Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Linking molecular tension and cellular tractions: a multiscale approach to focal adhesion mechanics
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 January 2026

Linking molecular tension and cellular tractions: a multiscale approach to focal adhesion mechanics

  • Samet Aytekin  ORCID: orcid.org/0000-0002-9369-97161 na1,
  • Laurens Kimps  ORCID: orcid.org/0000-0003-2926-91532 na1,
  • Quinten Coucke1,
  • Débora Linhares  ORCID: orcid.org/0000-0002-9055-91871,2,
  • Sarah Vorsselmans  ORCID: orcid.org/0000-0001-7175-06321,3,
  • Swaraj Deodhar4,
  • Ruth Cardinaels  ORCID: orcid.org/0000-0002-4191-65044,
  • Mar Cóndor  ORCID: orcid.org/0000-0002-8656-78462,5,
  • Jorge Barrasa-Fano  ORCID: orcid.org/0000-0002-8650-04572,
  • Hans Van Oosterwyck  ORCID: orcid.org/0000-0002-2142-97172,6 &
  • …
  • Susana Rocha  ORCID: orcid.org/0000-0003-1258-93961 

Communications Biology , Article number:  (2026) Cite this article

  • 1255 Accesses

  • 4 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biophysics
  • Biosensors
  • Fluorescence imaging
  • Focal adhesion

Abstract

Focal adhesions (FAs) are mechanosensitive structures that mediate force transmission between cells and the extracellular matrix. While Traction Force Microscopy (TFM) quantifies cellular tractions exerted on deformable substrates, Förster Resonance Energy Transfer (FRET)-based tension probes, such as vinculin tension sensors, measure molecular-scale forces within FA proteins. Despite their potential synergy, these methods have rarely been combined to explore the interplay between molecular tension and cellular tractions. Here, we introduce a framework integrating TFM and FRET-based vinculin tension sensors to investigate FA mechanics across scales. At cell level, tractions and vinculin tension increased with substrate stiffness. At FA level, vinculin tension correlated solely with vinculin density, while tractions scaled with FA area, orientation, total vinculin content and vinculin density. Direct comparison of tractions to vinculin tension revealed a complex, heterogenous relationship between these forces, possibly linked to diverse cell and FA maturation states. Sub-FA analysis revealed conserved spatial patterns, with both tension and traction increasing towards the cell periphery. This multiscale approach provides an integrated workflow for studying focal adhesion forces, helping to bridge the gap between vinculin tension and cellular tractions.

Similar content being viewed by others

Allosteric activation of vinculin by talin

Article Open access 18 July 2023

Development of three-colour FRET cascade for force sensing of the putative RIAM-vinculin interaction in fibroblasts

Article Open access 26 December 2025

Talin and vinculin combine their activities to trigger actin assembly

Article Open access 03 November 2024

Data availability

Source Data files including the data points for the generation of figures and graphs, and the corresponding statistical analysis, are accessible at Zenodo (https://doi.org/10.5281/zenodo.14692589)76. Raw microscopy files are available from the corresponding authors upon request.

Code availability

The TFM code to analyze 2D traction microscopy data, as well as the custom-written FRET code to calculate FRET efficiencies from FLIM-Phasor data, and the custom-written TFM-FRET code for the simultaneous analysis of molecular tension and cell traction is open source and can be accessed through Zenodo (https://doi.org/10.5281/zenodo.14692589)76.

References

  1. Uhler, C. & Shivashankar, G. V. Nuclear mechanopathology and cancer diagnosis. Trends Cancer 4, 320–331 (2018).

    Google Scholar 

  2. Maurer, M. & Lammerding, J. The driving force: nuclear mechanotransduction in cellular function, fate, and disease. Annu. Rev. Biomed. Eng. 21, 443–468 (2019).

    Google Scholar 

  3. Dwivedi, A., Kiely, P. A. & Hoey, D. A. Mechanically stimulated osteocytes promote the proliferation and migration of breast cancer cells via a potential CXCL1/2 mechanism. Biochem. Biophys. Res. Commun. 534, 14–20 (2021).

    Google Scholar 

  4. Nelson, C. M. Mechanical control of cell differentiation: insights from the early embryo. Annu. Rev. Biomed. Eng. 24, 307–322 (2022).

    Google Scholar 

  5. Nho, R. S., Ballinger, M. N., Rojas, M. M., Ghadiali, S. N. & Horowitz, J. C. Biomechanical force and cellular stiffness in lung fibrosis. Am. J. Pathol. 192, 750–761 (2022).

    Google Scholar 

  6. Case, L. B. et al. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat. Cell Biol. 17, 880–892 (2015).

    Google Scholar 

  7. Saraswathibhatla, A., Indana, D. & Chaudhuri, O. Cell–extracellular matrix mechanotransduction in 3D. Nat. Rev. Mol. Cell Biol. 24, 495–516 (2023).

    Google Scholar 

  8. Möhl, C. et al. Becoming stable and strong: the interplay between vinculin exchange dynamics and adhesion strength during adhesion site maturation. Cell Motil. 66, 350–364 (2009).

    Google Scholar 

  9. Tao, A. et al. Identifying constitutive and context-specific molecular-tension-sensitive protein recruitment within focal adhesions. Dev. Cell 58, 522–534.e7 (2023).

    Google Scholar 

  10. Chen, H., Cohen, D. M., Choudhury, D. M., Kioka, N. & Craig, S. W. Spatial distribution and functional significance of activated vinculin in living cells. J. Cell Biol. 169, 459–470 (2005).

    Google Scholar 

  11. Chen, H., Choudhury, D. M. & Craig, S. W. Coincidence of actin filaments and talin is required to activate vinculin*. J. Biol. Chem. 281, 40389–40398 (2006).

    Google Scholar 

  12. Cohen, D. M., Kutscher, B., Chen, H., Murphy, D. B. & Craig, S. W. A conformational switch in vinculin drives formation and dynamics of a talin-vinculin complex at focal adhesions*. J. Biol. Chem. 281, 16006–16015 (2006).

    Google Scholar 

  13. Dumbauld, D. W. et al. How vinculin regulates force transmission. Proc. Natl. Acad. Sci. 110, 9788–9793 (2013).

    Google Scholar 

  14. Humphries, J. D. et al. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol. 179, 1043–1057 (2007).

    Google Scholar 

  15. Dumbauld, D. W., Michael, K. E., Hanks, S. K. & García, A. J. Focal adhesion kinase-dependent regulation of adhesive forces involves vinculin recruitment to focal adhesions. Biol. Cell 102, 203–213 (2010).

    Google Scholar 

  16. Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D. & Waterman, C. M. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188, 877–890 (2010).

    Google Scholar 

  17. Thievessen, I. et al. Vinculin–actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth. J. Cell Biol. 202, 163–177 (2013).

    Google Scholar 

  18. Mierke, C. T. The role of vinculin in the regulation of the mechanical properties of cells. Cell Biochem. Biophys. 53, 115–126 (2009).

    Google Scholar 

  19. Goldmann, W. H. Role of vinculin in cellular mechanotransduction. Cell Biol. Int. 40, 241–256 (2016).

    Google Scholar 

  20. Butler, J. P., Tolić-Nørrelykke, I. M., Fabry, B. & Fredberg, J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282, C595–C605 (2002).

    Google Scholar 

  21. Sabass, B., Gardel, M. L., Waterman, C. M. & Schwarz, U. S. High resolution traction force microscopy based on experimental and computational advances. Biophys. J. 94, 207–220 (2008).

    Google Scholar 

  22. Denisin, A. K., Kim, H., Riedel-Kruse, I. H. & Pruitt, B. L. Field guide to traction force microscopy. Cell Mol. Bioeng. 17, 87–106 (2024).

    Google Scholar 

  23. van Hoorn, H. et al. The nanoscale architecture of force-bearing focal adhesions. Nano Lett. 14, 4257–4262 (2014).

    Google Scholar 

  24. Sarangi, B. R. et al. Coordination between intra- and extracellular forces regulates focal adhesion dynamics. Nano Lett. 17, 399–406 (2017).

    Google Scholar 

  25. Roca-Cusachs, P., Iskratsch, T. & Sheetz, M. P. Finding the weakest link—exploring integrin-mediated mechanical molecular pathways. J. Cell Sci. 125, 3025–3038 (2012).

  26. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    Google Scholar 

  27. Fischer, L. S., Rangarajan, S., Sadhanasatish, T. & Grashoff, C. Molecular force measurement with tension sensors. Annu. Rev. Biophys. 50, 595–616 (2021).

    Google Scholar 

  28. Chang, C.-W. & Kumar, S. Vinculin tension distributions of individual stress fibers within cell–matrix adhesions. J. Cell Sci. 126, 3021–3030 (2013).

    Google Scholar 

  29. Rothenberg, K. E., Neibart, S. S., LaCroix, A. S. & Hoffman, B. D. Controlling cell geometry affects the spatial distribution of load across vinculin. Cel. Mol. Bioeng. 8, 364–382 (2015).

    Google Scholar 

  30. LaCroix, A. S., Lynch, A. D., Berginski, M. E. & Hoffman, B. D. Tunable molecular tension sensors reveal extension-based control of vinculin loading. eLife 7, e33927 (2018).

    Google Scholar 

  31. Rothenberg, K. E., Scott, D. W., Christoforou, N. & Hoffman, B. D. Vinculin force-sensitive dynamics at focal adhesions enable effective directed cell migration. Biophys. J. 114, 1680–1694 (2018).

    Google Scholar 

  32. Kanoldt, V. et al. Metavinculin modulates force transduction in cell adhesion sites. Nat. Commun. 11, 6403 (2020).

    Google Scholar 

  33. Shoyer, T. C. et al. Coupling during collective cell migration is controlled by a vinculin mechanochemical switch. Proc. Natl. Acad. Sci. USA 120, e2316456120 (2023).

    Google Scholar 

  34. Chirasani, V. R. et al. Molecular basis and cellular functions of vinculin-actin directional catch bonding. Nat. Commun. 14, 8300 (2023).

    Google Scholar 

  35. Stanton, A. E., Tong, X. & Yang, F. Varying solvent type modulates collagen coating and stem cell mechanotransduction on hydrogel substrates. APL Bioeng. 3, 036105 (2019).

  36. Alvarez, L. Application note: SP8 FALCON: a novel concept in fluorescence lifetime imaging enabling video-rate confocal FLIM. Nature https://www.nature.com/articles/d42473-019-00261-x (2019).

  37. Reissaus, C. A. et al. PIE-FLIM measurements of two different fret-based biosensor activities in the same living cells. Biophys. J. 118, 1820–1829 (2020).

    Google Scholar 

  38. Datta, R., Heaster, T. M., Sharick, J. T., Gillette, A. A. & Skala, M. C. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. JBO 25, 071203 (2020).

    Google Scholar 

  39. Torrado, B., Pannunzio, B., Malacrida, L. & Digman, M. A. Fluorescence lifetime imaging microscopy. Nat. Rev. Methods Prim. 4, 1–23 (2024).

    Google Scholar 

  40. Izquierdo-Álvarez, A. et al. Spatiotemporal analyses of cellular tractions describe subcellular effect of substrate stiffness and coating. Ann. Biomed. Eng. 47, 624–637 (2019).

    Google Scholar 

  41. Jorge-Peñas, A. et al. Free form deformation–based image registration improves accuracy of traction force microscopy. PLoS One 10, e0144184 (2015).

    Google Scholar 

  42. Digman, M. A., Caiolfa, V. R., Zamai, M. & Gratton, E. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 94, l14–l16 (2008).

    Google Scholar 

  43. Hinde, E., Digman, M. A., Welch, C., Hahn, K. M. & Gratton, E. Biosensor Förster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy. Microsc. Res. Tech. 75, 271–281 (2012).

    Google Scholar 

  44. Ranjit, S., Malacrida, L., Jameson, D. M. & Gratton, E. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach. Nat. Protoc. 13, 1979–2004 (2018).

    Google Scholar 

  45. Coucke, Q. et al. Particle-based phasor-FLIM-FRET resolves protein-protein interactions inside single viral particles. Biophys. Rep. 3, 100122 (2023).

    Google Scholar 

  46. Li, D., Liu, X., Dong, F. & Li, W. Advancements in phasor-based FLIM: multi-component analysis and lifetime probes in biological imaging. J. Mater. Chem. B 13, 472–484 (2025).

    Google Scholar 

  47. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Google Scholar 

  48. Martin, K. J. et al. Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic FLIM-based FRET experiments. PLOS ONE 13, e0183585 (2018).

    Google Scholar 

  49. Gates, E. M., LaCroix, A. S., Rothenberg, K. E. & Hoffman, B. D. Improving quality, reproducibility, and usability of FRET-based tension sensors. Cytom. Part A 95, 201–213 (2019).

    Google Scholar 

  50. McCullock, T. W., MacLean, D. M. & Kammermeier, P. J. Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen. PLOS ONE 15, e0219886 (2020).

    Google Scholar 

  51. Esposito, A. How many photons are needed for FRET imaging? Biomed. Opt. Express 11, 1186–1202 (2020).

    Google Scholar 

  52. Oakes, P. W., Beckham, Y., Stricker, J. & Gardel, M. L. Tension is required but not sufficient for focal adhesion maturation without a stress fiber template. J. Cell Biol. 196, 363–374 (2012).

    Google Scholar 

  53. Weng, S., Shao, Y., Chen, W. & Fu, J. Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis. Nat. Mater. 15, 961–967 (2016).

    Google Scholar 

  54. Baumann, H. et al. Biphasic reinforcement of nascent adhesions by vinculin. J. Mol. Recognit. 36, e3012 (2023).

    Google Scholar 

  55. Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888 (2001).

    Google Scholar 

  56. Zhou, D. W., Lee, T. T., Weng, S., Fu, J. & García, A. J. Effects of substrate stiffness and actomyosin contractility on coupling between force transmission and vinculin–paxillin recruitment at single focal adhesions. MBoC 28, 1901–1911 (2017).

    Google Scholar 

  57. Hernández-Varas, P., Berge, U., Lock, J. G. & Strömblad, S. A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime. Nat. Commun. 6, 7524 (2015).

  58. Peña Ccoa, W. J., Mukadum, F., Ramon, A., Stirnemann, G. & Hocky, G. M. A direct computational assessment of vinculin–actin unbinding kinetics reveals catch-bonding behavior. Proc. Natl. Acad. Sci. USA. 122, e2411584122 (2025).

  59. Wang, Y. et al. Force-dependent interactions between talin and full-length vinculin. J. Am. Chem. Soc. 143, 14726–14737 (2021).

    Google Scholar 

  60. Murrell, M., Oakes, P. W., Lenz, M. & Gardel, M. L. Forcing cells into shape: the mechanics of actomyosin contractility. Nat. Rev. Mol. Cell Biol. 16, 486–498 (2015).

    Google Scholar 

  61. Wang, C., Zhang, F., Shan, B., Liu, J. & Zhu, L. Real-time measurement of cell contractile force during activation of human hepatic stellate cell line LX-2]. Sheng Wu Yi Xue Gong. Cheng Xue Za Zhi 36, 841–849 (2019).

    Google Scholar 

  62. Saraswathibhatla, A. & Notbohm, J. Tractions and stress fibers control cell shape and rearrangements in collective cell migration. Phys. Rev. X 10, 011016 (2020).

    Google Scholar 

  63. Böhringer, D. et al. Fiber alignment in 3D collagen networks as a biophysical marker for cell contractility. Matrix Biol. 124, 39–48 (2023).

    Google Scholar 

  64. Carisey, A. et al. Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner. Curr. Biol. 23, 271–281 (2013).

    Google Scholar 

  65. Ciobanasu, C., Faivre, B. & Le Clainche, C. Actomyosin-dependent formation of the mechanosensitive talin–vinculin complex reinforces actin anchoring. Nat. Commun. 5, 3095 (2014).

    Google Scholar 

  66. Austen, K. et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597–1606 (2015).

    Google Scholar 

  67. Ringer, P. et al. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nat. Methods 14, 1090–1096 (2017).

    Google Scholar 

  68. Kim, S. H., Yasunaga, A. B., Zhang, H., Whitley, K. D. & Li, I. T. S. Quantitative super-resolution imaging of molecular tension. Adv. Sci. 12, 2408280 (2025).

  69. Mierke, C. T. et al. Vinculin facilitates cell invasion into three-dimensional collagen matrices. J. Biol. Chem. 285, 13121–13130 (2010).

    Google Scholar 

  70. Lam, A. et al. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat. Methods 9, 1005–1012 (2012).

    Google Scholar 

  71. Koushik, S. V. & Vogel, S. S. Energy migration alters the fluorescence lifetime of Cerulean: implications for fluorescence lifetime imaging Forster resonance energy transfer measurements. JBO 13, 031204 (2008).

    Google Scholar 

  72. Tse, J. R. & Engler, A. J. Preparation of hydrogel substrates with tunable mechanical properties. CP Cell Biol. 47, 10.16.1–10.16.16 (2010).

  73. Boudou, T. et al. An extended modeling of the micropipette aspiration experiment for the characterization of the Young’s modulus and Poisson’s ratio of adherent thin biological samples: Numerical and experimental studies. J. Biomech. 39, 1677–1685 (2006).

    Google Scholar 

  74. Luengo, C. DIPlib. DIPlib Quantitative Image Analysis in C + + , MATLAB and Python https://diplib.org/ (2024).

  75. Klein, S., Staring, M., Murphy, K., Viergever, M. A. & Pluim, J. P. W. elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29, 196–205 (2010).

    Google Scholar 

  76. Aytekin, S. et al. Source Data & Code - linking molecular tension and cellular tractions: a multiscale approach to focal adhesion mechanics. Zenodo https://doi.org/10.5281/zenodo.14692589 (2026).

Download references

Acknowledgements

The authors thank Professor Jelle Hendrix (Hasselt University, Belgium) for constructive discussions on pixel-based FRET efficiency analysis, and Rik Nuyts for assistance with microscopy measurements and imaging optimization. They are grateful to the following funding sources: S.R. and S.A. were supported by KU Leuven internal funding: IDN/20/021, KA/20/026 and C14/22/085. S.D. was supported by KU Leuven internal funding: ZB/22/028. S.R. and H.V.O. received funding from the Research Foundation Flanders (FWO) through a project with grant number G0C2422N. H.V.O. and L.K. were supported by the iBOF project 21/083C. H.V.O. received the FWO infrastructure grant I009718N. In addition, S.A. and J.B.F. are recipients of FWO fellowships with grant numbers 1S95125N and 1259223 N, respectively.

Author information

Author notes
  1. These authors contributed equally: Samet Aytekin, Laurens Kimps.

Authors and Affiliations

  1. KU Leuven, Chemistry Department, Molecular Imaging and Photonics, Leuven, Belgium

    Samet Aytekin, Quinten Coucke, Débora Linhares, Sarah Vorsselmans & Susana Rocha

  2. KU Leuven, Mechanical Engineering Department, Biomechanics section, Leuven, Belgium

    Laurens Kimps, Débora Linhares, Mar Cóndor, Jorge Barrasa-Fano & Hans Van Oosterwyck

  3. University Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France

    Sarah Vorsselmans

  4. KU Leuven, Chemical Engineering Department, Soft Matter, Rheology and Technology, Leuven, Belgium

    Swaraj Deodhar & Ruth Cardinaels

  5. Interuniversity Micro-Electronics Centre, Life Sciences Technology Department, Leuven, Belgium

    Mar Cóndor

  6. KU Leuven, Prometheus Division of Skeletal Tissue Engineering, Leuven, Belgium

    Hans Van Oosterwyck

Authors
  1. Samet Aytekin
    View author publications

    Search author on:PubMed Google Scholar

  2. Laurens Kimps
    View author publications

    Search author on:PubMed Google Scholar

  3. Quinten Coucke
    View author publications

    Search author on:PubMed Google Scholar

  4. Débora Linhares
    View author publications

    Search author on:PubMed Google Scholar

  5. Sarah Vorsselmans
    View author publications

    Search author on:PubMed Google Scholar

  6. Swaraj Deodhar
    View author publications

    Search author on:PubMed Google Scholar

  7. Ruth Cardinaels
    View author publications

    Search author on:PubMed Google Scholar

  8. Mar Cóndor
    View author publications

    Search author on:PubMed Google Scholar

  9. Jorge Barrasa-Fano
    View author publications

    Search author on:PubMed Google Scholar

  10. Hans Van Oosterwyck
    View author publications

    Search author on:PubMed Google Scholar

  11. Susana Rocha
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Experiments and data analysis were performed by S.A. and L.K. S.A. and S.V. generated the DNA constructs used in the study. The rheological characterization of the hydrogels was performed by D.L. and S.D., under the supervision of R.C. and H.V.O. The customized Matlab algorithms were developed by L.K., Q.C. and J.B.F. Q.C., M.C., H.V.O., and S.R. developed the initial concept. The work was supervised by H.V.O. and S.R. The original draft was written by S.A., under the supervision of S.R. All authors contributed to the writing of the final version.

Corresponding authors

Correspondence to Hans Van Oosterwyck or Susana Rocha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Brenton Hoffman, Andrea Ravasio, Catalina Soto-Montandon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Ophelia Bu and Christina Karlsson Rosenthal. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aytekin, S., Kimps, L., Coucke, Q. et al. Linking molecular tension and cellular tractions: a multiscale approach to focal adhesion mechanics. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09514-0

Download citation

  • Received: 22 December 2024

  • Accepted: 31 December 2025

  • Published: 12 January 2026

  • DOI: https://doi.org/10.1038/s42003-026-09514-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing