Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Co-variation and trade-offs in ontogenetic scaling of growth and metabolic rates in teleost fish
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 29 January 2026

Co-variation and trade-offs in ontogenetic scaling of growth and metabolic rates in teleost fish

  • Alexander Rosén1,
  • Anna H. Andreassen1,
  • Zoe Storm  ORCID: orcid.org/0009-0008-2083-68722,3,
  • Julius W. Exsteen1,
  • Axel F. Moesby1,
  • Suzanne Raqbi  ORCID: orcid.org/0009-0004-9984-67821,
  • Ricardo Beldade  ORCID: orcid.org/0000-0003-1911-01224,
  • Suzanne C. Mills2,5,6 &
  • …
  • Tommy Norin  ORCID: orcid.org/0000-0003-4323-72541 

Communications Biology , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Animal physiology
  • Ecophysiology

Abstract

The influential metabolic theory of ecology proposes that metabolic rate determines growth and ecological processes in a universal, size-dependent manner, scaling with body mass0.75. Conversely, newer life-history-optimisation theory suggests that metabolic scaling varies due to evolutionary optimisation of energy allocation, predicting negative correlation between metabolic rate and growth. However, metabolic scaling has almost exclusively been investigated across individuals or species, not within individuals through ontogeny. By measuring body mass and metabolic rate longitudinally an average 6.6 times within the same 389 individuals from seven fish species, we find that within-individual ontogenetic scaling of standard (maintenance) metabolic rate correlates positively with scaling of growth, while scaling of aerobic scope correlates negatively. Accelerating ontogenetic growth thus appears to come at a cost of reduced metabolic scope to support functions beyond maintenance. Our results suggest that underappreciated variation in growth can explain why metabolic scaling varies, challenging dogmatic ¾-power scaling and life-history-optimisation theory.

Data availability

Both the data used in the article and the code used to analyse it and make the figures are available in a figshare repository84.

References

  1. Schmidt-Nielsen, K. Scaling: Why Is Animal Size so Important? https://doi.org/10.1017/CBO9781139167826 (Cambridge University Press, 1984).

  2. Hatton, I. A., Dobson, A. P., Storch, D., Galbraith, E. D. & Loreau, M. Linking scaling laws across eukaryotes. Proc. Natl. Acad. Sci. USA 116, 21616–21622 (2019).

    Google Scholar 

  3. Hatton, I. A. et al. The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. Science 349, aac6284 (2015).

    Google Scholar 

  4. Brown, J. H., Hall, C. A. S. & Sibly, R. M. Equal fitness paradigm explained by a trade-off between generation time and energy production rate. Nat. Ecol. Evol. 2, 262–268 (2018).

    Google Scholar 

  5. Burger, J. R., Hou, C. & Brown, J. H. Toward a metabolic theory of life history. Proc. Natl. Acad. Sci. USA 116, 26653–26661 (2019).

    Google Scholar 

  6. Kleiber, M. Body size and metabolic rate. Physiol. Rev. 27, 511–541 (1947).

    Google Scholar 

  7. Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).

    Google Scholar 

  8. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    Google Scholar 

  9. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Towards a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Google Scholar 

  10. West, G. B., Brown, J. H. & Enquist, B. J. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284, 1677–1679 (1999).

    Google Scholar 

  11. West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    Google Scholar 

  12. Sibly, R. M. et al. Energetics, lifestyle, and reproduction in birds. Proc. Natl. Acad. Sci. USA 109, 10937–10941 (2012).

    Google Scholar 

  13. White, C. R. & Marshall, D. J. How and why does metabolism scale with body mass? Physiology 38, 266–274 (2023).

    Google Scholar 

  14. Bertalanffy, L. & von Quantitative laws in metabolism and growth. Q. Rev. Biol. 32, 217–231 (1957).

    Google Scholar 

  15. Darveau, C.-A., Suarez, R. K., Andrews, R. D. & Hochachka, P. W. Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417, 166–170 (2002).

    Google Scholar 

  16. Glazier, D. S. Beyond the ‘3/4-power law’: variation in the intra-and interspecific scaling of metabolic rate in animals. Biol. Rev. 80, 611–662 (2005).

    Google Scholar 

  17. Glazier, D. S. How Metabolic Rate Relates to Cell Size. Biology 11, 1106 (2022).

    Google Scholar 

  18. White, C. R., Phillips, N. F. & Seymour, R. S. The scaling and temperature dependence of vertebrate metabolism. Biol. Lett. 2, 125–127 (2006).

    Google Scholar 

  19. Norin, T. Growth and mortality as causes of variation in metabolic scaling among taxa and taxonomic levels. Integr. Comp. Biol. 62, 1448–1459 (2022).

    Google Scholar 

  20. Glazier, D. S. Variable metabolic scaling breaks the law: from ‘Newtonian’ to ‘Darwinian’ approaches. Proc. Biol. Sci. 289, 20221605 (2022).

  21. Glazier, D. S. & Gjoni, V. Interactive effects of intrinsic and extrinsic factors on metabolic rate. Philos. Trans. R. Soc. B Biol. Sci. 379, 20220489 (2024).

  22. Riisgård No foundation of a “3/4 power scaling law” for respiration in biology. Ecol. Lett. 1, 71–73 (1998).

    Google Scholar 

  23. Glazier, D. S. Is metabolic rate a universal ‘pacemaker’ for biological processes? Biol. Rev. 90, 377–407 (2015).

    Google Scholar 

  24. Marshall, D. J. & White, C. R. Have we outgrown the existing models of growth? Trends Ecol. Evol. 34, 102–111 (2019).

    Google Scholar 

  25. Kearney, M. R. What is the status of metabolic theory one century after Pütter invented the von Bertalanffy growth curve? Biol. Rev. 96, 557–575 (2021).

    Google Scholar 

  26. Glazier, D. S. Multiphasic allometry: the reality and significance of ontogenetic shifts in the body-mass scaling of metabolic rate. Acad. Biol. 2, https://doi.org/10.20935/AcadBiol7411 (2024).

  27. West, G. B., Brown, J. H. & Enquist, B. J. A general model for ontogenetic growth. Nature 413, 628–631 (2001).

    Google Scholar 

  28. Hou, C. et al. Energy uptake and allocation during ontogeny. Science 322, 736–739 (2008).

    Google Scholar 

  29. Parry, G. D. The influence of the cost of growth on ectotherm metabolism. J. Theor. Biol. 101, 453–477 (1983).

    Google Scholar 

  30. Ricklefs, R. E. Is rate of ontogenetic growth constrained by resource supply or tissue growth potential? A comment on West et al.’s model. Funct. Ecol. 17, 384–393 (2003).

    Google Scholar 

  31. Glazier, D. S. Does death drive the scaling of life? Biol. Rev. 100, 586–619 (2025).

    Google Scholar 

  32. Kozłowski, J. & Weiner, J. Interspecific allometries are by-products of body size optimization. Am. Nat. 149, 352–380 (1997).

    Google Scholar 

  33. Harrison, J. F. Do performance–safety tradeoffs cause hypometric metabolic scaling in animals? Trends Ecol. Evol. 32, 653–664 (2017).

    Google Scholar 

  34. Kozłowski, J., Konarzewski, M. & Czarnoleski, M. Coevolution of body size and metabolic rate in vertebrates: a life-history perspective. Biol. Rev. 95, 1393–1417 (2020).

    Google Scholar 

  35. White, C. R., Alton, L. A., Bywater, C. L., Lombardi, E. J. & Marshall, D. J. Metabolic scaling is the product of life-history optimization. Science 377, 834–839 (2022).

    Google Scholar 

  36. Glazier, D. S., Borrelli, J. J. & Hoffman, C. L. Effects of fish predators on the mass-related energetics of a keystone freshwater crustacean. Biology 9, 40 (2020).

    Google Scholar 

  37. Frankino, W. A., Zwaan, B. J., Stern, D. L. & Brakefield, P. M. Natural selection and developmental constraints in the evolution of allometries. Science 307, 718–720 (2005).

    Google Scholar 

  38. Bolstad, G. H. et al. Complex constraints on allometry revealed by artificial selection on the wing of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 112, 13284–13289 (2015).

    Google Scholar 

  39. Czarnołęski, M. et al. Scaling of metabolism in Helix aspersa snails: changes through ontogeny and response to selection for increased size. J. Exp. Biol. 211, 391–400 (2008).

    Google Scholar 

  40. Harrison, J. F. et al. White paper: an integrated perspective on the causes of hypometric metabolic scaling in animals. Integr. Comp. Biol. 62, 1395–1418 (2022).

    Google Scholar 

  41. Gould, S. J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587–638 (1966).

    Google Scholar 

  42. Pélabon, C. et al. On the relationship between ontogenetic and static allometry. Am. Nat. 181, 195–212 (2013).

    Google Scholar 

  43. Shingleton, A. W. & Frankino, W. A. The (ongoing) problem of relative growth. Curr. Opin. Insect Sci. 25, 9–19 (2018).

    Google Scholar 

  44. Callier, V. & Nijhout, H. F. Supply-side constraints are insufficient to explain the ontogenetic scaling of metabolic rate in the Tobacco Hornworm, Manduca sexta. PLoS ONE 7, e45455 (2012).

    Google Scholar 

  45. Oxford University Press. Ontogenesis, n. in: Oxford English Dictionary. https://doi.org/10.1093/OED/6245210579 (Oxford University Press, 2023).

  46. Merriam-Webster. Ontogeny. in: Merriam-Webster.com dictionary (2025).

  47. Barneche, D. R., Jahn, M. & Seebacher, F. Warming increases the cost of growth in a model vertebrate. Funct. Ecol. 33, 1256–1266 (2019).

    Google Scholar 

  48. Norin, T. & Gamperl, A. K. Evidence for variation in scaling exponents at different hierarchical levels. Funct. Ecol. 32, 379–388 (2018).

    Google Scholar 

  49. Ye, X. et al. Metabolic scaling: individual versus intraspecific scaling of Nile tilapia (Oreochromis niloticus). J. Comp. Physiol. B 191, 721–729 (2021).

    Google Scholar 

  50. Kvist, A. & Lindström, Å Basal metabolic rate in migratory waders: intra-individual, intraspecific, interspecific and seasonal variation. Funct. Ecol. 15, 465–473 (2001).

    Google Scholar 

  51. Riska, B. & Atchley, W. R. Genetics of growth predict patterns of brain-size evolution. Science 229, 668–671 (1985).

    Google Scholar 

  52. Shingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F. & Emlen, D. J. Size and shape: the developmental regulation of static allometry in insects. BioEssays 29, 536–548 (2007).

    Google Scholar 

  53. DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. USA 107, 12941–12945 (2010).

    Google Scholar 

  54. Burton, T., Killen, S. S., Armstrong, J. D. & Metcalfe, N. B. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc. R. Soc. B: Biol. Sci. 278, 3465–3473 (2011).

    Google Scholar 

  55. Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).

    Google Scholar 

  56. Dunsworth, H. M., Warrener, A. G., Deacon, T., Ellison, P. T. & Pontzer, H. Metabolic hypothesis for human altriciality. Proc. Natl. Acad. Sci. USA 109, 15212–15216 (2012).

    Google Scholar 

  57. Auer, S. K., Dick, C. A., Metcalfe, N. B. & Reznick, D. N. Metabolic rate evolves rapidly and in parallel with the pace of life history. Nat. Commun. 9, 14 (2018).

    Google Scholar 

  58. Auer, S. K., Salin, K., Anderson, G. J. & Metcalfe, N. B. Aerobic scope explains individual variation in feeding capacity. Biol. Lett. 11, 20150793 (2015).

  59. Norin, T. & Malte, H. Repeatability of standard metabolic rate, active metabolic rate and aerobic scope in young brown trout during a period of moderate food availability. J. Exp. Biol. 214, 1668–1675 (2011).

    Google Scholar 

  60. Clarke, A. & Johnston, N. M. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68, 893–905 (1999).

    Google Scholar 

  61. Jerde, C. L. et al. Strong evidence for an intraspecific metabolic scaling coefficient near 0.89 in fish. Front. Physiol. 10, 1166 (2019).

  62. Steffensen, J. F. Some errors in respirometry of aquatic breathers: how to avoid and correct for them. Fish. Physiol. Biochem. 6, 49–59 (1989).

    Google Scholar 

  63. Killen, S. S. et al. Guidelines for reporting methods to estimate metabolic rates by aquatic intermittent-flow respirometry. J. Exp. Biol. 224, jeb242522 (2021).

    Google Scholar 

  64. Gillooly, J. F., Gomez, J. P. & Mavrodiev, E. V. A broad-scale comparison of aerobic activity levels in vertebrates: endotherms versus ectotherms. Proc. R. Soc. B Biol. Sci. 284, 20162328 (2017).

    Google Scholar 

  65. Case, T. J. On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. Q. Rev. Biol. 53, 243–282 (1978).

    Google Scholar 

  66. Bokma, F. Evidence against universal metabolic allometry. Funct. Ecol. 18, 184–187 (2004).

    Google Scholar 

  67. Killen, S. S. et al. Ecological influences and morphological correlates of resting and maximal metabolic rates across teleost fish species. Am. Nat. 187, 592–606 (2016).

    Google Scholar 

  68. Glazier, D. S. A unifying explanation for diverse metabolic scaling in animals and plants. Biol. Rev. 85, 111–138 (2010).

    Google Scholar 

  69. Wieser, W. Cost of growth in cells and organisms: general rules and comparative aspects. Biol. Rev. 69, 1–33 (1994).

    Google Scholar 

  70. Millidine, K. J., Armstrong, J. D. & Metcalfe, N. B. Juvenile salmon with high standard metabolic rates have higher energy costs but can process meals faster. Proc. R. Soc. B Biol. Sci. 276, 2103–2108 (2009).

    Google Scholar 

  71. Metcalfe, N. B., Van Leeuwen, T. E. & Killen, S. S. Does individual variation in metabolic phenotype predict fish behaviour and performance? J. Fish. Biol. 88, 298–321 (2016).

    Google Scholar 

  72. Sogard, S. M. Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull. Mar. Sci. 60, 1129–1157 (1997).

    Google Scholar 

  73. Pang, X. et al. Individual variation in metabolic rate, locomotion capacity and hypoxia tolerance and their relationships in juveniles of three freshwater fish species. J. Comp. Physiol. B 191, 755–764 (2021).

    Google Scholar 

  74. Fu, S.-J., Dong, Y.-W. & Killen, S. S. Aerobic scope in fishes with different lifestyles and across habitats: Trade-offs among hypoxia tolerance, swimming performance and digestion. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 272, 111277 (2022).

    Google Scholar 

  75. Metcalfe, N. B. & Monaghan, P. Compensation for a bad start: grow now, pay later? Trends Ecol. Evol. 16, 254–260 (2001).

    Google Scholar 

  76. Barker, D. J. P. The developmental origins of adult disease. J. Am. Coll. Nutr. 23, 588S–595S (2004).

    Google Scholar 

  77. Lee, W.-S., Monaghan, P. & Metcalfe, N. B. Experimental demonstration of the growth rate–lifespan trade-off. Proc. R. Soc. B Biol. Sci. 280, 20122370 (2013).

    Google Scholar 

  78. Hejlesen, R. et al. Assessing metabolic rates in zebrafish using a 3D-printed intermittent-flow respirometer and swim tunnel system. Biol. Open 13, bio060375 (2024).

    Google Scholar 

  79. Norin, T. & Clark, T. D. Measurement and relevance of maximum metabolic rate in fishes. J. Fish. Biol. 88, 122–151 (2016).

    Google Scholar 

  80. R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/ (2025).

  81. Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Google Scholar 

  82. van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).

    Google Scholar 

  83. Seebacher, F., White, C. & Franklin, C. Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Clim. Change 5, 61–66 (2015).

  84. Rosén, A. et al. Co-variation and trade-offs in ontogenetic scaling of growth and metabolic rates in teleost fish [Data set and code for analysis and figures]. Figshare https://figshare.com/s/e4ec7a3ae2b4048661d0.

Download references

Acknowledgements

We would like to thank Douglas S. Glazier and two anonymous reviewers for their insightful comments on earlier drafts of this article. We would also like to thank the many technicians, animal care takers, and other lab helpers who enabled us to collect all the data in this article. This work was supported by research grants to TN from the Independent Research Fund Denmark (1054-00020B) and Villum Fonden (40713), as well as funding granted to SCM and RB (Recherche et Innovation Partenariat Public Privé pour Preuve de concept (RIP4): Raising Nemo - 5637/MAF/REC).

Author information

Authors and Affiliations

  1. DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark

    Alexander Rosén, Anna H. Andreassen, Julius W. Exsteen, Axel F. Moesby, Suzanne Raqbi & Tommy Norin

  2. EPHE-UPVD-CNRS, UAR 3278 CRIOBE, PSL Université Paris:, Moorea, French Polynesia

    Zoe Storm & Suzanne C. Mills

  3. College of Science and Engineering, James Cook University, Townsville, QLD, Australia

    Zoe Storm

  4. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile

    Ricardo Beldade

  5. Laboratoire d’Excellence “CORAIL”, Perpignan, France

    Suzanne C. Mills

  6. Institut Universitaire de France (IUF), Paris, France

    Suzanne C. Mills

Authors
  1. Alexander Rosén
    View author publications

    Search author on:PubMed Google Scholar

  2. Anna H. Andreassen
    View author publications

    Search author on:PubMed Google Scholar

  3. Zoe Storm
    View author publications

    Search author on:PubMed Google Scholar

  4. Julius W. Exsteen
    View author publications

    Search author on:PubMed Google Scholar

  5. Axel F. Moesby
    View author publications

    Search author on:PubMed Google Scholar

  6. Suzanne Raqbi
    View author publications

    Search author on:PubMed Google Scholar

  7. Ricardo Beldade
    View author publications

    Search author on:PubMed Google Scholar

  8. Suzanne C. Mills
    View author publications

    Search author on:PubMed Google Scholar

  9. Tommy Norin
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A. Rosén and T.N. conceptualised and did the overall design. A. Rosén, A.H.A., Z.S., J.W.E., A.F.M., S.R. and T.N. collected the data. R.B., S.C.M. and T.N. provided equipment and facilities. A. Rosén, R.B., S.C.M. and T.N. provided supervision. A. Rosén, Z.S., J.W.E., A.F.M., S.R. and T.N. data analyses. A. Rosén wrote the initial draft while Z.S., S.R., R.B., S.C.M. and T.N. provided critical feedback. Revisions were made by A. Rosén with feedback from A.H.A. and T.N. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Alexander Rosén.

Ethics declarations

Competing interests

The authors declare no competing interests

Peer review

Peer review information

Communications Biology thanks Douglas Glazier and the other anonymous reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Michele Repetto. A peer review file is available

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Material

Reporting Summary

Transparent Peer Review File

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosén, A., Andreassen, A.H., Storm, Z. et al. Co-variation and trade-offs in ontogenetic scaling of growth and metabolic rates in teleost fish. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09588-w

Download citation

  • Received: 24 April 2025

  • Accepted: 13 January 2026

  • Published: 29 January 2026

  • DOI: https://doi.org/10.1038/s42003-026-09588-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing