Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Genomic landscape and genetic manipulation of an ectoparasitoid wasp, Gregopimpla kuwanae
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 February 2026

Genomic landscape and genetic manipulation of an ectoparasitoid wasp, Gregopimpla kuwanae

  • Han Gao1,2,
  • Yijiangcheng Li1,2,
  • Yanli Chen1,2,
  • Xiaojing Liu1,2,
  • Mengying Fang1,2,
  • Shuyu Zhang1,2,
  • Jianhao Ding1,2,
  • Dalin Zhu1,2,
  • Anjiang Tan1,2 &
  • …
  • Sheng Sheng  ORCID: orcid.org/0000-0003-2764-81251,2 

Communications Biology , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • CRISPR-Cas9 genome editing
  • Comparative genomics
  • RNAi

Abstract

Parasitoid wasps are important biological control resources, yet their genetic manipulation has long been constrained by small body size and parasitization behavior, limiting their broader application in pest management. Here we report a chromosome-level genome assembly of the ectoparasitoid Gregopimpla kuwanae (322.87 Mb, 24 chromosomes), a relatively large species that parasitizes various lepidopteran pests. In the first part of this study, we established a foundational genomic resource and experimental platform by producing a high-quality genome and demonstrating the feasibility of functional genetics: RNA interference successfully silenced the cinnabar gene, while CRISPR/Cas9 editing generated vestigial knockout mutants, thus establishing G. kuwanae as a tractable system for gene manipulation. In the second part, we applied comparative genomics to identify lineage-specific gene-family expansions linked to parasitism, including venom-related genes, immune suppression factors, and detoxification enzymes (cytochrome P450s and UDP-glucosyltransferases), and we identified eight HGT candidates; one candidate (JSFChr12G01362) showed pre-feeding expression in females and caused increased adult mortality upon RNAi. Our study provides both the means and the candidates for mechanistic dissection of parasitoid adaptations, laying a foundation for the broader application of parasitoid wasps in sustainable biocontrol programs.

Data availability

The genome assembly and all raw sequencing data generated in this study have been deposited in the NCBI under BioProject accession PRJNA1242975. This includes raw short-read sequencing data (SRX28190072), PacBio HiFi long-read data (SRX28190073), Hi-C data (SRX28190084 and SRX28190095), and RNA-seq data (SRX28190074-SRX28190083, SRX28190085-SRX28190094, SRX28190096-SRX28190111), as well as the final chromosome-level genome assembly of G. kuwanae (GCA_052576135.1). Source data underlying the figures of this manuscript can be found in Supplementary Data 1. All other data supporting the findings of this study are also available from the corresponding author upon reasonable request.

Code availability

The software and parameters used in this study are described in the Methods section. No specific custom codes or scripts were utilized. Data processing was conducted according to the manuals and protocols provided with the respective software.

References

  1. Beddington, J. Food security: contributions from science to a new and greener revolution. Philos. Trans. R. Soc. B: Biol. Sci. 365, 61–71 (2010).

    Google Scholar 

  2. Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).

    Google Scholar 

  3. Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015).

    Google Scholar 

  4. Damalas, C. A. & Eleftherohorinos, I. G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 8, 1402–1419 (2011).

    Google Scholar 

  5. Mancini, F., Woodcock, B. A. & Isaac, N. J. B. Agrochemicals in the wild: Identifying links between pesticide use and declines of nontarget organisms. Curr. Opin. Environ. Sci. Health 11, 53–58 (2019).

    Google Scholar 

  6. Blaimer, B. B. et al. Key innovations and the diversification of Hymenoptera. Nat. Commun. 14, 1212 (2023).

    Google Scholar 

  7. Burke, G. R. & Sharanowski, B. J. Parasitoid wasps. Curr. Biol. 34, R483–R488 (2024).

    Google Scholar 

  8. Fei, M., Gols, R. & Harvey, J. A. The Biology and Ecology of Parasitoid Wasps of Predatory Arthropods. Annu. Rev. Entomol. 68, 109–128 (2023).

    Google Scholar 

  9. Chen, X. & van Achterberg, C. Systematics, Phylogeny, and Evolution of Braconid Wasps: 30 Years of Progress. Annu. Rev. Entomol. 64, 335–358 (2019).

    Google Scholar 

  10. Polaszek, A. & Vilhemsen, L. Biodiversity of hymenopteran parasitoids. Curr. Opin. Insect Sci. 56, 101026 (2023).

    Google Scholar 

  11. Strand, M. R. Teratocytes and their functions in parasitoids. Curr. Opin. Insect Sci. 6, 68–73 (2014).

    Google Scholar 

  12. Wang, Y. et al. Symbiotic bracovirus of a parasite manipulates host lipid metabolism via tachykinin signaling. PLOS Pathog. 17, e1009365 (2021).

    Google Scholar 

  13. Ye, X., Yang, Y., Zhao, X., Fang, Q. & Ye, G. The state of parasitoid wasp genomics. Trends Parasitol. 40, 914–929 (2024).

    Google Scholar 

  14. Hammond, A. et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 34, 78–83 (2016).

    Google Scholar 

  15. Xu, H. et al. Comparative Genomics Sheds Light on the Convergent Evolution of Miniaturized Wasps. Mol. Biol. Evol. 38, 5539–5554 (2021).

    Google Scholar 

  16. Zhu, K. Y. & Palli, S. R. Mechanisms, Applications, and Challenges of Insect RNA Interference. Annu. Rev. Entomol. 65, 293–311 (2020).

    Google Scholar 

  17. Bai, X. et al. CRISPR/Cas9-mediated mutagenesis of the white gene in an ectoparasitic wasp, Habrobracon hebetor. Pest Manag. Sci. 80, 1219–1227 (2024).

    Google Scholar 

  18. Li, M. et al. Generation of heritable germline mutations in the jewel wasp Nasonia vitripennis using CRISPR/Cas9. Sci. Rep. 7, 901 (2017).

    Google Scholar 

  19. Li, Y. et al. Identification of candidate chemosensory genes by antennal transcriptome analysis in an ectoparasitoid wasp. J. Appl. Entomol. 146, 335–351 (2022).

    Google Scholar 

  20. Ueno, T. Oviposition and Development in Gregopimpla kuwanae Viereck (Hymenoptera: Ichneumonidae), a Gregarious Ectoparasitoid Wasp Attacking the Rice Skipper Parnara guttata. J. Insects 2016, e4706376 (2016).

    Google Scholar 

  21. Zhou, H., Yu, Y., Tan, X., Chen, A. & Feng, J. Biological control of insect pests in apple orchards in China. Biol. Control 68, 47–56 (2014).

    Google Scholar 

  22. Qu, Y. et al. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat. Commun. 4, 2071 (2013).

    Google Scholar 

  23. Pavlovich, S. S. et al. The Egyptian Rousette Genome Reveals Unexpected Features of Bat Antiviral Immunity. Cell 173, 1098–1110.e18 (2018).

    Google Scholar 

  24. Li, Y. et al. HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell 185, 2975–2987.e10 (2022).

    Google Scholar 

  25. Branstetter, M. G. et al. Phylogenomic Insights into the Evolution of Stinging Wasps and the Origins of Ants and Bees. Curr. Biol. 27, 1019–1025 (2017).

    Google Scholar 

  26. Peters, R. S. et al. Evolutionary History of the Hymenoptera. Curr. Biol. 27, 1013–1018 (2017).

    Google Scholar 

  27. Shi, Y. et al. Divergent amplifications of CYP9A cytochrome P450 genes provide two noctuid pests with differential protection against xenobiotics. Proc. Natl. Acad. Sci. 120, e2308685120 (2023).

    Google Scholar 

  28. Thurmond, J. et al. FlyBase 2.0: the next generation. Nucleic Acids Res. 47, D759–D765 (2019).

    Google Scholar 

  29. Shen, X.-X. et al. Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. Cell 175, 1533–1545.e20 (2018).

    Google Scholar 

  30. Ye, X. et al. Genomic signatures associated with maintenance of genome stability and venom turnover in two parasitoid wasps. Nat. Commun. 13, 6417 (2022).

    Google Scholar 

  31. Yang, Y. et al. Genome of the pincer wasp Gonatopus flavifemur reveals unique venom evolution and a dual adaptation to parasitism and predation. BMC Biol. 19, 145 (2021).

    Google Scholar 

  32. Christiaens, O., Swevers, L. & Smagghe, G. DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides 53, 307–314 (2014).

    Google Scholar 

  33. Guo, X., Wang, Y., Sinakevitch, I., Lei, H. & Smith, B. H. Comparison of RNAi knockdown effect of tyramine receptor 1 induced by dsRNA and siRNA in brains of the honey bee, Apis mellifera. J. Insect Physiol. 111, 47–52 (2018).

    Google Scholar 

  34. Singh, I. K., Singh, S., Mogilicherla, K., Shukla, J. N. & Palli, S. R. Comparative analysis of double-stranded RNA degradation and processing in insects. Sci. Rep. 7, 17059 (2017).

    Google Scholar 

  35. Wang, K. et al. Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo. Insect Biochem. Mol. Biol. 77, 1–9 (2016).

    Google Scholar 

  36. Laudani, F. et al. RNAi-mediated gene silencing in Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae). Open Life Sci. 12, 214–222 (2017).

    Google Scholar 

  37. Prentice, K. et al. RNAi-based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil Cylas puncticollis (Coleoptera: Brentidae). Pest Manag. Sci. 73, 44–52 (2017).

    Google Scholar 

  38. Rangasamy, M. & Siegfried, B. D. Validation of RNA interference in western corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) adults. Pest Manag. Sci. 68, 587–591 (2012).

    Google Scholar 

  39. Rodrigues, T. B., Dhandapani, R. K., Duan, J. J. & Palli, S. R. RNA interference in the Asian Longhorned Beetle: Identification of Key RNAi Genes and Reference Genes for RT-qPCR. Sci. Rep. 7, 8913 (2017).

    Google Scholar 

  40. Ghosh, S., Tibbit, C. & Liu, J.-L. Effective knockdown of Drosophila long non-coding RNAs by CRISPR interference. Nucleic Acids Res. 44, e84 (2016).

    Google Scholar 

  41. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    Google Scholar 

  42. Nauen, R., Bass, C., Feyereisen, R. & Vontas, J. The Role of Cytochrome P450s in Insect Toxicology and Resistance. Annu. Rev. Entomol. 67, 105–124 (2022).

    Google Scholar 

  43. Zhu, S. et al. Expression of a viral ecdysteroid UDP-glucosyltransferase enhanced the insecticidal activity of the insect pathogenic fungus. Pest Manag. Sci. 80, 4915–4923 (2024).

    Google Scholar 

  44. Feyereisen, R. 8 - Insect CYP Genes and P450 Enzymes. in Insect Molecular Biology and Biochemistry (ed. Gilbert, L. I.) 236–316 (Academic Press, San Diego, 2012).

  45. Honutagi, R. M. et al. Protein-protein interaction of LDH and CRP-1 with hematotoxin snake venom proteins of all species of snake: An in silico approach. Int. J. Health Sci. 17, 10 (2023).

    Google Scholar 

  46. Deng, Y. et al. Lipolytic Activity of a Carboxylesterase from Bumblebee (Bombus ignitus) Venom. Toxins 13, 239 (2021).

    Google Scholar 

  47. Andersen, A. S., Hansen, P. H., Schäffer, L. & Kristensen, C. A New Secreted Insect Protein Belonging to the Immunoglobulin Superfamily Binds Insulin and Related Peptides and Inhibits Their Activities *. J. Biol. Chem. 275, 16948–16953 (2000).

    Google Scholar 

  48. Zhu, J.-Y. Deciphering the main venom components of the ectoparasitic ant-like bethylid wasp, Scleroderma guani. Toxicon 113, 32–40 (2016).

    Google Scholar 

  49. Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7, gix120 (2018).

    Google Scholar 

  50. Hoover, A. & Miller, L. A numerical study of the benefits of driving jellyfish bells at their natural frequency. J. Theor. Biol. 374, 13–25 (2015).

    Google Scholar 

  51. Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).

    Google Scholar 

  52. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Google Scholar 

  53. Durand, N. C. et al. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst. 3, 95–98 (2016).

    Google Scholar 

  54. Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing Genome Assembly and Annotation Completeness. in Gene Prediction: Methods and Protocols (ed. Kollmar, M.) 227–245 (Springer, New York, NY, 2019).

  55. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences. Current Protocols in Bioinformatics 25, 4.10.1-4.10.14 (2009).

  56. Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinforma. 9, 18 (2008).

    Google Scholar 

  57. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    Google Scholar 

  58. Keilwagen, J., Hartung, F. & Grau, J. GeMoMa: Homology-Based Gene Prediction Utilizing Intron Position Conservation and RNA-seq Data. in Gene Prediction: Methods and Protocols (ed. Kollmar, M.) 161–177 (Springer, New York, NY, 2019).

  59. Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

    Google Scholar 

  60. Hernández-Salmerón, J. E. & Moreno-Hagelsieb, G. Progress in quickly finding orthologs as reciprocal best hits: comparing blast, last, diamond and MMseqs2. BMC Genomics 21, 741 (2020).

    Google Scholar 

  61. Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).

    Google Scholar 

  62. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Google Scholar 

  63. Chen, C. et al. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 13, 1194–1202 (2020).

    Google Scholar 

  64. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Google Scholar 

  65. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Google Scholar 

  66. dos Reis, M. Dating Microbial Evolution with MCMCtree. in Environmental Microbial Evolution: Methods and Protocols (ed. Luo, H.) 3–22 (Springer US, New York, NY, 2022).

  67. Kumar, S. et al. TimeTree 5: An Expanded Resource for Species Divergence Times. Mol. Biol. Evolution 39, msac174 (2022).

    Google Scholar 

  68. Abramova, A., Osińska, A., Kunche, H., Burman, E. & Bengtsson-Palme, J. CAFE: a software suite for analysis of paired-sample transposon insertion sequencing data. Bioinformatics 37, 121–122 (2021).

    Google Scholar 

  69. Johnson, M. et al. NCBI BLAST: a better web interface. Nucleic Acids Res. 36, W5–W9 (2008).

    Google Scholar 

  70. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evolution 32, 268–274 (2015).

    Google Scholar 

  71. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Google Scholar 

  72. Chen, K., Durand, D. & Farach-Colton, M. NOTUNG: A Program for Dating Gene Duplications and Optimizing Gene Family Trees. J. Computational Biol. : J. C. omputational Mol. cell Biol. 7, 429–447 (2004).

    Google Scholar 

  73. Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (32573304 and 32400380), the Natural Science Foundation of Jiangsu Province (BK20241861).

Author information

Authors and Affiliations

  1. Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China

    Han Gao, Yijiangcheng Li, Yanli Chen, Xiaojing Liu, Mengying Fang, Shuyu Zhang, Jianhao Ding, Dalin Zhu, Anjiang Tan & Sheng Sheng

  2. Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China

    Han Gao, Yijiangcheng Li, Yanli Chen, Xiaojing Liu, Mengying Fang, Shuyu Zhang, Jianhao Ding, Dalin Zhu, Anjiang Tan & Sheng Sheng

Authors
  1. Han Gao
    View author publications

    Search author on:PubMed Google Scholar

  2. Yijiangcheng Li
    View author publications

    Search author on:PubMed Google Scholar

  3. Yanli Chen
    View author publications

    Search author on:PubMed Google Scholar

  4. Xiaojing Liu
    View author publications

    Search author on:PubMed Google Scholar

  5. Mengying Fang
    View author publications

    Search author on:PubMed Google Scholar

  6. Shuyu Zhang
    View author publications

    Search author on:PubMed Google Scholar

  7. Jianhao Ding
    View author publications

    Search author on:PubMed Google Scholar

  8. Dalin Zhu
    View author publications

    Search author on:PubMed Google Scholar

  9. Anjiang Tan
    View author publications

    Search author on:PubMed Google Scholar

  10. Sheng Sheng
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Hao Gao: Conceptualization, Methodology, Investigation, Writing-original draft; Yijiangcheng Li, Yanli Chen: Sample Collection, Experiment, Investigation; Mengying Fang, Shuyu Zhang, Hui Zhang: Sample Collection, Experiment; Jianhao Ding, Dalin Zhu: Investigation, Validation; Anjiang Tang, Sheng Sheng: Funding acquisition, Project administration, Supervision, Writing-review & editing.

Corresponding authors

Correspondence to Anjiang Tan or Sheng Sheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Xinhai Ye, Yaohui Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Madhava Meegaskumbura & Rosie Bunton-Stasyshyn. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

nr-reporting-summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Li, Y., Chen, Y. et al. Genomic landscape and genetic manipulation of an ectoparasitoid wasp, Gregopimpla kuwanae. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09699-4

Download citation

  • Received: 09 April 2025

  • Accepted: 02 February 2026

  • Published: 11 February 2026

  • DOI: https://doi.org/10.1038/s42003-026-09699-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing