sensing of periodic and aperiodic auditory patterns. Trends Cogn. Sci. 22, 870–882 (2018).

    Google Scholar 

  37. Assaneo, M. F., Rimmele, J. M., Sanz Perl, Y. & Poeppel, D. Speaking rhythmically can shape hearing. Nat. Hum. Behav. 5, 71–82 (2021).

    Google Scholar 

  38. Assaneo, M. F. & Poeppel, D. The coupling between auditory and motor cortices is rate-restricted: evidence for an intrinsic speech-motor rhythm. Sci. Adv. 4, eaao3842 (2018).

  39. Park, H., Ince, R. A. A., Schyns, P. G., Thut, G. & Gross, J. Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners. Curr. Biol. 25, 1649–1653 (2015).

    Google Scholar 

  40. Keitel, A. & Gross, J. Individual human brain areas can be identified from their characteristic spectral activation fingerprints. PLoS Biol. 14, e1002498 (2016).

    Google Scholar 

  41. Lubinus, C. et al. Data-driven classification of spectral profiles reveals brain region-specific plasticity in blindness. Cereb. Cortex 31, 2505–2522 (2021).

    Google Scholar 

  42. Morillon, B., Arnal, L. H., Schroeder, C. E. & Keitel, A. Prominence of delta oscillatory rhythms in the motor cortex and their relevance for auditory and speech perception. Neurosci. Biobehav. Rev. 107, 136–142 (2019).

    Google Scholar 

  43. Pefkou, M., Arnal, L. H., Fontolan, L. & Giraud, A. L. θ-Band and β-band neural activity reflects independent syllable tracking and comprehension of time-compressed speech. J. Neurosci. 37, 7930–7938 (2017).

    Google Scholar 

  44. Wang, L. et al. Beta oscillations relate to the N400m during language comprehension. Hum. Brain Mapp. 33, 2898–2912 (2012).

    Google Scholar 

  45. Arnal, L. H., Doelling, K. B. & Poeppel, D. Delta–beta coupled oscillations underlie temporal prediction accuracy. Cereb. Cortex 25, 3077–3085 (2015).

    Google Scholar 

  46. Wilson, S. M., Saygin, A. P., Sereno, M. I. & Iacoboni, M. Listening to speech activates motor areas involved in speech production. Nat. Neurosci. 7, 701–702 (2004).

    Google Scholar 

  47. Grahn, J. A. & Brett, M. Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci. 19, 893–906 (2007).

    Google Scholar 

  48. Hoddinott, J. D. & Grahn, J. A. Neural representations of beat and rhythm in motor and association regions. Cereb. Cortex 34, bhae406 (2024).

  49. Hickok, G. & Poeppel, D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92, 67–99 (2004).

    Google Scholar 

  50. Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).

    Google Scholar 

  51. Broadmann, K. Vergleichende lokalisationslehre der grosshirnrinde. Comparative Study of Localization in the Cerebral Cortex (Barth, 1909).

  52. Khalighinejad, B. et al. Functional characterization of human Heschl’s gyrus in response to natural speech. NeuroImage 235, 118003 (2021).

    Google Scholar 

  53. Yousry, T. A., Fesl, G., Buttner, A., Noachtar, S. & Schmid, U. D. Heschl's gyrus-Anatomic description and methods of identification on magnetic resonance imaging. Int. J. Neuroradiol. 3, 2–12 (1997).

  54. Blumstein, S. E., Baker, E. & Goodglass, H. Phonological factors in auditory comprehension in aphasia. Neuropsychologia 15, 19–30 (1977).

    Google Scholar 

  55. Wernicke, C. Der aphasische Symptomenkomplex. Der aphasische Symptomenkomplex https://doi.org/10.1007/978-3-642-65950-8 (1974).

  56. Kaas, J. H. & Hackett, T. A. ‘What’ and ‘where’ processing in auditory cortex. Nat. Neurosci. 2, 1045–1047 (1999).

    Google Scholar 

  57. Rauschecker, J. P. Cortical processing of complex sounds. Curr. Opin. Neurobiol. 8, 516–521 (1998).

    Google Scholar 

  58. Romanski, L. M. et al. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat. Neurosci. 2, 1131–1136 (1999).

    Google Scholar 

  59. Hickok, G. & Poeppel, D. Towards a functional neuroanatomy of speech perception. Trends Cogn. Sci. 4, 131–138 (2000).

    Google Scholar 

  60. Saura, D. et al. Ventral and dorsal pathways for language. Proc. Natl. Acad. Sci. USA 105, 18035–18040 (2008).

    Google Scholar 

  61. Tourville, J. A. & Guenther, F. H. The DIVA model: a neural theory of speech acquisition and production. Lang. Cogn. Process. 26, 952–981 (2011).

    Google Scholar 

  62. Clos, M. et al. Effects of prior information on decoding degraded speech: an fMRI study. Hum. Brain Mapp. 35, 61–74 (2014).

    Google Scholar 

  63. D’Ausilio, A., Bufalari, I., Salmas, P. & Fadiga, L. The role of the motor system in discriminating normal and degraded speech sounds. Cortex 48, 882–887 (2012).

    Google Scholar 

  64. Glanz, O. et al. Real-life speech production and perception have a shared premotor-cortical substrate. Sci. Rep. 8, 1–14 (2018).

    Google Scholar 

  65. Morillon, B., Schroeder, C. E. & Wyart, V. Motor contributions to the temporal precision of auditory attention. Nat. Commun. 5, 1–9 (2014).

    Google Scholar 

  66. Möttönen, R., Dutton, R. & Watkins, K. E. Auditory-motor processing of speech sounds. Cereb. Cortex 23, 1190–1197 (2013).

    Google Scholar 

  67. Oliveira, D. S. et al. Mu rhythm dynamics suggest automatic activation of motor and premotor brain regions during speech processing. J. Neurolinguist. 60, 101006 (2021).

    Google Scholar 

  68. Onojima, T., Kitajo, K. & Mizuhara, H. Ongoing slow oscillatory phase modulates speech intelligibility in cooperation with motor cortical activity. PLoS ONE 12, e0183146 (2017).

    Google Scholar 

  69. Riecker, A., Brendel, B., Ziegler, W., Erb, M. & Ackermann, H. The influence of syllable onset complexity and syllable frequency on speech motor control. Brain Lang. 107, 102–113 (2008).

    Google Scholar 

  70. Stokes, R. C., Venezia, J. H. & Hickok, G. The motor system’s [modest] contribution to speech perception. Psychon. Bull. Rev. 26, 1354–1366 (2019).

    Google Scholar 

  71. Vukovic, N., Feurra, M., Shpektor, A., Myachykov, A. & Shtyrov, Y. Primary motor cortex functionally contributes to language comprehension: an online rTMS study. Neuropsychologia 96, 222–229 (2017).

    Google Scholar 

  72. Geiser, E., Zaehle, T., Jancke, L. & Meyer, M. The neural correlate of speech rhythm as evidenced by metrical speech processing. J. Cogn. Neurosci. 20, 541–552 (2008).

    Google Scholar 

  73. Keitel, A., Ince, R. A. A., Gross, J. & Kayser, C. Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks. NeuroImage 147, 32–42 (2017).

    Google Scholar 

  74. Bengtsson, S. L. et al. Listening to rhythms activates motor and premotor cortices. Cortex 45, 62–71 (2009).

    Google Scholar 

  75. Chen, J. L., Penhune, V. B. & Zatorre, R. J. Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex 18, 2844–2854 (2008).

    Google Scholar 

  76. Ding, N. & Simon, J. Z. Emergence of neural encoding of auditory objects while listening to competing speakers. Proc. Natl. Acad. Sci. USA 109, 11854–11859 (2012).

    Google Scholar 

  77. Peelle, J. E., Gross, J. & Davis, M. H. Phase-locked responses to speech in human auditory cortex are enhanced during comprehension. Cereb. Cortex 23, 1378–1387 (2013).

    Google Scholar 

  78. Zion Golumbic, E. M. et al. Mechanisms underlying selective neuronal tracking of attended speech at a ‘cocktail party. Neuron 77, 980–991 (2013).

    Google Scholar 

  79. Pittman-Polletta, B. R. et al. Differential contributions of synaptic and intrinsic inhibitory currents to speech segmentation via flexible phase-locking in neural oscillators. PLoS Comput. Biol. 17, e1008783 (2021).

    Google Scholar 

  80. Poeppel, D. & Assaneo, M. F. Speech rhythms and their neural foundations. Nat. Rev. Neurosci. 21, 322–334 (2020).

    Google Scholar 

  81. Mita, A., Mushiake, H., Shima, K., Matsuzaka, Y. & Tanji, J. Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat. Neurosci.12, 502–507 (2009).

    Google Scholar 

  82. Schwartze, M., Rothermich, K. & Kotz, S. A. Functional dissociation of pre-SMA and SMA-proper in temporal processing. NeuroImage 60, 290–298 (2012).

    Google Scholar 

  83. Hertrich, I., Dietrich, S. & Ackermann, H. The role of the supplementary motor area for speech and language processing. Neurosci. Biobehav. Rev. 68, 602–610 (2016).

    Google Scholar 

  84. Brungart, D. S. Informational and energetic masking effects in the perception of two simultaneous talkers. J. Acoust. Soc. Am. 109, 1101–1109 (2001).

    Google Scholar 

  85. Lubinus, C., Keitel, A., Obleser, J., Poeppel, D. & Rimmele, J. M. Explaining flexible continuous speech comprehension from individual motor rhythms. Proc. R. Soc. B 290, 20222410 (2023).

  86. Nourski, K. V. et al. Temporal envelope of time-compressed speech represented in the human auditory cortex. J. Neurosci. 29, 15564–15574 (2009).

    Google Scholar 

  87. Murakami, T., Kell, C. A., Restle, J., Ugawa, Y. & Ziemann, U. Left dorsal speech stream components and their contribution to phonological processing. J. Neurosci. 35, 1411–1422 (2015).

    Google Scholar 

  88. Kern, P., Assaneo, M. F., Endres, D., Poeppel, D. & Rimmele, J. M. Preferred auditory temporal processing regimes and auditory-motor synchronization. Psychon. Bull. Rev. 28, 1860 (2021).

    Google Scholar 

  89. Baayen, R. H., Davidson, D. J. & Bates, D. M. Mixed-effects modeling with crossed random effects for subjects and items. J. Mem. Lang. 59, 390–412 (2008).

    Google Scholar 

  90. Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem. Lang. 68, 255–278 (2013).

    Google Scholar 

  91. Lubinus, C., Keitel, A., Obleser, J., Poeppel, D. & Rimmele, J. M. Endogenous auditory and motor brain rhythms predict individual speech tracking. Preprint at https://doi.org/10.1101/2025.03.24.644939 (2025).

  92. Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Google Scholar 

  93. Charpentier, F. Traitement de la parole par analyse-synthèse de Fourier: Application à la synthèse par diphones (Doctoral dissertation, Paris, ENST, 1988).

  94. Moulines, E. & Charpentier, F. Pitch-synchronous waveform processing techniques for text-to-speech synthesis using diphones. Speech Commun. 9, 453–467 (1990).

    Google Scholar 

  95. Keitel, A. et al. Cortical and behavioral tracking of rhythm in music: Effects of pitch predictability, enjoyment, and expertise. Ann. N.Y. Acad. Sci. 1546, 120–135 (2025).

    Google Scholar 

  96. Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).

    Google Scholar 

  97. de Jong, N. H., Pacilly, J. & Heeren, W. PRAAT scripts to measure speed fluency and breakdown fluency in speech automatically. Assess. Educ. Princ. Policy Pract. 28, 456–476 (2021).

    Google Scholar 

  98. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J. M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell. Neurosci. 2011, 156869 (2011).

    Google Scholar 

  99. Makeig, S., Jung, T.-P., Bell, A. J. & Sejnowski, T. J. Independent component analysis of electroencephalographic data. Adv. Neural Inf. Process. Syst. 8, 145–151 (1995).

  100. Nolte, G. et al. Robustly estimating the flow direction of information in complex physical systems. Phys. Rev. Lett. 100, 234101 (2008).

    Google Scholar 

  101. Westner, B. U. et al. A unified view on beamformers for M/EEG source reconstruction. NeuroImage 246, 118789 (2022).

    Google Scholar 

  102. Bear, M., Connors, B. & Paradiso, M. A. Neuroscience: Exploring the Brain, Enhanced Edition: Exploring the Brain (Jones & Bartlett Learning, 2020).

  103. Chalas, N. et al. Multivariate analysis of speech envelope tracking reveals coupling beyond auditory cortex. NeuroImage 258, 119395 (2022).

    Google Scholar 

  104. Gross, J. et al. Comparison of undirected frequency-domain connectivity measures for cerebro-peripheral analysis. NeuroImage 245, 118660 (2021).

    Google Scholar 

  105. De Clercq, P., Vanthornhout, J., Vandermosten, M. & Francart, T. Beyond linear neural envelope tracking: a mutual information approach. J. Neural Eng. 20, 026007 (2023).

    Google Scholar 

  106. Demirkale, C. Y., Nettleton, D. & Maiti, T. <strong>Linear mixed model selection for false discovery rate control in microarray data analysis</strong>. Biometrics 66, 621–629 (2010).

    Google Scholar 

  107. Kwon, S. Effects of speech periodicity and speech rate on auditory–motor coupling during speech comprehension. Preprint at: https://doi.org/10.17605/OSF.IO/ZDNFV (2025).

Download references

Acknowledgements

We thank the Max Planck Institute for Empirical Aesthetics for funding this project. We thank Dr. Klaus Frieler for valuable advice on statistical analysis. AK is supported by the Medical Research Council (grant number MR/W02912X/1).

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Author notes
  1. These authors contributed equally: Sojeong Kwon, Christina Lubinus.

  2. These authors jointly supervised this work: Anne Keitel, Johanna M. Rimmele.

Authors and Affiliations

  1. Department of Cognitive Neuropsychology, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany

    Sojeong Kwon, Christina Lubinus & Johanna M. Rimmele

  2. Cooperative Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany

    Sojeong Kwon, Christina Lubinus, Christian A. Kell & Johanna M. Rimmele

  3. Psychology Division, University of Dundee, Dundee, UK

    Anne Keitel

Authors
  1. Sojeong Kwon
    View author publications

    Search author on:PubMed Google Scholar

  2. Christina Lubinus
    View author publications

    Search author on:PubMed Google Scholar

  3. Christian A. Kell
    View author publications

    Search author on:PubMed Google Scholar

  4. Anne Keitel
    View author publications

    Search author on:PubMed Google Scholar

  5. Johanna M. Rimmele
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.K.: conceptualization, data curation, formal analysis, methodology, software, visualization, writing—original draft, review and editing; C.L.: data curation, investigation, methodology, project administration, software, writing—review and editing; C.A.K.: methodology, writing—review and editing; A.K.: methodology, visualization, writing—review and editing; J.M.R.: conceptualization, supervision, resources, methodology, writing—original draft, review and editing.

Corresponding authors

Correspondence to Sojeong Kwon or Johanna M. Rimmele.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Benedikt Zoefel and the other anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Helen Blank and Jasmine Pan. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

reporting summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, S., Lubinus, C., Kell, C.A. et al. Effects of speech periodicity and speech rate on auditory-motor coupling during speech comprehension. Commun Biol (2026). https://doi.org/10.1038/s42003-025-09481-y

Download citation

  • Received: 29 January 2025

  • Accepted: 23 December 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s42003-025-09481-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing