Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Structural mechanism of anti-MHC-I antibody blocking of inhibitory NK cell receptors in tumor immunity
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 February 2026

Structural mechanism of anti-MHC-I antibody blocking of inhibitory NK cell receptors in tumor immunity

  • Jiansheng Jiang  ORCID: orcid.org/0000-0003-0964-54811 na1,
  • Abir K. Panda2 na1,
  • Kannan Natarajan  ORCID: orcid.org/0000-0002-6295-25711 na1,
  • Haotian Lei  ORCID: orcid.org/0000-0002-4882-02493,
  • Shikha Sharma4,
  • Lisa F. Boyd1,
  • Reanne R. Towler  ORCID: orcid.org/0009-0001-7016-716X1,
  • Sruthi Chempati2,
  • Javeed Ahmad1,5,
  • Abraham J. Morton6,
  • Zabrina C. Lang6,
  • Yi Sun7,
  • Nikolaos Sgourakis  ORCID: orcid.org/0000-0003-3655-39027,
  • Martin Meier-Schellersheim  ORCID: orcid.org/0000-0002-8754-63774,
  • Rick K. Huang6,
  • Ethan M. Shevach  ORCID: orcid.org/0000-0003-1607-46642 &
  • …
  • David H. Margulies  ORCID: orcid.org/0000-0001-8530-73751 

Communications Biology , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electron microscopy
  • Tumour immunology

Abstract

Anti-major histocompatibility complex class I (MHC-I) mAbs can stimulate immune responses to tumors and infections by blocking suppressive signals delivered via various immune inhibitory receptors. To understand such functions, we determined the structure of a highly cross-reactive anti-human MHC-I mAb, B1.23.2, in complex with the MHC-I molecule HLA-B*44:05 by both cryo-electron microscopy (cryo-EM) and X-ray crystallography. Structural models determined by the two methods were essentially identical revealing that B1.23.2 binds a conserved region on the α21 helix that overlaps the killer immunoglobulin-like receptor (KIR) binding site. Structural comparison to KIR/HLA complexes reveals a mechanism by which B1.23.2 blocks inhibitory receptor interactions, leading to natural killer (NK) cell activation. B1.23.2 treatment of the human KLM-1 pancreatic cancer model in humanized (NSG-IL15) mice provides evidence of suppression of tumor growth. Such anti-MHC-I mAb that block inhibitory KIR/HLA interactions may prove useful for tumor immunotherapy.

Data availability

The cryo-EM maps were deposited in the Electron Microscopy Data Bank under the accession IDs EMD-46601 (3.02 Å), EMD-46602 (3.31 Å), and EMD-70276 (3.44 Å), and the atomic coordinates were deposited in the PDB under the accession IDs 9D73, 9D74, and 9OA9. X-ray crystal structure data and atomic coordinates were deposited in PDB under the accession ID 8TQ6. All source data for graphs, plots, and structures may be obtained from the authors. Numerical source data for plots is found in Supplementary Data 1 (for Supplementary Fig. 1b) and Supplementary Data 2 (for Figs. 1a and 3d).

References

  1. Margulies, D. H., Natarajan, K., Rossjohn, J. & McCluskey, J. in Paul’s Fundamental Immunology (eds. Flajnik, M. F., Singh, N. J. & Holland, S. M.) (Wolters Kluwer, 2023).

  2. Blum, J. S., Wearsch, P. A. & Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 31, 443–473 (2013).

    Google Scholar 

  3. Bottino, C., Picant, V., Vivier, E. & Castriconi, R. Natural killer cells and engagers: powerful weapons against cancer. Immunol. Rev. 328, 412–421 (2024).

    Google Scholar 

  4. Brown, D., Trowsdale, J. & Allen, R. The LILR family: modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens 64, 215–225 (2004).

    Google Scholar 

  5. Malnati, M. S. et al. Peptide specificity in the recognition of MHC class I by natural killer cell clones. Science 267, 1016–1018 (1995).

    Google Scholar 

  6. Sim, M. J. W. et al. Innate receptors with high specificity for HLA class I-peptide complexes. Sci. Immunol. 8, eadh1781 (2023).

    Google Scholar 

  7. Chapman, T. L., Heikeman, A. P. & Bjorkman, P. J. The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 11, 603–613 (1999).

    Google Scholar 

  8. Shiroishi, M. et al. Structural basis for recognition of the nonclassical MHC molecule HLA-G by the leukocyte Ig-like receptor B2 (LILRB2/LIR2/ILT4/CD85d). Proc. Natl. Acad. Sci. USA 103, 16412–16417 (2006).

    Google Scholar 

  9. Marrack, P., Scott-Browne, J. P., Dai, S., Gapin, L. & Kappler, J. W. Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu. Rev. Immunol. 26, 171–203 (2008).

    Google Scholar 

  10. Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015).

    Google Scholar 

  11. Panda, A. K. et al. Cutting edge: inhibition of the interaction of NK inhibitory receptors with MHC class I augments antiviral and antitumor immunity. J. Immunol. 205, 567–572 (2020).

    Google Scholar 

  12. Kohrt, H. E. et al. Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies. Blood 123, 678–686 (2014).

    Google Scholar 

  13. Panda, A. K. et al. Antibody-mediated inhibition of HLA/LILR interactions breaks innate immune tolerance and induces antitumor immunity. Cancer Immunol. Res. 13, 1938–1955 (2025).

    Google Scholar 

  14. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Google Scholar 

  15. Paul, S. & Lal, G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front. Immunol. 8, 1124 (2017).

    Google Scholar 

  16. Abel, A. M., Yang, C., Thakar, M. S. & Malarkannan, S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol. 9, 1869 (2018).

    Google Scholar 

  17. Boyington, J. C. & Sun, P. D. A structural perspective on MHC class I recognition by killer cell immunoglobulin-like receptors. Mol. Immunol. 38, 1007–1021 (2002).

    Google Scholar 

  18. Natarajan, K., Dimasi, N., Wang, J., Mariuzza, R. & Margulies, D. Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu. Rev. Immunol. 20, 853–885 (2002).

    Google Scholar 

  19. Kärre, K. On the immunobiology of natural killer cells: studies of murine NK-cells and their interactions with T-cells and T-lymphomas, Diss., Stockholm (1981).

  20. Karlhofer, F. M., Ribaudo, R. K. & Yokoyama, W. M. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358, 66–70 (1992).

    Google Scholar 

  21. Tormo, J., Natarajan, K., Margulies, D. & Mariuzza, R. Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature 402, 623–631 (1999).

    Google Scholar 

  22. Li, Y. & Mariuzza, R. A. Structural basis for recognition of cellular and viral ligands by NK cell receptors. Front. Immunol. 5, 123 (2014).

    Google Scholar 

  23. Myers, J. A. & Miller, J. S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 85–100 (2021).

    Google Scholar 

  24. Maiorino, L., Dassler-Plenker, J., Sun, L. & Egeblad, M. Innate immunity and cancer pathophysiology. Annu. Rev. Pathol. 17, 425–457 (2022).

    Google Scholar 

  25. Kyrysyuk, O. & Wucherpfennig, K. W. Designing cancer immunotherapies that engage T cells and NK cells. Annu. Rev. Immunol. 41, 17–38 (2023).

    Google Scholar 

  26. Fenis, A., Demaria, O., Gauthier, L., Vivier, E. & Narni-Mancinelli, E. New immune cell engagers for cancer immunotherapy. Nat. Rev. Immunol. 24, 471–486 (2024).

    Google Scholar 

  27. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Google Scholar 

  28. Lee, H. T. et al. Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Sci. Rep. 7, 5532 (2017).

    Google Scholar 

  29. Panda, A. K. et al. Antibody mediated inhibition of HLA/LILR interactions breaks innate immune tolerance and induces antitumor immunity. Cancer Immunol. Res. 13, 1938–1955 (2025).

  30. Pymm, P. et al. The structural basis for recognition of human leukocyte antigen class I molecules by the pan-HLA antibody W6/32. J. Immunol. 213, 876–885 (2024).

    Google Scholar 

  31. Rebai, N. & Malissen, B. Structural and genetic analyses of HLA class I molecules using monoclonal xenoantibodies. Tissue Antigens 22, 107–117 (1983).

    Google Scholar 

  32. Apps, R. et al. Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 127, 26–39 (2009).

    Google Scholar 

  33. Stewart, C. A. et al. Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors. Proc. Natl. Acad. Sci. USA 102, 13224–13229 (2005).

    Google Scholar 

  34. van der Ploeg, K. et al. Modulation of human leukocyte antigen-C by human cytomegalovirus stimulates KIR2DS1 recognition by natural killer cells. Front. Immunol. 8, 298 (2017).

    Google Scholar 

  35. Henderson, R. & Hasnain, S. 'Cryo-EM’: electron cryomicroscopy, cryo electron microscopy or something else? IUCrJ 10, 519–520 (2023).

    Google Scholar 

  36. Wu, M. & Lander, G. C. How low can we go? Structure determination of small biological complexes using single-particle cryo-EM. Curr. Opin. Struct. Biol. 64, 9–16 (2020).

    Google Scholar 

  37. Yip, K. M., Fischer, N., Paknia, E., Chari, A. & Stark, H. Atomic-resolution protein structure determination by cryo-EM. Nature 587, 157–161 (2020).

    Google Scholar 

  38. Han, Y. et al. High-yield monolayer graphene grids for near-atomic resolution cryoelectron microscopy. Proc. Natl. Acad. Sci. USA 117, 1009–1014 (2020).

    Google Scholar 

  39. Wright, K. M. et al. Hydrophobic interactions dominate the recognition of a KRAS G12V neoantigen. Nat. Commun. 14, 5063 (2023).

    Google Scholar 

  40. Vivian, J. P. et al. Killer cell immunoglobulin-like receptor 3DL1-mediated recognition of human leukocyte antigen B. Nature 479, 401–405 (2011).

    Google Scholar 

  41. Boyington, J. C., Motyka, S. A., Schuck, P., Brooks, A. G. & Sun, P. D. Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature 405, 537–543 (2000).

    Google Scholar 

  42. Hilton, H. G. & Parham, P. Missing or altered self: human NK cell receptors that recognize HLA-C. Immunogenetics 69, 567–579 (2017).

    Google Scholar 

  43. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Google Scholar 

  44. Jiang, J. et al. SARS-CoV-2 antibodies recognize 23 distinct epitopic sites on the receptor binding domain. Commun. Biol. 6, 953 (2023).

    Google Scholar 

  45. Orr, C. M. et al. Hinge disulfides in human IgG2 CD40 antibodies modulate receptor signaling by regulation of conformation and flexibility. Sci. Immunol. 7, eabm3723 (2022).

    Google Scholar 

  46. Elliott, I. G. et al. Structure-guided disulfide engineering restricts antibody conformation to elicit TNFR agonism. Nat. Commun. 16, 3495 (2025).

    Google Scholar 

  47. Joyce, M. G. & Sun, P. D. The structural basis of ligand recognition by natural killer cell receptors. J. Biomed. Biotechnol. 2011, 203628 (2011).

    Google Scholar 

  48. Lorig-Roach, N., Harpell, N. M. & DuBois, R. M. Structural basis for the activity and specificity of the immune checkpoint inhibitor lirilumab. Sci. Rep. 14, 742 (2024).

    Google Scholar 

  49. Tian, J. et al. ILT2 and ILT4 drive myeloid suppression via both overlapping and distinct mechanisms. Cancer Immunol. Res. 12, 592–613 (2024).

    Google Scholar 

  50. Andre, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743.e13 (2018).

    Google Scholar 

  51. van Montfoort, N. et al. NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell 175, 1744–1755.e15 (2018).

    Google Scholar 

  52. Mandel, I. et al. BND-22, a first-in-class humanized ILT2-blocking antibody, promotes antitumor immunity and tumor regression. J. Immunother. Cancer 10, e004859 (2022).

  53. Villa-Alvarez, M. et al. Ig-like transcript 2 (ILT2) blockade and lenalidomide restore NK cell function in chronic lymphocytic leukemia. Front. Immunol. 9, 2917 (2018).

    Google Scholar 

  54. He, K. et al. Homeostatic self-MHC-I recognition regulates anti-metastatic function of mature lung natural killer cells. Biochem. Biophys. Res. Commun. 738, 150906 (2024).

    Google Scholar 

  55. Harris, L. J. et al. The three-dimensional structure of an intact monoclonal antibody for canine lymphoma. Nature 360, 369–372 (1992).

    Google Scholar 

  56. Harris, L. J., Larson, S. B., Hasel, K. W. & McPherson, A. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36, 1581–1597 (1997).

    Google Scholar 

  57. Saphire, E. O., Parren, P. W., Barbas, C. F. 3rd, Burton, D. R. & Wilson, I. A. Crystallization and preliminary structure determination of an intact human immunoglobulin, b12: an antibody that broadly neutralizes primary isolates of HIV-1. Acta Crystallogr. D. Biol. Crystallogr. 57, 168–171 (2001).

    Google Scholar 

  58. Scapin, G. et al. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nat. Struct. Mol. Biol. 22, 953–958 (2015).

    Google Scholar 

  59. Blech, M. et al. Structure of a therapeutic full-length anti-NPRA IgG4 antibody: dissecting conformational diversity. Biophys. J. 116, 1637–1649 (2019).

    Google Scholar 

  60. Silverton, E. W., Navia, M. A. & Davies, D. R. Three-dimensional structure of an intact human immunoglobulin. Proc. Natl. Acad. Sci. USA 74, 5140–5144 (1977).

    Google Scholar 

  61. Guddat, L. W., Herron, J. N. & Edmundson, A. B. Three-dimensional structure of a human immunoglobulin with a hinge deletion. Proc. Natl. Acad. Sci. USA 90, 4271–4275 (1993).

    Google Scholar 

  62. Li, Y. et al. Structural insights into immunoglobulin M. Science 367, 1014–1017 (2020).

    Google Scholar 

  63. Chen, Q., Menon, R. P., Masino, L., Tolar, P. & Rosenthal, P. B. Structural basis for Fc receptor recognition of immunoglobulin M. Nat. Struct. Mol. Biol. 30, 1033–1039 (2023).

    Google Scholar 

  64. Chen, Q., Menon, R., Calder, L. J., Tolar, P. & Rosenthal, P. B. Cryomicroscopy reveals the structural basis for a flexible hinge motion in the immunoglobulin M pentamer. Nat. Commun. 13, 6314 (2022).

    Google Scholar 

  65. Brunger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Google Scholar 

  66. Pintilie, G. et al. Measurement of atom resolvability in cryo-EM maps with Q-scores. Nat. Methods 17, 328–334 (2020).

    Google Scholar 

  67. Sok, C. L., Rossjohn, J. & Gully, B. S. The evolving portrait of gammadelta TCR recognition determinants. J. Immunol. 213, 543–552 (2024).

    Google Scholar 

  68. Roomp, K. & Domingues, F. S. Predicting interactions between T cell receptors and MHC-peptide complexes. Mol. Immunol. 48, 553–562 (2011).

    Google Scholar 

  69. Xie, N. et al. Neoantigens: promising targets for cancer therapy. Signal Transduct. Target Ther. 8, 9 (2023).

    Google Scholar 

  70. Sharma, P. et al. Immune checkpoint therapy-current perspectives and future directions. Cell 186, 1652–1669 (2023).

    Google Scholar 

  71. Patel, K. K., Tariveranmoshabad, M., Kadu, S., Shobaki, N. & June, C. From concept to cure: the evolution of CAR-T cell therapy. Mol. Ther. 33, 2123–2140 (2025).

  72. Vivier, E. et al. Natural killer cell therapies. Nature 626, 727–736 (2024).

    Google Scholar 

  73. Carlsten, M. et al. Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK cells in patients with myeloma. Clin. Cancer Res. 22, 5211–5222 (2016).

    Google Scholar 

  74. Wang, Z. et al. Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3’ to 5’ exonuclease activity. J. Immunol. Methods 233, 167–177 (2000).

    Google Scholar 

  75. Lo, M. et al. Effector-attenuating substitutions that maintain antibody stability and reduce toxicity in mice. J. Biol. Chem. 292, 3900–3908 (2017).

    Google Scholar 

  76. Jiang, J. et al. Structural mechanism of tapasin-mediated MHC-I peptide loading in antigen presentation. Nat. Commun. 13, 5470 (2022).

    Google Scholar 

  77. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Google Scholar 

  78. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Google Scholar 

  79. Punjani, A. & Fleet, D. J. 3DFlex: determining structure and motion of flexible proteins from cryo-EM. Nat. Methods 20, 860–870 (2023).

    Google Scholar 

  80. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Google Scholar 

  81. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Google Scholar 

  82. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Google Scholar 

  83. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Google Scholar 

  84. PyMOLThe PyMOL Molecular Graphics System, Version 3.0 Schrödinger, LLC.

  85. Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    Google Scholar 

  86. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    Google Scholar 

  87. Huang, J. & MacKerell, A. D. Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145 (2013).

    Google Scholar 

  88. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Google Scholar 

  89. Jorgensen, W. L., Chandrasekhar, J., Buckner, J. K. & Madura, J. D. Computer simulations of organic reactions in solution. Ann. N. Y. Acad. Sci. 482, 198–209 (1986).

    Google Scholar 

  90. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Google Scholar 

  91. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Google Scholar 

  92. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–8, 27–8 (1996).

Download references

Acknowledgements

This work was supported by the Division of Intramural Research of the NIAID, NIH. X-ray data were collected at Southeast Regional Collaborative Access Team (SER-CAT) 22-ID (or 22-BM) beamline at the Advanced Photon Source, Argonne National Laboratory. SER-CAT is supported by its member institutions (www.ser-cat.org/members.html) and equipment grants (S10_RR25528 and S10_RR028976) from the National Institutes of Health. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. The Electron Microscopy Resource is supported by the National Cancer Institute and NIH Intramural Research Program Cryo-EM Consortium (NICE). Access to the Luminex instrument was provided by Dr. Dimitri Monos (CHOP) and the CHOP Immunogenetics Laboratory.

Funding

Open access funding provided by the National Institutes of Health.

Author information

Author notes
  1. These authors contributed equally: Jiansheng Jiang, Abir K. Panda, Kannan Natarajan.

Authors and Affiliations

  1. Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

    Jiansheng Jiang, Kannan Natarajan, Lisa F. Boyd, Reanne R. Towler, Javeed Ahmad & David H. Margulies

  2. Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

    Abir K. Panda, Sruthi Chempati & Ethan M. Shevach

  3. Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

    Haotian Lei

  4. Computational Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

    Shikha Sharma & Martin Meier-Schellersheim

  5. Fred and Pamela Buffett Cancer Center and Eppley Institute for Cancer Research, Omaha, NE, USA

    Javeed Ahmad

  6. Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA

    Abraham J. Morton, Zabrina C. Lang & Rick K. Huang

  7. Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Yi Sun & Nikolaos Sgourakis

Authors
  1. Jiansheng Jiang
    View author publications

    Search author on:PubMed Google Scholar

  2. Abir K. Panda
    View author publications

    Search author on:PubMed Google Scholar

  3. Kannan Natarajan
    View author publications

    Search author on:PubMed Google Scholar

  4. Haotian Lei
    View author publications

    Search author on:PubMed Google Scholar

  5. Shikha Sharma
    View author publications

    Search author on:PubMed Google Scholar

  6. Lisa F. Boyd
    View author publications

    Search author on:PubMed Google Scholar

  7. Reanne R. Towler
    View author publications

    Search author on:PubMed Google Scholar

  8. Sruthi Chempati
    View author publications

    Search author on:PubMed Google Scholar

  9. Javeed Ahmad
    View author publications

    Search author on:PubMed Google Scholar

  10. Abraham J. Morton
    View author publications

    Search author on:PubMed Google Scholar

  11. Zabrina C. Lang
    View author publications

    Search author on:PubMed Google Scholar

  12. Yi Sun
    View author publications

    Search author on:PubMed Google Scholar

  13. Nikolaos Sgourakis
    View author publications

    Search author on:PubMed Google Scholar

  14. Martin Meier-Schellersheim
    View author publications

    Search author on:PubMed Google Scholar

  15. Rick K. Huang
    View author publications

    Search author on:PubMed Google Scholar

  16. Ethan M. Shevach
    View author publications

    Search author on:PubMed Google Scholar

  17. David H. Margulies
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.J., K.N., A.K.P., E.M.S., and D.H.M. conceived the study. J.J., K.N., H.L., J.A., Z.C.L., A.J.M., and R.K.H. collected cryo-EM data. J.J. analyzed cryo-EM data and solved structures. J.J. and K.N. collected and analyzed X-ray data. K.N., L.F.B., and R.R.T. purified protein and performed binding studies. S.S. and M.M.-S. performed molecular dynamics studies, and Y.S. and N.S. analyzed antibody specificity. S.C. and A.K.P. studied cell activation and tumorigenesis. J.J., K.N., E.M.S., and D.H.M. wrote and revised the paper.

Corresponding authors

Correspondence to Jiansheng Jiang, Ethan M. Shevach or David H. Margulies.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Lawrence Stern, Efstratios Stratikos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Huan Bao and Laura Rodríguez Pérez.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Materials

Supplementary Data 1

Supplementary Data 2

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Panda, A.K., Natarajan, K. et al. Structural mechanism of anti-MHC-I antibody blocking of inhibitory NK cell receptors in tumor immunity. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09641-8

Download citation

  • Received: 06 August 2025

  • Accepted: 22 January 2026

  • Published: 02 February 2026

  • DOI: https://doi.org/10.1038/s42003-026-09641-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer