Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Metabolite diversity of Microcystis strains shows tight correspondence to genotype and may contribute to ecotype specificities
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 January 2026

Metabolite diversity of Microcystis strains shows tight correspondence to genotype and may contribute to ecotype specificities

  • Aurore Huré1,2,
  • Maiwenn Le Meur1,
  • Charlotte Duval1,
  • Jean-Pierre Bouly  ORCID: orcid.org/0000-0002-2423-38671,3,
  • Lou Mary1,4,
  • Manon Quiquand1,
  • Michella Dawra1,
  • Muriel Gugger5,
  • Sébastien Halary  ORCID: orcid.org/0000-0002-7089-94591 na1 &
  • …
  • Benjamin Marie  ORCID: orcid.org/0000-0001-9880-55411 na1 

Communications Biology , Article number:  (2026) Cite this article

  • 817 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Microbial ecology
  • Water microbiology

Abstract

Microcystis is one of the most common bloom-forming cyanobacteria colonizing freshwater ecosystems worldwide. This genus remarkably produces numerous bio-active accessory metabolites, which are believed to be potentially involved in different ecological and/or physiological processes. However, their genuine contribution to the evolutionary success of Microcystis blooms remains undetermined. To better depict the potential relationship between the local genetic diversity of blooming Microcystis populations and their respective associated chemical diversity, we conducted a joint genomic and metabolomic analysis of 65 Microcystis strains collected from various lakes in France and surrounding Western European countries. Interestingly, both core and pan-gene phylogenetic analysis place 57 of these strains in 11 distinct genotypes with at least 2 genomes, being widely distributed along the entire Microcystis phylogeny and presenting specific signatures of accessory metabolite biosynthesis. The direct chemical analysis of metabolite diversity produced by these strains, cultured under laboratory conditions, reveals the production of stable metabolite cocktails, with minimal variations over replication, growth phases and culture conditions. Remarkably, these strains belonging to 11 different genotypes correspond to 13 distinct chemotypes according to an accurate one-chemotype-for-one-genotype rule. Furthermore, these genotypes also appear distinguishable regarding their respective ecotoxicological traits and might be considered as specific toxico-ecotypes. Overall, our investigations reveal that the production of accessory metabolites constitute well conserved chemical traits across the different Microcystis genotypes, suggesting these molecules may be involved in key adaptive and selective processes, that still remain under-explored.

Similar content being viewed by others

Semi-automated classification of colonial Microcystis by FlowCAM imaging flow cytometry in mesocosm experiment reveals high heterogeneity during seasonal bloom

Article Open access 30 April 2021

Genome-resolved correlation mapping links microbial community structure to metabolic interactions driving methane production from wastewater

Article Open access 04 September 2023

Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin

Article Open access 06 February 2023

Data availability

The raw data of new Microcystis genomes reported in this study (58 and 13 from PMC and PCC, respectively) have been deposited in the ENA database and are available under the accession numbers PRJEB101697 and PRJEB105414, respectively. The accession numbers of the assembled genomes corresponding to these individual strains are listed in Supplementary Data S1. Figure 4 combines AntiSmash and metabolomic data that are available on Supplementary Data S2, the data used for Fig. 7B are available on Supplementary Data S4. Whole metabolomics dataset can be found on Mendeley (DOI: 10.17632/2rnz75jpzr.1). Raw data are available upon request.

References

  1. Zhang, X., Liu, X., Yang, F. & Chen, L. Pan-genome analysis links the hereditary variation of Leptospirillum ferriphilum with its evolutionary adaptation. Front. Microbiol. 9, 577 (2018).

    Google Scholar 

  2. Caputo, A., Fournier, P. E. D. & Raoult, D. Genome and pan-genome analysis to classify emerging bacteria. Biol. Direct 14, 5 (2019).

    Google Scholar 

  3. Garner, R. E. et al. A genome catalogue of lake bacterial diversity and its drivers at continental scale. Nat. Microbiol. 8, 1920–1934 (2023).

    Google Scholar 

  4. Zhang, X., Xiao, L., Liu, J., Tian, Q. & Xie, J. Trade-off in genome turnover events leading to adaptive evolution of Microcystis aeruginosa species complex. BMC Genom. 24, 462 (2023).

    Google Scholar 

  5. Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54, 4–20 (2016).

    Google Scholar 

  6. Dick, G. J. et al. The genetic and ecophysiological diversity of Microcystis. Environ. Microbiol. 23, 7278–7313 (2021).

    Google Scholar 

  7. Mantzouki, E., Visser, P. M., Bormans, M. & Ibelings, B. W. Understanding the key ecological traits of cyanobacteria as a basis for their management and control in changing lakes. Aquat. Ecol. 50, 333–350 (2016).

    Google Scholar 

  8. Pineda-Mendoza, R. M. et al. Seasonal changes in the bacterial community structure of three eutrophicated urban lakes in Mexico City, with emphasis on Microcystis spp. Toxicon 179, 8–20 (2020).

    Google Scholar 

  9. Wu, Y. et al. Seasonal dynamics of water bloom-forming Microcystis morphospecies and the associated extracellular microcystin concentrations in large, shallow, eutrophic Dianchi Lake. J. Environ. Sci. 26, 1921–1929 (2014).

    Google Scholar 

  10. Jackrel, S. L. et al. Genome evolution and host-microbiome shifts correspond with intraspecific niche divergence within harmful algal bloom-forming Microcystis aeruginosa. Mol. Ecol. 28, 3994–4011 (2019).

    Google Scholar 

  11. Komárek, J. & Komárková, J. Review of the European Microcystis morphospecies (Cyanoprokaryotes) from nature. Fottea 2, 1–24 (2002).

    Google Scholar 

  12. Lepère, C., Wilmotte, A., & Meyer, B. Molecular diversity of Microcystis strains (Cyanophyceae, Chroococcales) based on 16S rDNA sequences. Syst. Geogr. Plants 70, 275–283 (2000).

  13. Wu, Z. X., Gan, N. Q. & Song, L. R. Genetic diversity: geographical distribution and toxin profiles of Microcystis strains (Cyanobacteria) in China. J. Integr. Plant Biol. 49, 262–269 (2007).

    Google Scholar 

  14. Haande, S. et al. Diversity of Microcystis aeruginosa isolates (Chroococcales, Cyanobacteria) from East-African water bodies. Arch. Microbiol. 188, 15–25 (2007).

    Google Scholar 

  15. Yoshida, M. et al. Intra-specific phenotypic and genotypic variation in toxic cyanobacterial Microcystis strains. J. Appl. Microbiol. 105, 407–415 (2008).

    Google Scholar 

  16. Otsuka, S. et al. A proposal for the unification of five species of the cyanobacterial genus Microcystis Kützing ex Lemmermann 1907 under the rules of the Bacteriological Code. Int. J. Syst. Evolut. Microbiol. 51, 873–879 (2001).

    Google Scholar 

  17. Frangeul, L. et al. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genom. 9, 1–20 (2008).

    Google Scholar 

  18. Humbert, J. F. et al. A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PloS ONE 8, e70747 (2013).

    Google Scholar 

  19. Gaëtan, J. et al. Widespread formation of intracellular calcium carbonates by the bloom-forming 800 cyanobacterium Microcystis. Environ. Microbiol. 25, 751–765 (2023).

    Google Scholar 

  20. Chen, M., Xu, C., Wang, X., Wu, Y. & Li, L. Nonribosomal peptide synthetases and nonribosomal cyanopeptides synthesis in Microcystis: a comparative genomics study. Algal Res. 59, 102432 (2021a).

    Google Scholar 

  21. Pérez-Carrascal, O. M. et al. Single-colony sequencing reveals microbe-by-microbiome phylosymbiosis between the cyanobacterium Microcystis and its associated bacteria. Microbiome 9, 1–21 (2021).

    Google Scholar 

  22. Cai, H., McLimans, C. J., Beyer, J. E., Krumholz, L. R. & Hambright, K. D. Microcystis pangenome reveals cryptic diversity within and across morphospecies. Sci. Adv. 9, eadd3783 (2023).

    Google Scholar 

  23. Pérez-Carrascal, O. M. et al. Coherence of Microcystis species revealed through population genomics. ISME J. 13, 2887–2900 (2019).

    Google Scholar 

  24. Willis, A. & Woodhouse, J. N. Defining cyanobacterial species: diversity and description through genomics. Crit. Rev. Plant Sci. 39, 101–124 (2020).

    Google Scholar 

  25. Yancey, C. E. et al. The Western Lake Erie culture collection: a promising resource for evaluating the physiological and genetic diversity of Microcystis and its associated microbiome. Harmful Algae 126, 102440 (2023).

    Google Scholar 

  26. Welker, M., Maršálek, B., Šejnohová, L. & Von Doehren, H. Detection and identification of oligopeptides in Microcystis (cyanobacteria) colonies: toward an understanding of metabolic diversity. Peptides 27, 2090–2103 (2006).

    Google Scholar 

  27. Le Manach, S. et al. Global metabolomic characterizations of Microcystis spp. highlights clonal diversity in natural bloom-forming populations and expands metabolite structural diversity. Front. Microbiol. 10, 791 (2019).

    Google Scholar 

  28. Gluck-Thaler, E. et al. The architecture of metabolism maximizes biosynthetic diversity in the largest class of fungi. Mol. Biol. Evol. 37, 2838–2856 (2020).

    Google Scholar 

  29. Wiegand, C. & Pflugmacher, S. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol. Appl. Pharmacol. 203, 201–218 (2005).

    Google Scholar 

  30. Babica, P., Blaha, L. & Marsalek, B. Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. J. Phycol. 42, 9–20 (2006).

    Google Scholar 

  31. Schatz, D. et al. Ecological implications of the emergence of non-toxic subcultures from toxic Microcystis strains. Environ. Microbiol. 7, 798–805 (2005).

    Google Scholar 

  32. Leão, P. N., Vasconcelos, M. T. & Vasconcelos, V. M. Allelopathy in freshwater cyanobacteria. Crit. Rev. Microbiol. 35, 271–282 (2009).

    Google Scholar 

  33. Simon, R. D. Cyanophycin granules from blue-green alga Anabaena cylindrica— Reserve material consisting of copolymers of aspartic acid and arginine. Proc. Natl. Acad. Sci. USA 68, 265–267 (1971).

    Google Scholar 

  34. Garcia Pichel, F., Sherry, N. D. & Castenholz, R. W. Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem. Photobio. 56, 17–23 (1992).

    Google Scholar 

  35. Itou, Y., Okada, S. & Murakami, M. Two structural isomeric siderophores from the freshwater cyanobacterium Anabaena cylindrica (NIES-19). Tetrahedron 57, 9093–9099 (2001).

    Google Scholar 

  36. Nagle, D. G. & Paul, V. J. Production of secondary metabolites by filamentous tropical marine cyanobacteria: ecological functions of the compounds. J. Phycol. 35, 1412–1421 (1999).

    Google Scholar 

  37. Combes, A., Dellinger, M., Cadel-six, S., Amand, S. & Comte, K. Ciliate Nassula sp. grazing on a microcystin-producing cyanobacterium (Planktothrix agardhii): impact on cell growth and in the microcystin fractions. Aquat. Toxicol. 126, 435–441 (2013).

    Google Scholar 

  38. Leflaive, J. P. & Ten-Hage, L. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw. Biol. 52, 199–214 (2007).

    Google Scholar 

  39. Sharif DI, Gallon J, Smith CJ, Dudley E. Quorum sensing in Cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909. ISME J. 2, 1171–1182 (2008).

  40. Krumbholz, J. et al. Deciphering chemical mediators regulating specialized metabolism in a symbiotic Cyanobacterium. Angew. Chem. Int. Ed. 61, e202204545 (2022).

    Google Scholar 

  41. Welker, M. et al. Seasonal shifts in chemotype composition of Microcystis sp. communities in the pelagial and the sediment of a shallow reservoir. Limnol. Oceanogr. 52, 609–619 (2007).

    Google Scholar 

  42. Kust, A. et al. Insight into unprecedented diversity of cyanopeptides in eutrophic ponds using an ms/ms networking approach. Toxins 12, 561 (2020).

    Google Scholar 

  43. Lifshits, M. & Carmeli, S. Metabolites of Microcystis aeruginosa bloom material from Lake Kinneret, Israel. J. Nat. Prod. 75, 209–219 (2012).

    Google Scholar 

  44. Pearson, L. A., Crosbie, N. D. & Neilan, B. A. Distribution and conservation of known secondary metabolite biosynthesis gene clusters in the genomes of geographically diverse Microcystis aeruginosa strains. Mar. Freshw. Res. 71, 701–716 (2019).

    Google Scholar 

  45. McDonald, K., DesRochers, N., Renaud, J. B., Sumarah, M. W. & McMullin, D. R. Metabolomics reveals strain-specific cyanopeptide profiles and their production dynamics in Microcystis aeruginosa and M. flos-aquae. Toxins 15, 254 (2023).

    Google Scholar 

  46. Kleigrewe, K. et al. Combining mass spectrometric metabolic profiling with genomic analysis: a powerful approach for discovering natural products from cyanobacteria. J. Nat. Prod. 78, 1671–1682 (2015).

    Google Scholar 

  47. Kim Tiam, S. et al. Insights into the diversity of secondary metabolites of Planktothrix using a biphasic approach combining global genomics and metabolomics. Toxins 11, 498 (2019).

    Google Scholar 

  48. Yancey, C. E. et al. Metabologenomics reveals strain-level genetic and chemical diversity of Microcystis secondary metabolism. mSystems 9, e0033424 (2024).

    Google Scholar 

  49. Ferrinho, S., Connaris, H., Mouncey, N. J., & Goss, R. J. Compendium of metabolomic and genomic datasets for Cyanobacteria: mined the gap. Water Res. 256, 121492 (2024).

  50. Arevalo, P., VanInsberghe, D., and Polz, M.F. A reverse ecology framework for Bacteria and Archaea. in Population Genomics: Microorganisms, 77–96 (Springer, 2018).

  51. Chen, M. Y. et al. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J. 15, 211–227 (2021b).

    Google Scholar 

  52. Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 102, 2567–2572 (2005).

    Google Scholar 

  53. Chang, H. Y., Yen, H. C., Chu, H. A. & Kuo, C. H. Population genomics of a thermophilic cyanobacterium revealed divergence at subspecies level and possible adaptation genes. Bot. Stud. 65, 35 (2024).

    Google Scholar 

  54. Hugenholtz, P., Chuvochina, M., Oren, A., Parks, D. H. & Soo, R. M. Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME J. 15, 1879–1892 (2021).

    Google Scholar 

  55. Ribeiro, K. F., Ferrero, A. P., Duarte, L., Turchetto-Zolet, A. C. & Crossetti, L. O. Comparative phylogeography of two free-living cosmopolitan cyanobacteria: insights on biogeographic and latitudinal distribution. J. Biogeogr. 47, 1106–1118 (2020).

    Google Scholar 

  56. Tromas, N. et al. Niche separation increases with genetic distance among bloom-forming cyanobacteria. Front. Microbiol. 9, 438 (2018).

    Google Scholar 

  57. van Gremberghe, I. et al. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PloS ONE 6, e19561 (2011).

    Google Scholar 

  58. Halary, S. et al. Intra-population genomic diversity of the bloom-forming cyanobacterium, Aphanizomenon gracile, at low spatial scale. ISME Commun. 3, 57 (2023).

    Google Scholar 

  59. Doré, H. et al. Differential global distribution of marine picocyanobacteria gene clusters reveals distinct niche-related adaptive strategies. ISME J. 17, 720–732 (2023).

    Google Scholar 

  60. Xu, Y., Leung, S. K., Li, T. M. & Yung, C. C. Hidden genomic diversity drives niche partitioning in a cosmopolitan eukaryotic picophytoplankton. ISME J. 18, wrae163 (2024).

    Google Scholar 

  61. Shih, P. M. et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc. Natl. Acad. Sci. USA 110, 1053–1058 (2013).

    Google Scholar 

  62. Terlouw, B. R. et al. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res. 51, D603–D610 (2023).

    Google Scholar 

  63. Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022).

    Google Scholar 

  64. Rodríguez-Gijón, A. et al. Linking prokaryotic genome size variation to metabolic potential and environment. ISME Commun. 3, 25 (2023).

    Google Scholar 

  65. Dehm, D. et al. Unlocking the spatial control of secondary metabolism uncovers hidden natural product diversity in Nostoc punctiforme. ACS Chem. Biol. 14, 1271–1279 (2019).

    Google Scholar 

  66. Dienst, D., Wichmann, J., Mantovani, O., Rodrigues, J. S. & Lindberg, P. High density cultivation for efficient sesquiterpenoid biosynthesis in Synechocystis sp PCC 6803. Sci. Rep. 10, 5932 (2020).

    Google Scholar 

  67. Núñez-Montero, K. et al. Genomic and metabolomic analysis of Antarctic bacteria revealed culture and elicitation conditions for the production of antimicrobial compounds. Biomolecules 10, 673 (2020).

    Google Scholar 

  68. Roussel, T. et al. Limnospira (Cyanobacteria) chemical fingerprint reveals local molecular adaptation. Microbiol. Spectr. 13, e01901–24 (2025).

    Google Scholar 

  69. Le Manach, S. et al. Physiological effects caused by microcystin-producing and non-microcystin producing Microcystis aeruginosa on medaka fish: a proteomic and metabolomic study on liver. Environ. Pollut. 234, 523–537 (2018).

    Google Scholar 

  70. Briand, E. et al. Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (cyanobacteria) population. ISME J. 3, 419–429 (2009).

    Google Scholar 

  71. Kuijpers, M. C. et al. Intraspecific divergence within Microcystis aeruginosa mediates the dynamics of freshwater harmful algal blooms under climate warming scenarios. Proc. B 292, 20242520 (2040).

    Google Scholar 

  72. Puddick, J. et al. High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners. Mar. Drugs 12, 5372–5395 (2014).

    Google Scholar 

  73. Hellweger, F. L. et al. Models predict planned phosphorus load reduction will make Lake Erie more toxic. Science 376, 1001–1005 (2022).

    Google Scholar 

  74. Whitton, B. A. Ecology of Cyanobacteria II: Their Diversity in Space and Time (Springer, 2012).

  75. Cirés, S. & Ballot, A. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 54, 21–43 (2016).

    Google Scholar 

  76. Kurmayer, R., Deng, L. & Entfellner, E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 54, 69–86 (2016).

    Google Scholar 

  77. Leikoski, N. et al. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides. Chem. Biol. 20, 1033–1043 (2013).

    Google Scholar 

  78. Figueiredo, S. A. et al. Discovery of cyanobacterial natural products containing fatty acid residues. Angew. Chem. Int. Ed. 60, 10064–10072 (2021).

    Google Scholar 

  79. Chen, Q., Wang, L., Qi, Y. & Ma, C. Imaging mass spectrometry of interspecies metabolic exchange revealed the allelopathic interaction between Microcystis aeruginosa and its antagonist. Chemosphere 259, 127430 (2020).

    Google Scholar 

  80. Kim Tiam, S. et al. The success of the bloom-forming cyanobacteria Planktothrix: genotypes variability supports variable responses to light and temperature stress. Harmful Algae 117, 102285 (2022).

    Google Scholar 

  81. van Wichelen, J. eroen et al. Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (Cyanobacteria). Environ. Microbiol. 12, 2797–2813 (2010).

    Google Scholar 

  82. Zhai, C. hunmei et al. The mechanism of competition between two bloom-forming Microcystis species. Freshw. Biol. 58, 1831–1839 (2013).

    Google Scholar 

  83. Herrera, N. & Echeverri, F. Evidence of quorum sensing in Cyanobacteria by Homoserine Lactones: the origin of blooms. Water 13, 1831 (2021).

    Google Scholar 

  84. Burberg, C., Ilić, M., Petzoldt, T. & von Elert, E. Nitrate determines growth and protease inhibitor content of the cyanobacterium Microcystis aeruginosa. J. Appl. Phycol. 31, 1697–1707 (2019).

    Google Scholar 

  85. Dittmann, E., Gugger, M., Sivonen, K. & Fewer, D. P. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol. 23, 642–652 (2015).

    Google Scholar 

  86. Carmichael, W. W. Cyanobacteria secondary metabolites—the cyanotoxins. J. Appl. Bacteriol. 72, 445–459 (1992).

    Google Scholar 

  87. Demay, J., Bernard, C., Reinhardt, A. & Marie, B. Natural products from cyanobacteria: focus on beneficial activities. Mar. Drugs 17, 320 (2019).

    Google Scholar 

  88. Vesth, T. C. et al. Investigation of inter-and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nat. Genet. 50, 1688–1695 (2018).

    Google Scholar 

  89. Briand, E. et al. Chemically mediated interactions between Microcystis and Planktothrix: impact on their growth, morphology and metabolic profiles. Environ. Microbiol. 21, 1552–1566 (2019).

    Google Scholar 

  90. Firn, R. D. & Jones, C. G. Natural products–a simple model to explain chemical diversity. Nat. Prod. Rep. 20, 382–391 (2003).

    Google Scholar 

  91. Geers, A. U., Strube, M. L. & Bentzon-Tilia, M. Small spatial scale drivers of secondary metabolite biosynthetic diversity in environmental microbiomes. Msystems 8, e00724–22 (2023).

    Google Scholar 

  92. Cabello-Yeves, P. J. et al. Elucidating the picocyanobacteria salinity divide through ecogenomics of new freshwater isolates. BMC Biol. 20, 175 (2022).

    Google Scholar 

  93. Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Appl. Environ. Microbiol. 78, 8264–8271 (2012).

    Google Scholar 

  94. Salcher, M. M. Same same but different: ecological niche partitioning of planktonic freshwater prokaryotes. J. Limnol. 73, 74–87 (2014).

    Google Scholar 

  95. Singer, D. et al. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ. Int. 146, 106262 (2021).

    Google Scholar 

  96. Wu, D., Seshadri, R., Kyrpides, N. C. & Ivanova, N. N. A metagenomic perspective on the microbial prokaryotic genome census. Sci. Adv. 11, eadq2166 (2025).

    Google Scholar 

  97. Silva, S. G., Nabhan Homsi, M., Keller-Costa, T., Rocha, U. & Costa, R. Natural product biosynthetic potential reflects macroevolutionary diversification within a widely distributed bacterial taxon. Msystems 8, e00643–23 (2023).

    Google Scholar 

  98. Chevrette, M. G. et al. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat. Prod. Rep. 37, 566–599 (2020).

    Google Scholar 

  99. Doolittle, W. F. & Zhaxybayeva, O. On the origin of prokaryotic species. Genome Res. 19, 744–756 (2009).

    Google Scholar 

  100. Li, Q. et al. A large-scale comparative metagenomic study reveals the functional interactions in six bloom-forming Microcystis-epibiont communities. Front. Microbiol. 9, 746 (2018).

    Google Scholar 

  101. Kiledal, E. A. et al. Comparative genomic analysis of Microcystis strain diversity using conserved marker genes. Harmful Algae 132, 102580 (2024).

    Google Scholar 

  102. López-Pérez, M., Haro-Moreno, J. M., Coutinho, F. H., Martinez-Garcia, M. & Rodriguez-Valera, F. The evolutionary success of the marine bacterium SAR11 analyzed through a metagenomic perspective. mSystems 5, e00605-20 (2020).

    Google Scholar 

  103. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Google Scholar 

  104. Kotai, J. Instructions for preparation of modified nutrient solution Z8 for algae. Nor. Inst. Water Res. 11, 5 (1972).

    Google Scholar 

  105. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979).

    Google Scholar 

  106. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  107. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    Google Scholar 

  108. von Meijenfeldt, F. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H. & Dutilh, B. E. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 20, 1–14 (2019).

    Google Scholar 

  109. Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    Google Scholar 

  110. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Google Scholar 

  111. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Google Scholar 

  112. Stamatakis, A. et al. RAxML-Light: a tool for computing terabyte phylogenies. Bioinformatics 28, 2064–2066 (2012).

    Google Scholar 

  113. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Google Scholar 

  114. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Google Scholar 

  115. Pritchard, L. et al. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal. Methods 8, 12–24 (2016).

  116. Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. J. M. E. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).

    Google Scholar 

  117. R Core Team R : a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2024).

  118. Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).

    Google Scholar 

  119. Le Moigne, D. et al. Dynamics of the metabolome of Aliinostoc sp. PMC 882.14 in response to light and temperature variations. Metabolites 11, 745 (2021).

    Google Scholar 

  120. Cegłowska, M., Szubert, K., Wieczerzak, E., Kosakowska, A. & Mazur-Marzec, H. Eighteen new aeruginosamide variants produced by the Baltic cyanobacterium Limnoraphis CCNP1324. Mar. Drugs 18, 446 (2020).

    Google Scholar 

  121. Jones, M. R. et al. CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Res. 196, 117017 (2021).

    Google Scholar 

  122. van Santen, J. A. et al. The Natural Products Atlas 2.0: a database of microbially-derived natural products. Nucleic Acids Res. 50, D1317–D1323 (2022).

    Google Scholar 

  123. Aron, A. T. et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 15, 1954–1991 (2020).

    Google Scholar 

  124. Olivon, F. et al. MetGem software for the generation of molecular networks based on the t-SNE algorithm. Anal. Chem. 90, 13900–13908 (2018).

    Google Scholar 

  125. Schymanski, E. L. et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ. Sci. Technol. 48, 2097–2098 (2014).

    Google Scholar 

  126. Marie, B., Le Meur, M., Duval, C., Quiquand, M., Lance, E. & Duperron, S. The threat is in the details–critical gap in ecotoxicological assessment of Microcystis blooms revealed by critical distinctions of genotype effects induced on Medaka fish. Environ. Pollut. 387, 127344 (2025).

  127. Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the ANR MC-Tox project, grant ANR CE34-SJ 11008-22 of the French Agence Nationale de la Recherche. The Paris Muséum Collection (PMC) and the Pasteur Cultures of Cyanobacteria (PCC) collection are funded by the MNHN and the Institut Pasteur, respectively. The mass spectrometry analyses were acquired at the Plateau technique de spectrométrie de masse bio-organique, Muséum National d’Histoire Naturelle, Paris, France. The authors thank the anonymous referees for providing valuable suggestions that significantly improved the quality of the manuscript.

Author information

Author notes
  1. These authors contributed equally: Sébastien Halary, Benjamin Marie.

Authors and Affiliations

  1. Molécules de Communication et Adaptation des Micro-organismes (MCAM), équipe “Cyanobactéries, Cyanotoxines et Environnement”, UMR 7245, CNRS, MNHN, Muséum National d’Histoire Naturelle, RDC Bâtiment de Cryptogamie - CP 39, Paris, France

    Aurore Huré, Maiwenn Le Meur, Charlotte Duval, Jean-Pierre Bouly, Lou Mary, Manon Quiquand, Michella Dawra, Sébastien Halary & Benjamin Marie

  2. UMR-I 02 SEBIO, Université de Reims-Champagne-Ardennes, Reims, France

    Aurore Huré

  3. UFR 927, Sorbonne Université, Paris, France

    Jean-Pierre Bouly

  4. Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS, EPHE, Paris, France

    Lou Mary

  5. Collection des Cyanobactéries, Institut Pasteur, Université Paris-Cité, Paris, France

    Muriel Gugger

Authors
  1. Aurore Huré
    View author publications

    Search author on:PubMed Google Scholar

  2. Maiwenn Le Meur
    View author publications

    Search author on:PubMed Google Scholar

  3. Charlotte Duval
    View author publications

    Search author on:PubMed Google Scholar

  4. Jean-Pierre Bouly
    View author publications

    Search author on:PubMed Google Scholar

  5. Lou Mary
    View author publications

    Search author on:PubMed Google Scholar

  6. Manon Quiquand
    View author publications

    Search author on:PubMed Google Scholar

  7. Michella Dawra
    View author publications

    Search author on:PubMed Google Scholar

  8. Muriel Gugger
    View author publications

    Search author on:PubMed Google Scholar

  9. Sébastien Halary
    View author publications

    Search author on:PubMed Google Scholar

  10. Benjamin Marie
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.H., M.G., and B.M. conceived and designed the experiments; C.D. isolated all new strains of the PMC; A.H., M.L.M., C.D., S.H., M.Q., and M.B. performed the analysis; A.H., J.B.P., L.M., M.D., S.H., M.D., and B.M. treated the data. All authors wrote and reviewed the manuscript.

Corresponding authors

Correspondence to Sébastien Halary or Benjamin Marie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary handling editor: David Favero. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review File

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huré, A., Le Meur, M., Duval, C. et al. Metabolite diversity of Microcystis strains shows tight correspondence to genotype and may contribute to ecotype specificities. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09599-7

Download citation

  • Received: 06 May 2025

  • Accepted: 15 January 2026

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s42003-026-09599-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing