Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Chemistry
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications chemistry
  3. articles
  4. article
Oncogenic PI3Kα variants reveal graded conformational spectrum with mutation-specific cryptic pockets
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 January 2026

Oncogenic PI3Kα variants reveal graded conformational spectrum with mutation-specific cryptic pockets

  • Hyunbum Jang  ORCID: orcid.org/0000-0001-9402-40511,2,
  • Bengi Ruken Yavuz  ORCID: orcid.org/0000-0002-3472-87672,
  • Mingzhen Zhang1,
  • Yonglan Liu2 &
  • …
  • Ruth Nussinov  ORCID: orcid.org/0000-0002-8115-64151,2,3 

Communications Chemistry , Article number:  (2026) Cite this article

  • 484 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Kinases
  • Molecular modelling
  • Oncogene proteins

Abstract

Cancer-prone alleles exhibit single hotspot mutations. However, the combination of a cancer hotspot and a weak or moderate mutation (the ‘one-two punch’ hypothesis) produces same-allele double variants with a significantly different and potentially graded clinical phenotypic spectrum. Oncogenic PI3Kα variants, which are also associated with benign tumors and neurodevelopmental disorders, offer statistical support for this model. Using atomistic molecular dynamics (MD) simulations, we revealed that PI3Kα variants with single and double mutations exhibit expanded conformational profiles. Double mutations significantly shift the conformational ensembles toward the active form—a more pronounced effect than a single mutation. These double mutants facilitate nSH2 release, iSH2 shift, and A-loop protrusion in solution, promoting PIP2 substrate recruitment at the membrane. Our simulations revealed cryptic pockets within PI3Kα. These pockets are potential drug targets and may exhibit mutation-specific characteristics. A key challenge is that a single drug is often ineffective against PI3Kα variants due to their diverse conformational spectra. To address this, we propose a conformational selection strategy involving a combination of allosteric drugs for variants with graded conformational spectra, particularly those with strong double mutations; we identified such potentially targetable cryptic pockets in double mutants conformers.

Similar content being viewed by others

The emerging role of PI3K inhibitors for solid tumour treatment and beyond

Article 13 March 2023

PIK3CA mutation fortifies molecular determinants for immune signaling in vascular cancers

Article Open access 21 December 2024

Application of chemical similarity and bioisosteres to find allosteric inhibitors of type 2 lipid kinase γ

Article Open access 30 September 2025

Data availability

Representative structures of PI3Kα variants in solution and their starting points in the membrane, along with PDB trajectories, are available in the GitHub repository: https://github.com/hbj-md/PI3K_variants. The repository also contains the CHARMM topology and parameter of PIP2 for the standard MD simulations performed in this study.

References

  1. Wu, S., Zhu, W., Thompson, P. & Hannun, Y. A. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun. 9, 3490 (2018).

    Google Scholar 

  2. Nussinov, R., Tsai, C. J. & Jang, H. A new view of activating mutations in cancer. Cancer Res. 82, 4114–4123 (2022).

    Google Scholar 

  3. Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).

    Google Scholar 

  4. Madsen, R. R. & Toker, A. PI3K signaling through a biochemical systems lens. J. Biol. Chem. 299, 105224 (2023).

    Google Scholar 

  5. Burke, J. E. & Williams, R. L. Synergy in activating class I PI3Ks. Trends Biochem Sci. 40, 88–100 (2015).

    Google Scholar 

  6. Burke, J. E., Perisic, O., Masson, G. R., Vadas, O. & Williams, R. L. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110alpha (PIK3CA). Proc. Natl. Acad. Sci. USA 109, 15259–15264 (2012).

    Google Scholar 

  7. Miled, N. et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317, 239–242 (2007).

    Google Scholar 

  8. Zhang, M., Jang, H. & Nussinov, R. The mechanism of PI3Kα activation at the atomic level. Chem. Sci. 10, 3671–3680 (2019).

    Google Scholar 

  9. Zhang, M., Jang, H. & Nussinov, R. PI3K driver mutations: a biophysical membrane-centric perspective. Cancer Res. 81, 237–247 (2021).

    Google Scholar 

  10. Liu, X. et al. Cryo-EM structures of PI3Kalpha reveal conformational changes during inhibition and activation. Proc. Natl. Acad. Sci. USA 118, e2109327118 (2021).

    Google Scholar 

  11. Liu, X. et al. Cryo-EM structures of cancer-specific helical and kinase domain mutations of PI3Kalpha. Proc. Natl. Acad. Sci. USA 119, e2215621119 (2022).

    Google Scholar 

  12. Madsen, R. R. et al. Oncogenic PIK3CA corrupts growth factor signaling specificity. Mol. Syst. Biol. 21, 126–157 (2025).

    Google Scholar 

  13. Jenkins, M. L. et al. Oncogenic mutations of PIK3CA lead to increased membrane recruitment driven by reorientation of the ABD, p85 and C-terminus. Nat. Commun. 14, 181 (2023).

    Google Scholar 

  14. Chen, Z. et al. Molecular features of phosphatase and tensin homolog (PTEN) regulation by C-terminal phosphorylation. J. Biol. Chem. 291, 14160–14169 (2016).

    Google Scholar 

  15. Nussinov, R. & Tsai, C. J. Latent drivers’ expand the cancer mutational landscape. Curr. Opin. Struct. Biol. 32, 25–32 (2015).

    Google Scholar 

  16. Nussinov, R., Jang, H., Tsai, C. J. & Cheng, F. Precision medicine review: rare driver mutations and their biophysical classification. Biophys. Rev. 11, 5–19 (2019).

    Google Scholar 

  17. Li, R., He, X., Wu, C., Li, M. & Zhang, J. Advances in structure-based allosteric drug design. Curr. Opin. Struct. Biol. 90, 102974 (2025).

    Google Scholar 

  18. Astl, L., Tse, A. & Verkhivker, G. M. Interrogating regulatory mechanisms in signaling proteins by allosteric inhibitors and activators: a dynamic view through the lens of residue interaction networks. Adv. Exp. Med Biol. 1163, 187–223 (2019).

    Google Scholar 

  19. Deng, J., Yuan, Y. & Cui, Q. Modulation of allostery with multiple mechanisms by hotspot mutations in TetR. J. Am. Chem. Soc. 146, 2757–2768 (2024).

    Google Scholar 

  20. Keppler-Noreuil, K. M. et al. Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. Am. J. Med Genet A 164A, 1713–1733 (2014).

    Google Scholar 

  21. Mirzaa, G. et al. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight 1, e87623 (2016).

    Google Scholar 

  22. Kuentz, P. et al. Molecular diagnosis of PIK3CA-related overgrowth spectrum (PROS) in 162 patients and recommendations for genetic testing. Genet Med. 19, 989–997 (2017).

    Google Scholar 

  23. Dogruluk, T. et al. Identification of variant-specific functions of PIK3CA by rapid phenotyping of rare mutations. Cancer Res. 75, 5341–5354 (2015).

    Google Scholar 

  24. Bukowska, B., Gajek, A. & Marczak, A. Two drugs are better than one. A short history of combined therapy of ovarian cancer. Contemp. Oncol. (Pozn.) 19, 350–353 (2015).

    Google Scholar 

  25. Nussinov, R., Yavuz, B. R. & Jang, H. Allostery in Disease: Anticancer Drugs, Pockets, and the Tumor Heterogeneity Challenge. J. Mol. Biol. 437, 169050 (2025).

  26. Campbell, I. G. et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 64, 7678–7681 (2004).

    Google Scholar 

  27. Tharin, Z. et al. PIK3CA and PIK3R1 tumor mutational landscape in a pan-cancer patient cohort and its association with pathway activation and treatment efficacy. Sci. Rep. 13, 4467 (2023).

    Google Scholar 

  28. Vasan, N. et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kalpha inhibitors. Science 366, 714–723 (2019).

    Google Scholar 

  29. Van Wart, A. T., Durrant, J., Votapka, L. & Amaro, R. E. Weighted implementation of suboptimal paths (WISP): an optimized algorithm and tool for dynamical network analysis. J. Chem. Theory Comput 10, 511–517 (2014).

    Google Scholar 

  30. Zhang, M., Jang, H. & Nussinov, R. Structural features that distinguish inactive and active PI3K lipid kinases. J. Mol. Biol. 432, 5849–5859 (2020).

    Google Scholar 

  31. Zhao, L. & Vogt, P. K. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc. Natl. Acad. Sci. USA 105, 2652–2657 (2008).

    Google Scholar 

  32. Hon, W. C., Berndt, A. & Williams, R. L. Regulation of lipid binding underlies the activation mechanism of class IA PI3-kinases. Oncogene 31, 3655–3666 (2012).

    Google Scholar 

  33. Duewell, B. R., Wilson, N. E., Bailey, G. M., Peabody, S. E. & Hansen, S. D. Molecular dissection of PI3Kβ synergistic activation by receptor tyrosine kinases, GβGγ, and Rho-family GTPases. Elife 12, https://doi.org/10.7554/eLife.88991.3 (2024).

  34. Buckles, T. C., Ziemba, B. P., Masson, G. R., Williams, R. L. & Falke, J. J. Single-molecule study reveals how receptor and ras synergistically activate PI3Kalpha and PIP(3) signaling. Biophys. J. 113, 2396–2405 (2017).

    Google Scholar 

  35. Kotzampasi, D. M., Papadourakis, M., Burke, J. E. & Cournia, Z. Free energy landscape of the PI3Kalpha C-terminal activation. Comput Struct. Biotechnol. J. 23, 3118–3131 (2024).

    Google Scholar 

  36. Miller, M. S. et al. Structural basis of nSH2 regulation and lipid binding in PI3Kalpha. Oncotarget 5, 5198–5208 (2014).

    Google Scholar 

  37. Saito, Y. et al. Landscape and function of multiple mutations within individual oncogenes. Nature 582, 95–99 (2020).

    Google Scholar 

  38. Saito, Y., Koya, J. & Kataoka, K. Multiple mutations within individual oncogenes. Cancer Sci. 112, 483–489 (2021).

    Google Scholar 

  39. Hussein, H. A. et al. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Res. 43, W436–W442 (2015).

    Google Scholar 

  40. Miller, M. S. et al. Identification of allosteric binding sites for PI3Kalpha oncogenic mutant specific inhibitor design. Bioorg. Med Chem. 25, 1481–1486 (2017).

    Google Scholar 

  41. Gkeka, P., Papafotika, A., Christoforidis, S. & Cournia, Z. Exploring a non-ATP pocket for potential allosteric modulation of PI3Kalpha. J. Phys. Chem. B 119, 1002–1016 (2015).

    Google Scholar 

  42. Re, S., Oshima, H., Kasahara, K., Kamiya, M. & Sugita, Y. Encounter complexes and hidden poses of kinase-inhibitor binding on the free-energy landscape. Proc. Natl. Acad. Sci. USA 116, 18404–18409 (2019).

    Google Scholar 

  43. Vanhaesebroeck, B., Perry, M. W. D., Brown, J. R., Andre, F. & Okkenhaug, K. PI3K inhibitors are finally coming of age. Nat. Rev. Drug Discov. 20, 741–769 (2021).

    Google Scholar 

  44. Leontiadou, H., Galdadas, I., Athanasiou, C. & Cournia, Z. Insights into the mechanism of the PIK3CA E545K activating mutation using MD simulations. Sci. Rep. 8, 15544 (2018).

    Google Scholar 

  45. Swaney, D. L. et al. A protein network map of head and neck cancer reveals PIK3CA mutant drug sensitivity. Science 374, eabf2911 (2021).

    Google Scholar 

  46. Li, M., Rehman, A. U., Liu, Y., Chen, K. & Lu, S. Dual roles of ATP-binding site in protein kinases: orthosteric inhibition and allosteric regulation. Adv. Protein Chem. Struct. Biol. 124, 87–119 (2021).

    Google Scholar 

  47. Loke, M., Sehgal, V. & Gupta, N. Alpelisib-induced diabetic ketoacidosis and insulin-resistant hyperglycemia. AACE Clin. Case Rep. 11, 40–44 (2025).

    Google Scholar 

  48. Varkaris, A. et al. Discovery and clinical proof-of-concept of RLY-2608, a first-in-class mutant-selective allosteric PI3Kalpha inhibitor that decouples antitumor activity from hyperinsulinemia. Cancer Discov. 14, 240–257 (2024).

    Google Scholar 

  49. Gong, G. Q. & Vanhaesebroeck, B. Precision targeting of mutant PI3Kalpha. Cancer Discov. 14, 204–207 (2024).

    Google Scholar 

  50. Simanshu, D. K. et al. BBO-10203 inhibits tumor growth without inducing hyperglycemia by blocking RAS-PI3Kalpha interaction. Science 389, eadq2004 (2025).

  51. Nussinov, R. & Jang, H. How residence time works in allosteric drugs. Curr. Opin. Struct. Biol. 94, 103149 (2025).

    Google Scholar 

  52. Nussinov, R. & Jang, H. The value of protein allostery in rational anticancer drug design: an update. Expert Opin. Drug Discov. 19, 1071–1085 (2024).

    Google Scholar 

  53. To, C. et al. Single and dual targeting of mutant EGFR with an allosteric inhibitor. Cancer Discov. 9, 926–943 (2019).

    Google Scholar 

  54. Sarver, P. et al. 6-Amino-3-methylpyrimidinones as potent, selective, and orally efficacious SHP2 inhibitors. J. Med Chem. 62, 1793–1802 (2019).

    Google Scholar 

  55. Fodor, M. et al. Dual allosteric inhibition of SHP2 phosphatase. ACS Chem. Biol. 13, 647–656 (2018).

    Google Scholar 

  56. Conn, P. J., Kuduk, S. D. & Doller, D. Drug design strategies for GPCR allosteric modulators. Annu. Rep. Med. Chem. 47, 441–457 (2012).

    Google Scholar 

  57. Nussinov, R., Yavuz, B. R. & Jang, H. Anticancer drugs: how to select small molecule combinations?. Trends Pharm. Sci. 45, 503–519 (2024).

    Google Scholar 

  58. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    Google Scholar 

  59. Gremke, N. et al. Targeting PI3K inhibitor resistance in breast cancer with metabolic drugs. Signal Transduct. Target Ther. 10, 92 (2025).

    Google Scholar 

  60. Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput Chem. 30, 1545–1614 (2009).

    Google Scholar 

  61. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

    Google Scholar 

  62. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Google Scholar 

  63. Liu, Y., Zhang, W., Jang, H. & Nussinov, R. mTOR variants activation discovers PI3K-like cryptic pocket, expanding allosteric, mutant-selective inhibitor designs. J. Chem. Inf. Model 65, 966–980 (2025).

    Google Scholar 

  64. Xu, L., Jang, H. & Nussinov, R. Allosteric modulation of NF1 GAP: differential distributions of catalytically competent populations in loss-of-function and gain-of-function mutants. Protein Sci. 34, e70042 (2025).

    Google Scholar 

  65. Xu, L., Jang, H. & Nussinov, R. Capturing autoinhibited PDK1 reveals the linker’s regulatory role, informing innovative inhibitor design. J. Chem. Inf. Model 64, 7709–7724 (2024).

    Google Scholar 

  66. Zhang, W., Liu, Y., Jang, H. & Nussinov, R. Slower CDK4 and faster CDK2 activation in the cell cycle. Structure 32, 1269–1280 e2 (2024).

    Google Scholar 

  67. Zhang, W., Liu, Y., Jang, H. & Nussinov, R. CDK2 and CDK4: cell cycle functions evolve distinct, catalysis-competent conformations, offering drug targets. JACS Au 4, 1911–1927 (2024).

    Google Scholar 

  68. Liu, Y., Zhang, M., Jang, H. & Nussinov, R. The allosteric mechanism of mTOR activation can inform bitopic inhibitor optimization. Chem. Sci. 15, 1003–1017 (2024).

    Google Scholar 

  69. Liu, Y., Zhang, W., Jang, H. & Nussinov, R. SHP2 clinical phenotype, cancer, or RASopathies, can be predicted by mutant conformational propensities. Cell Mol. Life Sci. 81, 5 (2024).

    Google Scholar 

  70. Jang, H., Chen, J., Iakoucheva, L. M. & Nussinov, R. Cancer and autism: how PTEN mutations degrade function at the membrane and isoform expression in the human brain. J. Mol. Biol. 435, 168354 (2023).

    Google Scholar 

  71. Jang, H., Smith, I. N., Eng, C. & Nussinov, R. The mechanism of full activation of tumor suppressor PTEN at the phosphoinositide-enriched membrane. iScience 24, 102438 (2021).

    Google Scholar 

  72. Zhang, M., Maloney, R., Jang, H. & Nussinov, R. The mechanism of Raf activation through dimerization. Chem. Sci. 12, 15609–15619 (2021).

    Google Scholar 

  73. Zhang, M., Jang, H., Li, Z., Sacks, D. B. & Nussinov, R. B-Raf autoinhibition in the presence and absence of 14-3-3. Structure 29, 768–777 e2 (2021).

    Google Scholar 

  74. Maloney, R. C., Zhang, M., Jang, H. & Nussinov, R. The mechanism of activation of monomeric B-Raf V600E. Comput Struct. Biotechnol. J. 19, 3349–3363 (2021).

    Google Scholar 

  75. Jang, H., Zhang, M. & Nussinov, R. The quaternary assembly of KRas4B with Raf-1 at the membrane. Comput Struct. Biotechnol. J. 18, 737–748 (2020).

    Google Scholar 

  76. Zhang, M., Jang, H. & Nussinov, R. The structural basis for Ras activation of PI3Kalpha lipid kinase. Phys. Chem. Chem. Phys. 21, 12021–12028 (2019).

    Google Scholar 

  77. Jang, H., Muratcioglu, S., Gursoy, A., Keskin, O. & Nussinov, R. Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers. Biochem J. 473, 1719–1732 (2016).

    Google Scholar 

  78. Jang, H. et al. The higher level of complexity of K-Ras4B activation at the membrane. FASEB J. 30, 1643–1655 (2016).

    Google Scholar 

  79. Durell, S. R., Brooks, B. R. & Bennaim, A. Solvent-induced forces between 2 hydrophilic groups. J. Phys. Chem. 98, 2198–2202 (1994).

    Google Scholar 

  80. Price, D. J. & Brooks, C. L. 3rd A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 121, 10096–10103 (2004).

    Google Scholar 

  81. Woolf, T. B. & Roux, B. Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc. Natl. Acad. Sci. USA 91, 11631–11635 (1994).

    Google Scholar 

  82. Woolf, T. B. & Roux, B. Structure, energetics, and dynamics of lipid-protein interactions: a molecular dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins 24, 92–114 (1996).

    Google Scholar 

  83. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput Chem. 26, 1781–1802 (2005).

    Google Scholar 

  84. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput Chem. 25, 1605–1612 (2004).

    Google Scholar 

  85. Yavuz, B. R., Tsai, C. J., Nussinov, R. & Tuncbag, N. Pan-cancer clinical impact of latent drivers from double mutations. Commun. Biol. 6, 202 (2023).

    Google Scholar 

Download references

Acknowledgements

This Research was supported by the Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health Intramural Research Program project number ZIA BC 010441 and federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN261201500003I. The contributions of the NIH authors were made as part of their official duties as NIH federal employees, are in compliance with agency policy requirements, and are considered Works of the United States Government. However, the findings and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the NIH or the U.S. Department of Health and Human Services. All simulations had been performed using the high-performance computational facilities of the Biowulf PC/Linux cluster at the National Institutes of Health, Bethesda, MD (https://hpc.nih.gov/).

Funding

Open access funding provided by the National Institutes of Health.

Author information

Authors and Affiliations

  1. Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, USA

    Hyunbum Jang, Mingzhen Zhang & Ruth Nussinov

  2. Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, USA

    Hyunbum Jang, Bengi Ruken Yavuz, Yonglan Liu & Ruth Nussinov

  3. Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

    Ruth Nussinov

Authors
  1. Hyunbum Jang
    View author publications

    Search author on:PubMed Google Scholar

  2. Bengi Ruken Yavuz
    View author publications

    Search author on:PubMed Google Scholar

  3. Mingzhen Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Yonglan Liu
    View author publications

    Search author on:PubMed Google Scholar

  5. Ruth Nussinov
    View author publications

    Search author on:PubMed Google Scholar

Contributions

H.J. and M.Z. built models and ran/analyzed molecular dynamics simulations. B.R.Y. collected genomic data. H.J. wrote the initial draft, and B.R.Y., M.Z., Y.L., and R.N. edited the manuscript. R.N. supervised the project.

Corresponding author

Correspondence to Ruth Nussinov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental Material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H., Yavuz, B.R., Zhang, M. et al. Oncogenic PI3Kα variants reveal graded conformational spectrum with mutation-specific cryptic pockets. Commun Chem (2026). https://doi.org/10.1038/s42004-026-01906-x

Download citation

  • Received: 14 July 2025

  • Accepted: 13 January 2026

  • Published: 21 January 2026

  • DOI: https://doi.org/10.1038/s42004-026-01906-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Chemistry (Commun Chem)

ISSN 2399-3669 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing