Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Pathogen promotes insect ovarian development by inducing a dual role of host ATPSyn-β
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

Pathogen promotes insect ovarian development by inducing a dual role of host ATPSyn-β

  • Chenyang Yuan  ORCID: orcid.org/0009-0000-5582-13061,2,
  • Tianyuan Liu1,2,
  • Jiayao Fan1,2,
  • Ning Wang1,2,
  • Yingzhe Yuan3,
  • Tao Peng3,
  • Yuxi Zhou1,2,
  • Long Yi4,
  • Wei Dou  ORCID: orcid.org/0000-0002-9678-54251,2 &
  • …
  • Jinjun Wang  ORCID: orcid.org/0000-0002-8777-52681,2 

Communications Biology , Article number:  (2026) Cite this article

  • 1035 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Coevolution
  • Entomology

Abstract

Candidatus Liberibacter asiaticus (CLas), a pathogenic bacterium causing citrus Huanglongbing, forms a mutualistic relationship with the Asian citrus psyllid, Diaphorina citri. However, the underlying molecular mechanisms remain unclear. We find that CLas enhances the development of testes, ovaries, and mating behavior in D. citri. Transcriptome analysis of ovaries reveals that CLas infection upregulates ATP synthesis genes, increasing ATP levels in D. citri. Silencing the ATPSyn-β gene expression reduces ATP content in the ovary and triglyceride and glycogen content in the fat body, thus decreasing ovarian development, mating, and oviposition. ATPSyn-β localizes to the oocyte cell membrane interacts with vitellogenin (Vg), suggesting that it facilitates Vg entry into ovaries. In conclusion, CLas promotes ovarian development in D. citri by upregulating ATPSyn-β, which supports energy production and nutrient supply. This study provides valuable insights into CLas and may inform novel strategies to control citrus Huanglongbing by reducing D. citri populations.

Similar content being viewed by others

Continuous cell lines derived from the Asian citrus psyllid, Diaphorina citri, harbor viruses and Wolbachia

Article Open access 02 January 2025

Effects of Candidatus Liberibacter asiaticus infection on metagenome of Diaphorina citri gut endosymbiont

Article Open access 21 July 2023

The greening-causing agent alters the behavioral and electrophysiological responses of the Asian citrus psyllid to a putative sex pheromone

Article Open access 03 January 2024

Data availability

Sequencing data have been uploaded to SRA database under PRJNA1138797. Source data underlying graphs can be obtained from Supplementary data 1. All other data are available from the corresponding author (or other sources, as applicable) on reasonable request.

References

  1. Jose, P. A., Ben-Yosef, M., Jurkevitch, E. & Yuval, B. Symbiotic bacteria affect oviposition behavior in the olive fruit fly Bactrocera oleae. J. Insect Physiol. 117, 103917 (2019).

    Google Scholar 

  2. Lee, J. et al. Burkholderia gut symbiont modulates titer of specific juvenile hormone in the bean bug Riptortus pedestris. Dev. Comp. Immunol. 99, 103399 (2019).

    Google Scholar 

  3. Ju, J. F. et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. Isme J. 14, 676–687 (2020).

    Google Scholar 

  4. Michalkova, V., Benoit, J. B., Weiss, B. L., Attardo, G. M. & Aksoy, S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl. Environ. Microbiol. 80, 5844–5853 (2014).

    Google Scholar 

  5. Wang, Y. B. et al. Intracellular symbionts drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins. Isme J. 14, 2923–2935 (2020).

    Google Scholar 

  6. Li, H. W. et al. The influence of gut microbiota on the fecundity of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). J. Insect Sci. 21, 15 (2021).

    Google Scholar 

  7. Eigenbrode, S. D., Bosque-Pérez, N. A. & Davis, T. S. Insect-borne plant pathogens and their vectors: ecology, evolution, and complex interactions. Annu. Rev. Entomol. 63, 169–191 (2018).

    Google Scholar 

  8. Gross, J., Gallinger, J. & Görg, L. M. Interactions between phloem-restricted bacterial plant pathogens, their vector insects, host plants, and natural enemies, mediated by primary and secondary plant metabolites. Entomol. Gen. 42, 185–215 (2022).

    Google Scholar 

  9. Guo, J. Y. et al. Enhanced vitellogenesis in a whitefly via feeding on a Begomovirus-infected plant. PLoS One 7, e43567 (2012).

    Google Scholar 

  10. Guo, J. Y., Ye, G. Y., Dong, S. Z. & Liu, S. S. An invasive whitefly feeding on a virus-infected plant increased its egg production and realized fecundity. PLoS One 5, e11713 (2010).

    Google Scholar 

  11. Stafford, C. A., Walker, G. P. & Ullman, D. E. Infection with a plant virus modifies vector feeding behavior. Proc. Natl. Acad. Sci. USA 108, 9350–9355 (2011).

    Google Scholar 

  12. Mao, Q. Z. et al. Viral pathogens hitchhike with insect sperm for paternal transmission. Nat. Commun. 10, 955 (2019).

    Google Scholar 

  13. Wang, S. F., Guo, H. J., Ge, F. & Sun, Y. C. Apoptotic neurodegeneration in whitefly promotes the spread of TYLCV. Elife 9, e56168 (2020).

    Google Scholar 

  14. Wang, Y. M. et al. A balance between vector survival and virus transmission is achieved through JAK/STAT signaling inhibition by a plant virus. Proc. Natl. Acad. Sci. USA 119, e2122099119 (2022).

    Google Scholar 

  15. Cui, C. L. et al. A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection. Nat. Commun. 10, 4298 (2019).

    Google Scholar 

  16. Frias, A., Ibanez, F., Mendoza, A., Carvalho Nunes, W. M. & Tamborindeguy, C. Effects of “Candidatus Liberibacter solanacearum” (haplotype B) on Bactericera cockerelli fitness and vitellogenesis. Insect Sci. 27, 58–68 (2020).

    Google Scholar 

  17. Grafton-Cardwell, E. E., Stelinski, L. L. & Stansly, P. A. Biology and management of Asian citrus psyllid, vector of the Huanglongbing pathogens. Annu. Rev. Entomol. 58, 413–432 (2013).

    Google Scholar 

  18. Pelz-Stelinski, K. S. & Killiny, N. Better together: association with ‘Candidatus Liberibacter Asiaticus’ increases the reproductive fitness of its insect vector, Diaphorina citri (Hemiptera: Liviidae). Ann. Entomol. Soc. Am. 109, 371–376 (2016).

    Google Scholar 

  19. Ren, S. L. et al. Effects of Candidatus Liberibacter asiaticus on the fitness of the vector Diaphorina citri. J. Appl. Microbiol. 121, 1718–1726 (2016).

    Google Scholar 

  20. Wu, F. N. et al. Host plant-mediated interactions between ‘Candidatus Liberibacter asiaticus’ and its vector Diaphorina citri Kuwayama (Hemiptera: Liviidae). J. Econ. Entomol. 111, 2038–2045 (2018).

    Google Scholar 

  21. Nian, X. G. et al. Infection with ‘Candidatus Liberibacter asiaticus’ improves the fecundity of Diaphorina citri aiding its proliferation: a win-win strategy. Mol. Ecol. 33, e17214 (2024).

    Google Scholar 

  22. Killiny, N., Hijaz, F., Ebert, T. A. & Rogers, M. E. A plant bacterial pathogen manipulates its insect vector’s energy metabolism. Appl. Environ. Microbiol. 83, e03005–e03016 (2017).

    Google Scholar 

  23. Killiny, N., Nehela, Y., Hijaz, F. & Vincent, C. I. A plant pathogenic bacterium exploits the tricarboxylic acid cycle metabolic pathway of its insect vector. Virulence 9, 99–109 (2018).

    Google Scholar 

  24. Yuan, C. Y. et al. Candidatus Liberibacter asiaticus influences the emergence of the Asian citrus psyllid Diaphorina citri by regulating key cuticular proteins. Insect Sci. 32, 501–514 (2024).

    Google Scholar 

  25. Galetto, L. et al. Silencing of ATP synthase β induces female sterility in a leafhopper phytoplasma vector. Entomol. Gen. 41, 497–510 (2021).

    Google Scholar 

  26. Ripamonti, M. et al. Silencing of ATP synthase β impairs egg development in the leafhopper Scaphoideus titanus, vector of the phytoplasma associated with grapevine Flavescence dorée. Int. J. Mol. Sci. 23, 765 (2022).

    Google Scholar 

  27. Abbà, S., Galetto, L., Ripamonti, M., Rossi, M. & Marzachì, C. RNA interference of muscle actin and ATP synthase beta increases mortality of the phytoplasma vector Euscelidius variegatus. Pest. Manag. Sci. 75, 1425–1434 (2019).

    Google Scholar 

  28. Vahling, C. M., Duan, Y. P. & Lin, H. Characterization of an ATP translocase identified in the destructive plant pathogen “Candidatus Liberibacter asiaticus. J. Bacteriol. 192, 834–840 (2010).

    Google Scholar 

  29. Darolt, J. C. et al. The genome of “Candidatus Liberibacter asiaticus” is highly transcribed when infecting the gut of Diaphorina citri. Front. Microbiol. 12, 687725 (2021).

    Google Scholar 

  30. Fruttero, L. L., Demartini, D. R., Rubiolo, E. R., Carlini, C. R. & Canavoso, L. E. β-chain of ATP synthase as a lipophorin binding protein and its role in lipid transfer in the midgut of Panstrongylus megistus (Hemiptera: Reduviidae). Insect Biochem. Mol. Biol. 52, 1–12 (2014).

    Google Scholar 

  31. Fruttero, L. L. et al. The fat body of the hematophagous insect, Panstrongylus megistus (Hemiptera: Reduviidae): Histological features and participation of the β-chain of ATP synthase in the lipophorin-mediated lipid transfer. J. Insect Sci. 19, 16 (2019).

    Google Scholar 

  32. Fruttero, L. L. et al. The process of lipid storage in insect oocytes: The involvement of β-chain of ATP synthase in lipophorin-mediated lipid transfer in the chagas’ disease vector Panstrongylus megistus (Hemiptera: Reduviidae). J. Insect Physiol. 96, 82–92 (2017).

    Google Scholar 

  33. Almeida-Oliveira, F. et al. ATP synthase affects lipid metabolism in the kissing bug Rhodnius prolixus beyond its role in energy metabolism. Insect Biochem. Mol. Biol. 158, 103956 (2023).

    Google Scholar 

  34. Wei, J. et al. Vector development and vitellogenin determine the transovarial transmission of begomoviruses. Proc. Natl. Acad. Sci. USA 114, 6746–6751 (2017).

    Google Scholar 

  35. Zhao, J. et al. A vector whitefly endocytic receptor facilitates the entry of begomoviruses into its midgut cells via binding to virion capsid proteins. PLoS Pathog. 16, e1009053 (2020).

    Google Scholar 

  36. Kelley, A. J. & Pelz-Stelinski, K. S. Maternal contribution of Candidatus Liberibacter asiaticus to Asian citrus psyllid (Hemiptera: Liviidae) nymphs through oviposition site inoculation and transovarial transmission. J. Econ. Entomol. 112, 2565–2568 (2019).

    Google Scholar 

  37. Mann, M. et al. Diaphorina citri nymphs are resistant to morphological changes induced by “Candidatus Liberibacter asiaticus” in midgut epithelial cells. Infect. Immun. 86, e00889–17 (2018).

    Google Scholar 

  38. Lopes, S. A. & Cifuentes-Arenas, J. C. Protocol for successful transmission of “Candidatus Liberibacter asiaticus” from citrus to citrus using Diaphorina citri. Phytopathology 111, 2367–2374 (2021).

    Google Scholar 

  39. Fan, J. Y. et al. Body color plasticity of Diaphorina citri reflects a response to environmental stress. Insect Sci. 31, 937–952 (2024).

    Google Scholar 

  40. Yuan, C. Y. et al. NADPH-cytochrome P450 reductase mediates the susceptibility of Asian citrus psyllid Diaphorina citri to imidacloprid and thiamethoxam. Pest. Manag. Sci. 77, 677–685 (2021).

    Google Scholar 

  41. Lu, X. Y. et al. AMPK protects against alcohol-induced liver injury through UQCRC2 to up-regulate mitophagy. Autophagy 17, 3622–3643 (2021).

    Google Scholar 

  42. Zhang, Z. Q. et al. Redox-responsive polymer micelles co-encapsulating immune checkpoint inhibitors and chemotherapeutic agents for glioblastoma therapy. Nat. Commun. 15, 1118 (2024).

    Google Scholar 

  43. Yu, X. D. & Killiny, N. RNA interference of two glutathione S-transferase genes, Diaphorina citri DcGSTe2 and DcGSTd1, increases the susceptibility of Asian citrus psyllid (Hemiptera: Liviidae) to the pesticides fenpropathrin and thiamethoxam. Pest. Manag. Sci. 74, 638–647 (2018).

    Google Scholar 

  44. Zhang, H. B. et al. Metabolomics provide new insights into mechanisms of Wolbachia-induced paternal defects in Drosophila melanogaster. PLoS Pathog. 17, e1009859 (2021).

    Google Scholar 

  45. Li, J. Y. et al. Adipokinetic hormone signaling mediates the enhanced fecundity of Diaphorina citri infected by ‘Candidatus Liberibacter asiaticus. Elife 13, RP93450 (2024).

    Google Scholar 

  46. Lu, Z. J., Hu, H. & Killiny, N. Proteomic maps of subcellular protein fractions of the Asian citrus psyllid Diaphorina citri, the vector of citrus huanglongbing. Physiol. Entomol. 42, 36–64 (2017).

    Google Scholar 

  47. Lu, Z. J. & Killiny, N. Huanglongbing pathogen Candidatus Liberibacter asiaticus exploits the energy metabolism and host defence responses of its vector Diaphorina citri. Physiol. Entomol. 42, 319–335 (2017).

    Google Scholar 

  48. Wang, L. L. et al. The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies. Autophagy 12, 1560–1574 (2016).

    Google Scholar 

  49. Ji, R. et al. Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses. N. Phytol. 232, 802–817 (2021).

    Google Scholar 

  50. Schindelin, J., Rueden, C. T., Hiner, M. C. & Eliceiri, K. W. The imageJ ecosystem: an open platform for biomedical image analysis. Mol. Reprod. Dev. 82, 518–529 (2015).

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Zhanjun Lu, Drs. Xiaoqiang Liu and Haizhong Yu for helping to collect D. citri. We are also grateful to Zhiyou Xuan, Xinying Yang, Caifu Liu for Newhall Navel oranges supplement. This research was financially supported by the Fundamental and Interdisciplinary Disciplines Breakthrough Plan of Ministry of Education of China (JYB2025XDXM701), National Nature Science Foundation of China (32160625), Science and technology projects in Jiangxi Province (20225BCJ22005), National Key R & D Program of China (2021YFD1400800), and the China Agriculture Research System (CARS-26).

Author information

Authors and Affiliations

  1. Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China

    Chenyang Yuan, Tianyuan Liu, Jiayao Fan, Ning Wang, Yuxi Zhou, Wei Dou & Jinjun Wang

  2. Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China

    Chenyang Yuan, Tianyuan Liu, Jiayao Fan, Ning Wang, Yuxi Zhou, Wei Dou & Jinjun Wang

  3. National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China

    Yingzhe Yuan & Tao Peng

  4. National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China

    Long Yi

Authors
  1. Chenyang Yuan
    View author publications

    Search author on:PubMed Google Scholar

  2. Tianyuan Liu
    View author publications

    Search author on:PubMed Google Scholar

  3. Jiayao Fan
    View author publications

    Search author on:PubMed Google Scholar

  4. Ning Wang
    View author publications

    Search author on:PubMed Google Scholar

  5. Yingzhe Yuan
    View author publications

    Search author on:PubMed Google Scholar

  6. Tao Peng
    View author publications

    Search author on:PubMed Google Scholar

  7. Yuxi Zhou
    View author publications

    Search author on:PubMed Google Scholar

  8. Long Yi
    View author publications

    Search author on:PubMed Google Scholar

  9. Wei Dou
    View author publications

    Search author on:PubMed Google Scholar

  10. Jinjun Wang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.Y., W.D., and J.W. designed the research; C.Y., T.L., J.F., and N.W. performed the research; C.Y., Y.Y., T.P., Y.Z., and L.Y. analyzed the data; C.Y., W.D., and J.W. wrote the paper; all authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Dou or Jinjun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Dr Hannes Schuler and Dr Ophelia Bu.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Movie 1

nr-reporting-summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Liu, T., Fan, J. et al. Pathogen promotes insect ovarian development by inducing a dual role of host ATPSyn-β. Commun Biol (2026). https://doi.org/10.1038/s42003-025-09489-4

Download citation

  • Received: 18 April 2025

  • Accepted: 26 December 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s42003-025-09489-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing