Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Chemistry
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications chemistry
  3. articles
  4. article
Ionic liquid-coated gold core polymeric nanoparticles for selective neutrophil hitchhiking towards endometriosis treatment
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Ionic liquid-coated gold core polymeric nanoparticles for selective neutrophil hitchhiking towards endometriosis treatment

  • Priyavrat Vashisth1,
  • Lauren T. D. Clerc2,
  • Duoyi Hu  ORCID: orcid.org/0000-0002-0441-51291,
  • Whitney Jones1,
  • Tanveer Shaikh  ORCID: orcid.org/0000-0001-9386-77783,
  • Christine M. Hamadani1,
  • Gaya S. Dasanyake1,
  • Gagandeep Singh1,
  • Claylee M. Chism1,
  • Briana Gamboa1,
  • Anderson C. Wall1,
  • Nicholas Whitehead1,
  • Tyler Gilmer1,
  • Sara X. Edgecomb1,
  • Mercedes C. Pride1,
  • Nicholas C. Fitzkee3 &
  • …
  • Eden E. L. Tanner  ORCID: orcid.org/0000-0002-7919-22491 

Communications Chemistry , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Nanocomposites
  • Nanomedicine
  • Nanophotonics and plasmonics

Abstract

Endometriosis is a chronic inflammatory gynecological condition that affects millions of women and people with uteri globally, with limited available treatments. In this work, we explore using ionic liquid (IL)-coated gold core polymeric nanoparticles (NPs), Au-PLGA-IL NPs, for selective neutrophil co-localization for the eventual development of targeted treatment of endometriosis via photothermal therapy. These NPs were synthesized by a modified solvent evaporation method and functionalized with ILs that confer neutrophil selectivity. In vitro biocompatibility was demonstrated using endometrial 12Z cells and a hemolysis assay with human female blood. Ex vivo studies confirmed superior neutrophil targeting ability in human female whole blood, quantified using fluorescence-activated cell sorting (FACS) and confocal laser scanning microscopy (CLSM) to visualize the NP co-localization. Upon near-infrared irradiation (1 W/cm², 5 min), the Au-PLGA-IL NPs induced significant apoptosis in 12Z cells through localized hyperthermia. This study introduces the first system integrating the plasmonic properties of AuNPs with PLGA’s biocompatibility, enhanced by functional versatility of ILs, providing a promising platform for endometriosis treatment.

Similar content being viewed by others

Redox disruption using electroactive liposome coated gold nanoparticles for cancer therapy

Article Open access 05 April 2025

Specific surface-modified iron oxide nanoparticles trigger complement-dependent innate and adaptive antileukaemia immunity

Article Open access 29 November 2024

Development of Gold coated calcium peroxide nanoparticles for photothermal ferroptosis against skin cancer and C. albicans

Article Open access 07 January 2026

References

  1. Ballard, K., Lowton, K. & Wright, J. What’s the delay? A qualitative study of women’s experiences of reaching a diagnosis of endometriosis. Fertil. Steril. 86, 1296–1301 (2006).

    Google Scholar 

  2. Mikhaleva, L. M. et al. Current knowledge on endometriosis etiology: A systematic review of literature. Int. J. Women’s Health.13, 525–537 (2021).

  3. Yuxue, J., Ran, S., Minghui, F. & Minjia, S. Applications of nanomaterials in endometriosis treatment. Front. Bioeng. Biotechnol. 11, 1184155 (2023).

    Google Scholar 

  4. Bougie, O., Yap, M. I., Sikora, L., Flaxman, T. & Singh, S. Influence of race/ethnicity on prevalence and presentation of endometriosis: a systematic review and meta-analysis. BJOG: Int. J. Obstet. Gynaecol. 126, 1104–1115 (2019).

    Google Scholar 

  5. Nisolle, M. & Donnez, J. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil. Steril. 68, 585–596 (1997).

    Google Scholar 

  6. Klemmt, P. A. & Starzinski-Powitz, A. Molecular and cellular pathogenesis of endometriosis. Curr. women’s. health Rev. 14, 106–116 (2018).

    Google Scholar 

  7. Wang, Y., Nicholes, K. & Shih, I.-M. The origin and pathogenesis of endometriosis. Annu. Rev. Pathol.: Mechanisms Dis. 15, 71–95 (2020).

    Google Scholar 

  8. Johnson, N. P. et al. Consensus on current management of endometriosis. Hum. Reprod. 28, 1552–1568 (2013).

    Google Scholar 

  9. Alimi, Y., Iwanaga, J., Loukas, M. & Tubbs, R. S. The clinical anatomy of endometriosis: a review. Cureus 10 (2018).

  10. Mariani, A., Webb, M. J., Keeney, G. L. & Podratz, K. C. Routes of lymphatic spread: a study of 112 consecutive patients with endometrial cancer. Gynecologic Oncol. 81, 100–104 (2001).

    Google Scholar 

  11. Hunsche, E., Gauthier, M., Witherspoon, B., Rakov, V. & Agarwal, S. K. Endometriosis symptoms and their impacts on the daily lives of US women: Results from an interview study. Int. J.Women’s Health. 15, 893–904 (2023).

  12. Bulletti, C., Coccia, M. E., Battistoni, S. & Borini, A. Endometriosis and infertility. J. Assist. Reprod. Genet. 27, 441–447 (2010).

    Google Scholar 

  13. Kolanska, K. et al. Endometriosis with infertility: A comprehensive review on the role of immune deregulation and immunomodulation therapy. Am. J. Reprod. Immunol. 85, e13384 (2021).

    Google Scholar 

  14. Berlanda, N. et al. Surgery versus hormonal therapy for deep endometriosis: is it a choice of the physician?. Eur. J. Obstet. Gynecol. Reprod. Biol. 209, 67–71 (2017).

    Google Scholar 

  15. Jensen, J. T., Schlaff, W. & Gordon, K. Use of combined hormonal contraceptives for the treatment of endometriosis-related pain: a systematic review of the evidence. Fertil. Steril. 110, 137–152.e131 (2018).

    Google Scholar 

  16. Tosti, C. et al. Hormonal therapy for endometriosis: from molecular research to bedside. Eur. J. Obstet. Gynecol. Reprod. Biol. 209, 61–66 (2017).

    Google Scholar 

  17. Comptour, A. et al. Patient quality of life and symptoms after surgical treatment for endometriosis. J. Minim. invasive Gynecol. 26, 717–726 (2019).

    Google Scholar 

  18. Singh, S. S. & Suen, M. W. Surgery for endometriosis: beyond medical therapies. Fertil. Steril. 107, 549–554 (2017).

    Google Scholar 

  19. Bozdag, G. Recurrence of endometriosis: risk factors, mechanisms and biomarkers. Women’s. Health 11, 693–699 (2015).

    Google Scholar 

  20. Chiu, C.-C. et al. Maintenance Therapy for Preventing Endometrioma Recurrence after Endometriosis Resection Surgery–A Systematic Review and Network Meta-analysis. J. Minim. Invasive Gynecol. 29, 602–612 (2022).

    Google Scholar 

  21. Volpini, C. et al. The nano-revolution in the diagnosis and treatment of endometriosis. Nanoscale 15, 17313–17325 (2023).

    Google Scholar 

  22. Acharya, B., Behera, A., Behera, S. & Moharana, S. Recent advances in nanotechnology-based drug delivery systems for the diagnosis and treatment of reproductive disorders. ACS Appl. Bio Mater. 7, 1336–1361 (2024).

    Google Scholar 

  23. Shandilya, R., Pathak, N., Lohiya, N. K., Sharma, R. S. & Mishra, P. K. Nanotechnology in reproductive medicine: Opportunities for clinical translation. Clin. Exp. Reprod. Med. 47, 245 (2020).

    Google Scholar 

  24. Guo, X. et al. Specific photothermal ablation therapy of endometriosis by targeting delivery of gold nanospheres. Small 13, 1603270 (2017).

    Google Scholar 

  25. Ling, C., Wang, X. & Shen, Y. Advances in hollow inorganic nanomedicines for photothermal-based therapies. Int. J. Nanomed. 16, 493–513 (2021).

  26. Paciotti, G. F. et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11, 169–183 (2004).

    Google Scholar 

  27. Dykman, L. & Khlebtsov, N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41, 2256–2282 (2012).

    Google Scholar 

  28. Vashisth, P. et al. Choline Carboxylic Acid Ionic Liquid-Stabilized Anisotropic Gold Nanoparticles for Photothermal Therapy. ACS Appl. Nano Mater. 7, 26332–26343 (2024).

  29. Singh, G. et al. Good’s buffer based highly biocompatible ionic liquid modified PLGA nanoparticles for the selective uptake in cancer cells. Mater. Chem. Front. 7, 6213–6228 (2023).

    Google Scholar 

  30. Nichols, I. R. et al. The Impact of Water on Choline-2-Octenoic Ionic Liquid-Facilitated Transdermal Transport. Adv. Therapeutics 6, 2200096 (2023).

    Google Scholar 

  31. Darlington, D. S. et al. Selective Near-Infrared Blood Detection Driven by Ionic Liquid–Dye–Albumin Nanointeractions. Langmuir 39, 10806–10819 (2023).

    Google Scholar 

  32. Chism, C. M. et al. Antimicrobial effects of anion manipulation with biocompatible choline carboxylic acid-based ionic liquids. ACS Appl. Eng. Mater. 1, 23–31 (2022).

    Google Scholar 

  33. Dasanayake, G. S. et al. Glyco Ionic Liquids as Novel Nanoparticle Coatings to Enhance Triple-Negative Breast Cancer Drug Delivery. Adv. Healthc. Mater. 14, 2500592 (2025).

    Google Scholar 

  34. Dasanayake, G. S. et al. Imidazolium-based zwitterionic liquid-modified PEG–PLGA nanoparticles as a potential intravenous drug delivery carrier. Nanoscale 16, 5584–5600 (2024).

    Google Scholar 

  35. Hamadani, C. M. et al. Development of ionic liquid-coated PLGA nanoparticles for applications in intravenous drug delivery. Nat. Protoc. 18, 2509–2557 (2023).

    Google Scholar 

  36. Hamadani, C. M., Goetz, M. J., Mitragotri, S. & Tanner, E. E. Protein-avoidant ionic liquid (PAIL)–coated nanoparticles to increase bloodstream circulation and drive biodistribution. Sci. Adv. 6, eabd7563 (2020).

    Google Scholar 

  37. Hamadani, C. M. et al. Ionic Liquid Coating-Driven Nanoparticle Delivery to the Brain: Applications for NeuroHIV. Adv. Sci. 11, 2305484 (2024).

    Google Scholar 

  38. Hamadani, C. M. et al. Selective blood cell hitchhiking in whole blood with ionic liquid-coated PLGA nanoparticles to redirect biodistribution after intravenous injection. Res. Sq. rs. 3. rs-3146716 (2023).

  39. Hamadani, C. M. et al. Insights into the physicochemical interactions of ionic liquid-coated polymeric nanoparticles with red blood cells. Nanoscale Adv. 7, 5273–5283 (2025).

    Google Scholar 

  40. Cuzytek, A., Hrycek, A., Stasiura, H. & Stadnicki, A. Peripheral blood neutrophils in patients with internal endometriosis in light of enzymatic tests. Wiadomosci Lekarskie (Wars., Pol.: 1960) 50, 75–80 (1997).

    Google Scholar 

  41. Symons, L. K. et al. Neutrophil recruitment and function in endometriosis patients and a syngeneic murine model. FASEB J. 34, 1558–1575 (2020).

    Google Scholar 

  42. Berkes, E., Oehmke, F., Tinneberg, H.-R., Preissner, K. T. & Saffarzadeh, M. Association of neutrophil extracellular traps with endometriosis-related chronic inflammation. Eur. J. Obstet. Gynecol. Reprod. Biol. 183, 193–200 (2014).

    Google Scholar 

  43. Armstrong, G. M. et al. Endometrial apoptosis and neutrophil infiltration during menstruation exhibits spatial and temporal dynamics that are recapitulated in a mouse model. Sci. Rep. 7, 17416 (2017).

    Google Scholar 

  44. Salamonsen, L. A. & Lathbury, L. J. Endometrial leukocytes and menstruation. Hum. Reprod. update 6, 16–27 (2000).

    Google Scholar 

  45. King, A. E., Critchley, H. O. & Kelly, R. W. Innate immune defences in the human endometrium. Reprod. Biol. Endocrinol. 1, 1–8 (2003).

    Google Scholar 

  46. Jones, R. L., Hannan, N. J., Kaitu’u, T.uJ., Zhang, J. & Salamonsen, L. A. Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. J. Clin. Endocrinol. Metab. 89, 6155–6167 (2004).

    Google Scholar 

  47. Clare, B., Sirwardana, A. & MacFarlane, D. R. Synthesis, purification and characterization of ionic liquids. (Springer, 2010).

  48. Ferraz, R. et al. Ionic liquids synthesis–methodologies. Organic Chem. Curr. Res. 46, 1–2 (2015).

  49. Kimling, J. et al. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110, 15700–15707 (2006).

    Google Scholar 

  50. Shen, J.-J. et al. Preliminary quality criteria of citrate-protected gold nanoparticles for medicinal applications. ACS Appl. Nano Mater. 1, 2120–2128 (2018).

    Google Scholar 

  51. Fathy, M. M. et al. An insight into synthesis and antitumor activity of citrate and gallate stabilizing gold nanospheres. Sci. Rep. 13, 2749 (2023).

    Google Scholar 

  52. Faid, A. H., Shouman, S. A., Badr, Y. A. & Sharaky, M. Enhanced photothermal heating and combination therapy of gold nanoparticles on a breast cell model. BMC Chem. 16, 66 (2022).

    Google Scholar 

  53. O’Donnell, P. B. & McGinity, J. W. Preparation of microspheres by the solvent evaporation technique. Adv. drug Deliv. Rev. 28, 25–42 (1997).

    Google Scholar 

  54. Jin, J., Li, X., Geng, J. & Jing, D. Insights into the complex interaction between hydrophilic nanoparticles and ionic surfactants at the liquid/air interface. Phys. Chem. Chem. Phys. 20, 15223–15235 (2018).

    Google Scholar 

  55. Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).

    Google Scholar 

  56. Link, S. & El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999).

    Google Scholar 

  57. Mustafa, D. E. et al. Surface plasmon coupling effect of gold nanoparticles with different shape and size on conventional surface plasmon resonance signal. Plasmonics 5, 221–231 (2010).

    Google Scholar 

  58. Hang, Y., Wang, A. & Wu, N. Plasmonic silver and gold nanoparticles: shape-and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chem. Soc. Rev. 53, 2932–2971 (2024).

    Google Scholar 

  59. París Ogáyar, M. et al. Luminescence Fingerprint of Intracellular NIR-II Gold Nanocluster Transformation: Implications for Sensing and Imaging. ACS Nano 19, 7821–7834 (2025).

  60. Jia, P. et al. Integration of IR-808 and thiol-capped Au–Bi bimetallic nanoparticles for NIR light mediated photothermal/photodynamic therapy and imaging. J. Mater. Chem. B 9, 101–111 (2021).

    Google Scholar 

  61. Quintanilla, M., Henriksen-Lacey, M., Renero-Lecuna, C. & Liz-Marzán, L. M. Challenges for optical nanothermometry in biological environments. Chem. Soc. Rev. 51, 4223–4242 (2022).

    Google Scholar 

  62. Chen, J. et al. Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy. ACS Nano 16, 910–920 (2022).

    Google Scholar 

  63. Ding, X. et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 136, 15684–15693 (2014).

    Google Scholar 

  64. Zhang, Y. et al. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci. Rep. 8, 8720 (2018).

    Google Scholar 

  65. Kim, M. et al. Numerical study on effective conditions for the induction of apoptotic temperatures for various tumor aspect ratios using a single continuous-wave laser in photothermal therapy using gold nanorods. Cancers 11, 764 (2019).

    Google Scholar 

  66. Pérez-Hernández, M. et al. Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms. ACS Nano 9, 52–61 (2015).

    Google Scholar 

  67. Minea, A. A. & Sohel Murshed, S. Ionic liquids-based nanocolloids—A review of progress and prospects in convective heat transfer applications. Nanomaterials 11, 1039 (2021).

    Google Scholar 

  68. Yu, M. & Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 9, 6655–6674 (2015).

    Google Scholar 

  69. Ng, C. T. et al. Clathrin-mediated endocytosis of gold nanoparticles in vitro. Anat. Rec. 298, 418–427 (2015).

    Google Scholar 

  70. Li, Y. & Monteiro-Riviere, N. A. Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles. Nanomedicine 11, 3185–3203 (2016).

    Google Scholar 

  71. Chen, Y.-Q. et al. Uncovering the importance of ligand mobility on cellular uptake of nanoparticles: Insights from experimental, computational, and theoretical investigations. ACS Nano 18, 6463–6476 (2024).

    Google Scholar 

  72. Noblett, A. D., Baek, K. & Suggs, L. J. Controlling nucleopeptide hydrogel self-assembly and formation for cell-culture scaffold applications. ACS Biomater. Sci. Eng. 7, 2605–2614 (2021).

    Google Scholar 

  73. Gong, N. & Mitchell, M. J. Rerouting nanoparticles to bone marrow via neutrophil hitchhiking. Nat. Nanotechnol. 18, 548–549 (2023).

    Google Scholar 

  74. Yuan, S. & Hu, Q. Convergence of nanomedicine and neutrophils for drug delivery. Bioact. Mater. 35, 150–166 (2024).

    Google Scholar 

  75. Melamed, J. R., Edelstein, R. S. & Day, E. S. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 9, 6–11 (2015).

    Google Scholar 

  76. Kim, S., Jun, D. H., Kim, H. J., Jeong, K.-C. & Lee, C.-H. Development of a high-content screening method for chemicals modulating DNA damage response. J. Biomolecular Screen. 16, 259–265 (2011).

    Google Scholar 

  77. Amin, K. & Dannenfelser, R. M. In vitro hemolysis: guidance for the pharmaceutical scientist. J. Pharm. Sci. 95, 1173–1176 (2006).

    Google Scholar 

  78. Yedgar, S., Barshtein, G. & Gural, A. Hemolytic activity of nanoparticles as a marker of their hemocompatibility. Micromachines 13, 2091 (2022).

    Google Scholar 

  79. Brenner, J. S. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 9, 2684 (2018).

    Google Scholar 

  80. https://www.biolegend.com/en-gb/products/fitc-anti-human-cd15-ssea-1-antibody-3700, F. a.-h. C. S.-A. a.-C.-W. D. B. c. &. FITC anti-human CD15 SSEA-1 Antibody anti-CD15 - W6D3. (2021). Biolegend.com. https://www.biolegend.com/en-gb/products/fitc-anti-human-cd15-ssea-1-antibody-3700, 2021).

  81. Anti-Human CD66b Antibody, C. G. F. S. T. S. c. Anti-Human CD66b Antibody, Clone G10F5 | STEMCELL Technologies. (2015). Stemcell.com. https://www.stemcell.com/products/anti-human-cd66b-antibody-clone-g10f5.html#section-protocols-and-documentation, 2015).

  82. Chen, X. & Gao, C. Influences of surface coating of PLGA nanoparticles on immune activation of macrophages. J. Mater. Chem. B 6, 2065–2077 (2018).

    Google Scholar 

  83. Garanina, A. et al. The Internalization Pathways of Liposomes, PLGA, and Magnetic Nanoparticles in Neutrophils. Biomedicines 12, 2180 (2024).

    Google Scholar 

Download references

Acknowledgements

E.E.L.T. acknowledges the College of Liberal Arts at the University of Mississippi and the NSF (#2236629) for funding. The abstract graphic and Fig. 1 were created with BioRender.com. A portion of this work was presented as an oral presentation at the American Chemical Society (ACS) Spring 2024 national meeting held in New Orleans, Louisiana on March 18, 2024. Ionic liquid-coated gold core polymeric nanoparticles for selective neutrophil hitchhiking and targeted endometriosis treatment Date March 18, 2024.

Author information

Authors and Affiliations

  1. Department of Chemistry & Biochemistry, The University of Mississippi, University, MS, USA

    Priyavrat Vashisth, Duoyi Hu, Whitney Jones, Christine M. Hamadani, Gaya S. Dasanyake, Gagandeep Singh, Claylee M. Chism, Briana Gamboa, Anderson C. Wall, Nicholas Whitehead, Tyler Gilmer, Sara X. Edgecomb, Mercedes C. Pride & Eden E. L. Tanner

  2. Department of Chemistry & Biochemistry, Presbyterian College, Clinton, SC, USA

    Lauren T. D. Clerc

  3. Department of Chemistry, Mississippi State University, Starkville, MS, USA

    Tanveer Shaikh & Nicholas C. Fitzkee

Authors
  1. Priyavrat Vashisth
    View author publications

    Search author on:PubMed Google Scholar

  2. Lauren T. D. Clerc
    View author publications

    Search author on:PubMed Google Scholar

  3. Duoyi Hu
    View author publications

    Search author on:PubMed Google Scholar

  4. Whitney Jones
    View author publications

    Search author on:PubMed Google Scholar

  5. Tanveer Shaikh
    View author publications

    Search author on:PubMed Google Scholar

  6. Christine M. Hamadani
    View author publications

    Search author on:PubMed Google Scholar

  7. Gaya S. Dasanyake
    View author publications

    Search author on:PubMed Google Scholar

  8. Gagandeep Singh
    View author publications

    Search author on:PubMed Google Scholar

  9. Claylee M. Chism
    View author publications

    Search author on:PubMed Google Scholar

  10. Briana Gamboa
    View author publications

    Search author on:PubMed Google Scholar

  11. Anderson C. Wall
    View author publications

    Search author on:PubMed Google Scholar

  12. Nicholas Whitehead
    View author publications

    Search author on:PubMed Google Scholar

  13. Tyler Gilmer
    View author publications

    Search author on:PubMed Google Scholar

  14. Sara X. Edgecomb
    View author publications

    Search author on:PubMed Google Scholar

  15. Mercedes C. Pride
    View author publications

    Search author on:PubMed Google Scholar

  16. Nicholas C. Fitzkee
    View author publications

    Search author on:PubMed Google Scholar

  17. Eden E. L. Tanner
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: P.V., E.E.L.T., C.M.H., W.J.; Au-PLGA-IL NP synthesis, optimization, characterization and methodology: P.V., L.T.D.C., G.S., C.M.H., B.G., N.W., T.G.; IL synthesis and characterization: C.M.C., P.V.; Photothermal efficiency measurement and ICP-MS, TEM Imaging and analysis: T.S., P.V., N.F.; Cytotoxicity assay: P.V., L.T.D.C., A.C.W., D.H.; In vitro photothermal experiments: P.V., L.T.D.C., A.C.W., D.H.; Live cell imaging for In vitro experiments: P.V., L.T.D.C., G.D.; FACS experimental setup (gating, optimization): C.M.H., P.V., G.D.; Ex vivo experiments with whole blood : PV, C.M.H., S.X.E., M.P.; Live cell confocal microscopy of white blood cells: C.M.H.; Supervision and funding: E.E.L.T.; Writing the original draft: P.V., E.E.L.T., L.T.D.C., D.H.; Manuscript review: all authors.

Corresponding author

Correspondence to Eden E. L. Tanner.

Ethics declarations

Competing interests

E.E.L.T. and C.M.H. have filed intellectual property disclosures describing some aspects of this technology. All other authors declare no competing interests.

Peer review

Peer review information

Communications Chemistry thanks Hakan Erdoğan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

42004_2026_1909_MOESM2_ESM.pdf

SI

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashisth, P., Clerc, L.T.D., Hu, D. et al. Ionic liquid-coated gold core polymeric nanoparticles for selective neutrophil hitchhiking towards endometriosis treatment. Commun Chem (2026). https://doi.org/10.1038/s42004-026-01909-8

Download citation

  • Received: 27 May 2025

  • Accepted: 15 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s42004-026-01909-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Molecules and materials for photothermal therapy

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Chemistry (Commun Chem)

ISSN 2399-3669 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing