Abstract
Microcystis is one of the most common bloom-forming cyanobacteria colonizing freshwater ecosystems worldwide. This genus remarkably produces numerous bio-active accessory metabolites, which are believed to be potentially involved in different ecological and/or physiological processes. However, their genuine contribution to the evolutionary success of Microcystis blooms remains undetermined. To better depict the potential relationship between the local genetic diversity of blooming Microcystis populations and their respective associated chemical diversity, we conducted a joint genomic and metabolomic analysis of 65 Microcystis strains collected from various lakes in France and surrounding Western European countries. Interestingly, both core and pan-gene phylogenetic analysis place 57 of these strains in 11 distinct genotypes with at least 2 genomes, being widely distributed along the entire Microcystis phylogeny and presenting specific signatures of accessory metabolite biosynthesis. The direct chemical analysis of metabolite diversity produced by these strains, cultured under laboratory conditions, reveals the production of stable metabolite cocktails, with minimal variations over replication, growth phases and culture conditions. Remarkably, these strains belonging to 11 different genotypes correspond to 13 distinct chemotypes according to an accurate one-chemotype-for-one-genotype rule. Furthermore, these genotypes also appear distinguishable regarding their respective ecotoxicological traits and might be considered as specific toxico-ecotypes. Overall, our investigations reveal that the production of accessory metabolites constitute well conserved chemical traits across the different Microcystis genotypes, suggesting these molecules may be involved in key adaptive and selective processes, that still remain under-explored.
Similar content being viewed by others
Data availability
The raw data of new Microcystis genomes reported in this study (58 and 13 from PMC and PCC, respectively) have been deposited in the ENA database and are available under the accession numbers PRJEB101697 and PRJEB105414, respectively. The accession numbers of the assembled genomes corresponding to these individual strains are listed in Supplementary Data S1. Figure 4 combines AntiSmash and metabolomic data that are available on Supplementary Data S2, the data used for Fig. 7B are available on Supplementary Data S4. Whole metabolomics dataset can be found on Mendeley (DOI: 10.17632/2rnz75jpzr.1). Raw data are available upon request.
References
Zhang, X., Liu, X., Yang, F. & Chen, L. Pan-genome analysis links the hereditary variation of Leptospirillum ferriphilum with its evolutionary adaptation. Front. Microbiol. 9, 577 (2018).
Caputo, A., Fournier, P. E. D. & Raoult, D. Genome and pan-genome analysis to classify emerging bacteria. Biol. Direct 14, 5 (2019).
Garner, R. E. et al. A genome catalogue of lake bacterial diversity and its drivers at continental scale. Nat. Microbiol. 8, 1920–1934 (2023).
Zhang, X., Xiao, L., Liu, J., Tian, Q. & Xie, J. Trade-off in genome turnover events leading to adaptive evolution of Microcystis aeruginosa species complex. BMC Genom. 24, 462 (2023).
Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54, 4–20 (2016).
Dick, G. J. et al. The genetic and ecophysiological diversity of Microcystis. Environ. Microbiol. 23, 7278–7313 (2021).
Mantzouki, E., Visser, P. M., Bormans, M. & Ibelings, B. W. Understanding the key ecological traits of cyanobacteria as a basis for their management and control in changing lakes. Aquat. Ecol. 50, 333–350 (2016).
Pineda-Mendoza, R. M. et al. Seasonal changes in the bacterial community structure of three eutrophicated urban lakes in Mexico City, with emphasis on Microcystis spp. Toxicon 179, 8–20 (2020).
Wu, Y. et al. Seasonal dynamics of water bloom-forming Microcystis morphospecies and the associated extracellular microcystin concentrations in large, shallow, eutrophic Dianchi Lake. J. Environ. Sci. 26, 1921–1929 (2014).
Jackrel, S. L. et al. Genome evolution and host-microbiome shifts correspond with intraspecific niche divergence within harmful algal bloom-forming Microcystis aeruginosa. Mol. Ecol. 28, 3994–4011 (2019).
Komárek, J. & Komárková, J. Review of the European Microcystis morphospecies (Cyanoprokaryotes) from nature. Fottea 2, 1–24 (2002).
Lepère, C., Wilmotte, A., & Meyer, B. Molecular diversity of Microcystis strains (Cyanophyceae, Chroococcales) based on 16S rDNA sequences. Syst. Geogr. Plants 70, 275–283 (2000).
Wu, Z. X., Gan, N. Q. & Song, L. R. Genetic diversity: geographical distribution and toxin profiles of Microcystis strains (Cyanobacteria) in China. J. Integr. Plant Biol. 49, 262–269 (2007).
Haande, S. et al. Diversity of Microcystis aeruginosa isolates (Chroococcales, Cyanobacteria) from East-African water bodies. Arch. Microbiol. 188, 15–25 (2007).
Yoshida, M. et al. Intra-specific phenotypic and genotypic variation in toxic cyanobacterial Microcystis strains. J. Appl. Microbiol. 105, 407–415 (2008).
Otsuka, S. et al. A proposal for the unification of five species of the cyanobacterial genus Microcystis Kützing ex Lemmermann 1907 under the rules of the Bacteriological Code. Int. J. Syst. Evolut. Microbiol. 51, 873–879 (2001).
Frangeul, L. et al. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genom. 9, 1–20 (2008).
Humbert, J. F. et al. A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PloS ONE 8, e70747 (2013).
Gaëtan, J. et al. Widespread formation of intracellular calcium carbonates by the bloom-forming 800 cyanobacterium Microcystis. Environ. Microbiol. 25, 751–765 (2023).
Chen, M., Xu, C., Wang, X., Wu, Y. & Li, L. Nonribosomal peptide synthetases and nonribosomal cyanopeptides synthesis in Microcystis: a comparative genomics study. Algal Res. 59, 102432 (2021a).
Pérez-Carrascal, O. M. et al. Single-colony sequencing reveals microbe-by-microbiome phylosymbiosis between the cyanobacterium Microcystis and its associated bacteria. Microbiome 9, 1–21 (2021).
Cai, H., McLimans, C. J., Beyer, J. E., Krumholz, L. R. & Hambright, K. D. Microcystis pangenome reveals cryptic diversity within and across morphospecies. Sci. Adv. 9, eadd3783 (2023).
Pérez-Carrascal, O. M. et al. Coherence of Microcystis species revealed through population genomics. ISME J. 13, 2887–2900 (2019).
Willis, A. & Woodhouse, J. N. Defining cyanobacterial species: diversity and description through genomics. Crit. Rev. Plant Sci. 39, 101–124 (2020).
Yancey, C. E. et al. The Western Lake Erie culture collection: a promising resource for evaluating the physiological and genetic diversity of Microcystis and its associated microbiome. Harmful Algae 126, 102440 (2023).
Welker, M., Maršálek, B., Šejnohová, L. & Von Doehren, H. Detection and identification of oligopeptides in Microcystis (cyanobacteria) colonies: toward an understanding of metabolic diversity. Peptides 27, 2090–2103 (2006).
Le Manach, S. et al. Global metabolomic characterizations of Microcystis spp. highlights clonal diversity in natural bloom-forming populations and expands metabolite structural diversity. Front. Microbiol. 10, 791 (2019).
Gluck-Thaler, E. et al. The architecture of metabolism maximizes biosynthetic diversity in the largest class of fungi. Mol. Biol. Evol. 37, 2838–2856 (2020).
Wiegand, C. & Pflugmacher, S. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol. Appl. Pharmacol. 203, 201–218 (2005).
Babica, P., Blaha, L. & Marsalek, B. Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. J. Phycol. 42, 9–20 (2006).
Schatz, D. et al. Ecological implications of the emergence of non-toxic subcultures from toxic Microcystis strains. Environ. Microbiol. 7, 798–805 (2005).
Leão, P. N., Vasconcelos, M. T. & Vasconcelos, V. M. Allelopathy in freshwater cyanobacteria. Crit. Rev. Microbiol. 35, 271–282 (2009).
Simon, R. D. Cyanophycin granules from blue-green alga Anabaena cylindrica— Reserve material consisting of copolymers of aspartic acid and arginine. Proc. Natl. Acad. Sci. USA 68, 265–267 (1971).
Garcia Pichel, F., Sherry, N. D. & Castenholz, R. W. Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem. Photobio. 56, 17–23 (1992).
Itou, Y., Okada, S. & Murakami, M. Two structural isomeric siderophores from the freshwater cyanobacterium Anabaena cylindrica (NIES-19). Tetrahedron 57, 9093–9099 (2001).
Nagle, D. G. & Paul, V. J. Production of secondary metabolites by filamentous tropical marine cyanobacteria: ecological functions of the compounds. J. Phycol. 35, 1412–1421 (1999).
Combes, A., Dellinger, M., Cadel-six, S., Amand, S. & Comte, K. Ciliate Nassula sp. grazing on a microcystin-producing cyanobacterium (Planktothrix agardhii): impact on cell growth and in the microcystin fractions. Aquat. Toxicol. 126, 435–441 (2013).
Leflaive, J. P. & Ten-Hage, L. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw. Biol. 52, 199–214 (2007).
Sharif DI, Gallon J, Smith CJ, Dudley E. Quorum sensing in Cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909. ISME J. 2, 1171–1182 (2008).
Krumbholz, J. et al. Deciphering chemical mediators regulating specialized metabolism in a symbiotic Cyanobacterium. Angew. Chem. Int. Ed. 61, e202204545 (2022).
Welker, M. et al. Seasonal shifts in chemotype composition of Microcystis sp. communities in the pelagial and the sediment of a shallow reservoir. Limnol. Oceanogr. 52, 609–619 (2007).
Kust, A. et al. Insight into unprecedented diversity of cyanopeptides in eutrophic ponds using an ms/ms networking approach. Toxins 12, 561 (2020).
Lifshits, M. & Carmeli, S. Metabolites of Microcystis aeruginosa bloom material from Lake Kinneret, Israel. J. Nat. Prod. 75, 209–219 (2012).
Pearson, L. A., Crosbie, N. D. & Neilan, B. A. Distribution and conservation of known secondary metabolite biosynthesis gene clusters in the genomes of geographically diverse Microcystis aeruginosa strains. Mar. Freshw. Res. 71, 701–716 (2019).
McDonald, K., DesRochers, N., Renaud, J. B., Sumarah, M. W. & McMullin, D. R. Metabolomics reveals strain-specific cyanopeptide profiles and their production dynamics in Microcystis aeruginosa and M. flos-aquae. Toxins 15, 254 (2023).
Kleigrewe, K. et al. Combining mass spectrometric metabolic profiling with genomic analysis: a powerful approach for discovering natural products from cyanobacteria. J. Nat. Prod. 78, 1671–1682 (2015).
Kim Tiam, S. et al. Insights into the diversity of secondary metabolites of Planktothrix using a biphasic approach combining global genomics and metabolomics. Toxins 11, 498 (2019).
Yancey, C. E. et al. Metabologenomics reveals strain-level genetic and chemical diversity of Microcystis secondary metabolism. mSystems 9, e0033424 (2024).
Ferrinho, S., Connaris, H., Mouncey, N. J., & Goss, R. J. Compendium of metabolomic and genomic datasets for Cyanobacteria: mined the gap. Water Res. 256, 121492 (2024).
Arevalo, P., VanInsberghe, D., and Polz, M.F. A reverse ecology framework for Bacteria and Archaea. in Population Genomics: Microorganisms, 77–96 (Springer, 2018).
Chen, M. Y. et al. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J. 15, 211–227 (2021b).
Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 102, 2567–2572 (2005).
Chang, H. Y., Yen, H. C., Chu, H. A. & Kuo, C. H. Population genomics of a thermophilic cyanobacterium revealed divergence at subspecies level and possible adaptation genes. Bot. Stud. 65, 35 (2024).
Hugenholtz, P., Chuvochina, M., Oren, A., Parks, D. H. & Soo, R. M. Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME J. 15, 1879–1892 (2021).
Ribeiro, K. F., Ferrero, A. P., Duarte, L., Turchetto-Zolet, A. C. & Crossetti, L. O. Comparative phylogeography of two free-living cosmopolitan cyanobacteria: insights on biogeographic and latitudinal distribution. J. Biogeogr. 47, 1106–1118 (2020).
Tromas, N. et al. Niche separation increases with genetic distance among bloom-forming cyanobacteria. Front. Microbiol. 9, 438 (2018).
van Gremberghe, I. et al. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PloS ONE 6, e19561 (2011).
Halary, S. et al. Intra-population genomic diversity of the bloom-forming cyanobacterium, Aphanizomenon gracile, at low spatial scale. ISME Commun. 3, 57 (2023).
Doré, H. et al. Differential global distribution of marine picocyanobacteria gene clusters reveals distinct niche-related adaptive strategies. ISME J. 17, 720–732 (2023).
Xu, Y., Leung, S. K., Li, T. M. & Yung, C. C. Hidden genomic diversity drives niche partitioning in a cosmopolitan eukaryotic picophytoplankton. ISME J. 18, wrae163 (2024).
Shih, P. M. et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc. Natl. Acad. Sci. USA 110, 1053–1058 (2013).
Terlouw, B. R. et al. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res. 51, D603–D610 (2023).
Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022).
Rodríguez-Gijón, A. et al. Linking prokaryotic genome size variation to metabolic potential and environment. ISME Commun. 3, 25 (2023).
Dehm, D. et al. Unlocking the spatial control of secondary metabolism uncovers hidden natural product diversity in Nostoc punctiforme. ACS Chem. Biol. 14, 1271–1279 (2019).
Dienst, D., Wichmann, J., Mantovani, O., Rodrigues, J. S. & Lindberg, P. High density cultivation for efficient sesquiterpenoid biosynthesis in Synechocystis sp PCC 6803. Sci. Rep. 10, 5932 (2020).
Núñez-Montero, K. et al. Genomic and metabolomic analysis of Antarctic bacteria revealed culture and elicitation conditions for the production of antimicrobial compounds. Biomolecules 10, 673 (2020).
Roussel, T. et al. Limnospira (Cyanobacteria) chemical fingerprint reveals local molecular adaptation. Microbiol. Spectr. 13, e01901–24 (2025).
Le Manach, S. et al. Physiological effects caused by microcystin-producing and non-microcystin producing Microcystis aeruginosa on medaka fish: a proteomic and metabolomic study on liver. Environ. Pollut. 234, 523–537 (2018).
Briand, E. et al. Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (cyanobacteria) population. ISME J. 3, 419–429 (2009).
Kuijpers, M. C. et al. Intraspecific divergence within Microcystis aeruginosa mediates the dynamics of freshwater harmful algal blooms under climate warming scenarios. Proc. B 292, 20242520 (2040).
Puddick, J. et al. High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners. Mar. Drugs 12, 5372–5395 (2014).
Hellweger, F. L. et al. Models predict planned phosphorus load reduction will make Lake Erie more toxic. Science 376, 1001–1005 (2022).
Whitton, B. A. Ecology of Cyanobacteria II: Their Diversity in Space and Time (Springer, 2012).
Cirés, S. & Ballot, A. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 54, 21–43 (2016).
Kurmayer, R., Deng, L. & Entfellner, E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 54, 69–86 (2016).
Leikoski, N. et al. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides. Chem. Biol. 20, 1033–1043 (2013).
Figueiredo, S. A. et al. Discovery of cyanobacterial natural products containing fatty acid residues. Angew. Chem. Int. Ed. 60, 10064–10072 (2021).
Chen, Q., Wang, L., Qi, Y. & Ma, C. Imaging mass spectrometry of interspecies metabolic exchange revealed the allelopathic interaction between Microcystis aeruginosa and its antagonist. Chemosphere 259, 127430 (2020).
Kim Tiam, S. et al. The success of the bloom-forming cyanobacteria Planktothrix: genotypes variability supports variable responses to light and temperature stress. Harmful Algae 117, 102285 (2022).
van Wichelen, J. eroen et al. Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (Cyanobacteria). Environ. Microbiol. 12, 2797–2813 (2010).
Zhai, C. hunmei et al. The mechanism of competition between two bloom-forming Microcystis species. Freshw. Biol. 58, 1831–1839 (2013).
Herrera, N. & Echeverri, F. Evidence of quorum sensing in Cyanobacteria by Homoserine Lactones: the origin of blooms. Water 13, 1831 (2021).
Burberg, C., Ilić, M., Petzoldt, T. & von Elert, E. Nitrate determines growth and protease inhibitor content of the cyanobacterium Microcystis aeruginosa. J. Appl. Phycol. 31, 1697–1707 (2019).
Dittmann, E., Gugger, M., Sivonen, K. & Fewer, D. P. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol. 23, 642–652 (2015).
Carmichael, W. W. Cyanobacteria secondary metabolites—the cyanotoxins. J. Appl. Bacteriol. 72, 445–459 (1992).
Demay, J., Bernard, C., Reinhardt, A. & Marie, B. Natural products from cyanobacteria: focus on beneficial activities. Mar. Drugs 17, 320 (2019).
Vesth, T. C. et al. Investigation of inter-and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nat. Genet. 50, 1688–1695 (2018).
Briand, E. et al. Chemically mediated interactions between Microcystis and Planktothrix: impact on their growth, morphology and metabolic profiles. Environ. Microbiol. 21, 1552–1566 (2019).
Firn, R. D. & Jones, C. G. Natural products–a simple model to explain chemical diversity. Nat. Prod. Rep. 20, 382–391 (2003).
Geers, A. U., Strube, M. L. & Bentzon-Tilia, M. Small spatial scale drivers of secondary metabolite biosynthetic diversity in environmental microbiomes. Msystems 8, e00724–22 (2023).
Cabello-Yeves, P. J. et al. Elucidating the picocyanobacteria salinity divide through ecogenomics of new freshwater isolates. BMC Biol. 20, 175 (2022).
Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Appl. Environ. Microbiol. 78, 8264–8271 (2012).
Salcher, M. M. Same same but different: ecological niche partitioning of planktonic freshwater prokaryotes. J. Limnol. 73, 74–87 (2014).
Singer, D. et al. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ. Int. 146, 106262 (2021).
Wu, D., Seshadri, R., Kyrpides, N. C. & Ivanova, N. N. A metagenomic perspective on the microbial prokaryotic genome census. Sci. Adv. 11, eadq2166 (2025).
Silva, S. G., Nabhan Homsi, M., Keller-Costa, T., Rocha, U. & Costa, R. Natural product biosynthetic potential reflects macroevolutionary diversification within a widely distributed bacterial taxon. Msystems 8, e00643–23 (2023).
Chevrette, M. G. et al. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat. Prod. Rep. 37, 566–599 (2020).
Doolittle, W. F. & Zhaxybayeva, O. On the origin of prokaryotic species. Genome Res. 19, 744–756 (2009).
Li, Q. et al. A large-scale comparative metagenomic study reveals the functional interactions in six bloom-forming Microcystis-epibiont communities. Front. Microbiol. 9, 746 (2018).
Kiledal, E. A. et al. Comparative genomic analysis of Microcystis strain diversity using conserved marker genes. Harmful Algae 132, 102580 (2024).
López-Pérez, M., Haro-Moreno, J. M., Coutinho, F. H., Martinez-Garcia, M. & Rodriguez-Valera, F. The evolutionary success of the marine bacterium SAR11 analyzed through a metagenomic perspective. mSystems 5, e00605-20 (2020).
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
Kotai, J. Instructions for preparation of modified nutrient solution Z8 for algae. Nor. Inst. Water Res. 11, 5 (1972).
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
von Meijenfeldt, F. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H. & Dutilh, B. E. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 20, 1–14 (2019).
Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Stamatakis, A. et al. RAxML-Light: a tool for computing terabyte phylogenies. Bioinformatics 28, 2064–2066 (2012).
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Pritchard, L. et al. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal. Methods 8, 12–24 (2016).
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. J. M. E. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).
R Core Team R : a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2024).
Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).
Le Moigne, D. et al. Dynamics of the metabolome of Aliinostoc sp. PMC 882.14 in response to light and temperature variations. Metabolites 11, 745 (2021).
Cegłowska, M., Szubert, K., Wieczerzak, E., Kosakowska, A. & Mazur-Marzec, H. Eighteen new aeruginosamide variants produced by the Baltic cyanobacterium Limnoraphis CCNP1324. Mar. Drugs 18, 446 (2020).
Jones, M. R. et al. CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Res. 196, 117017 (2021).
van Santen, J. A. et al. The Natural Products Atlas 2.0: a database of microbially-derived natural products. Nucleic Acids Res. 50, D1317–D1323 (2022).
Aron, A. T. et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 15, 1954–1991 (2020).
Olivon, F. et al. MetGem software for the generation of molecular networks based on the t-SNE algorithm. Anal. Chem. 90, 13900–13908 (2018).
Schymanski, E. L. et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ. Sci. Technol. 48, 2097–2098 (2014).
Marie, B., Le Meur, M., Duval, C., Quiquand, M., Lance, E. & Duperron, S. The threat is in the details–critical gap in ecotoxicological assessment of Microcystis blooms revealed by critical distinctions of genotype effects induced on Medaka fish. Environ. Pollut. 387, 127344 (2025).
Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).
Acknowledgements
This work was supported by the ANR MC-Tox project, grant ANR CE34-SJ 11008-22 of the French Agence Nationale de la Recherche. The Paris Muséum Collection (PMC) and the Pasteur Cultures of Cyanobacteria (PCC) collection are funded by the MNHN and the Institut Pasteur, respectively. The mass spectrometry analyses were acquired at the Plateau technique de spectrométrie de masse bio-organique, Muséum National d’Histoire Naturelle, Paris, France. The authors thank the anonymous referees for providing valuable suggestions that significantly improved the quality of the manuscript.
Author information
Authors and Affiliations
Contributions
S.H., M.G., and B.M. conceived and designed the experiments; C.D. isolated all new strains of the PMC; A.H., M.L.M., C.D., S.H., M.Q., and M.B. performed the analysis; A.H., J.B.P., L.M., M.D., S.H., M.D., and B.M. treated the data. All authors wrote and reviewed the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary handling editor: David Favero. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Huré, A., Le Meur, M., Duval, C. et al. Metabolite diversity of Microcystis strains shows tight correspondence to genotype and may contribute to ecotype specificities. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09599-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42003-026-09599-7


