Table 1 Summary of recent machine learning approaches for odor prediction
From: A comparative study of machine learning models on molecular fingerprints for odor decoding
Study | Machine learning model | Number of odorants | Feature source | Performance metrics | Reference number |
|---|---|---|---|---|---|
Nozaki, Y. & Nakamoto, T. (2016) | Deep ANN | 121 | Mass spectral data | R ≈ 0.76 | |
Shang, L. et al. (2017) | SVM (Boruta-C), ELM (PCA) | 1026 | DRAGON Physicochemical Parameters (PCA/Boruta) | SVM Accuracy: 97.08% ELM Accuracy: 97.53 ± 1.35% | |
Sharma, A. et al. (2021) | DNN (PPMF), CNN (Xception on 2D images) | 5185 | PaDel fingerprints; RDKit 2D chemical images | DNN Accuracy: 97.3% CNN Accuracy: 98.3% Combined Precision: 100% (64 smells) | |
Saini, K. & Ramanathan, V. (2022) | Daylight-BR | 7374 | Mordred, Morgan, Daylight fingerprints | micro-F1: 0.3523 | |
Schicker, D. et al. (2023) | Olfactory Weighted Sum (linear) | 64 | SMARTS structural patterns | Predicted Accuracy: 0.677 Training Accuracy: 0.905 Random Guessing Performance: 0.214 | |
Zhang, M. et al. (2024) | Mol-PECO (Deep Learning, Coulomb Matrix/LPE) | 8503 | Coulomb matrix + LPE encodings | AUROC: 0.813 AUPRC: 0.181 | |
This study | RF, XGB, LGBM | 8681 | Morgan fingerprints (ST Model) | XGB-ST AUROC: 0.828 XGB-ST AUPRC: 0.237 LGBM-ST AUROC 0.810 LGBM-ST AUPRC 0.228 | Table 2 |