Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Chemistry
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications chemistry
  3. articles
  4. article
High-pressure synthesis of U2[CO3]3 and U[CO3]2 as potential host phases for uranium in the Earth’s mantle
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 30 January 2026

High-pressure synthesis of U2[CO3]3 and U[CO3]2 as potential host phases for uranium in the Earth’s mantle

  • Dominik Spahr  ORCID: orcid.org/0000-0003-0489-52701,
  • Lkhamsuren Bayarjargal1,
  • Elena Bykova  ORCID: orcid.org/0000-0001-8652-024X1,
  • Maxim Bykov  ORCID: orcid.org/0000-0003-0248-17282,
  • Gabriel L. Murphy  ORCID: orcid.org/0000-0003-3239-97253,
  • Philip Kegler3,
  • Victor Milman  ORCID: orcid.org/0000-0003-2258-13474,
  • Nico Giordano  ORCID: orcid.org/0000-0001-9518-12515 &
  • …
  • Björn Winkler1 

Communications Chemistry , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Geochemistry
  • Solid-state chemistry

Abstract

It is well established that a significant amount of heat produced in the Earth’s mantle is due to the decay of uranium. However, uranium cannot be incorporated in large amounts into the most common mantle minerals. Here, we suggest that carbonates could be host phases for uranium in carbon-rich mantle lithologies. Two anhydrous uranium carbonates, U2[CO3]3 and U[CO3]2, were simultaneously synthesized by a reaction of UO2 with CO2 in a laser-heated diamond anvil cell at 20(1) GPa and 1800(200) K. Their crystal structures were obtained from synchrotron-based single crystal diffraction data and reproduced by density functional theory-based calculations. In U2[CO3]3 trivalent uranium cations are present, while uranium is four-valent in U[CO3]2. The synthesis of U2[CO3]3 and U[CO3]2 is a significant extension of the chemistry of uranium compounds and we provide a straightforward synthesis route for a UIII-containing compound.

Similar content being viewed by others

Effect of carbon content on electronic structure of uranium carbides

Article Open access 22 November 2023

Uranium carbonate complexes demonstrate drastic decrease in stability at elevated temperatures

Article Open access 16 August 2021

Thermal oxidation and high temperature structural behavior of uranium carbide

Article Open access 09 January 2026

Data availability

The X-ray crystallographic coordinates for the structure reported in this study has been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 2475926 (U[CO3]2) and 2475927 (U2[CO3]3). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The supplementary material contains additional information to the results of the single crystal structure determination and DFT-based calculations.

References

  1. Sammon, L. G. & McDonough, W. F. Quantifying Earth’s radiogenic heat budget. EPSL 593, 117684 (2022).

    Google Scholar 

  2. Abe, S. et al. Abundances of uranium and thorium elements in Earth estimated by geoneutrino spectroscopy. Geophys. Res. Lett. 49, e2022GL099566 (2022).

    Google Scholar 

  3. Morss, L. R., Edelstein, N. M. & Fuger, J. (eds.) The Chemistry of the Actinide and Transactinide Elements (Springer, 2011).

  4. Dahlkamp, F. J. Uranium Ore Deposits (Springer-Verlag, 1993).

  5. Burns, P. C. U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. Can. Mineral. 43, 1839–1894 (2005).

    Google Scholar 

  6. Gurzhiy, V. V., Kalashnikova, S. A., Kuporev, I. V. & Pláa̧il, J. Crystal chemistry and structural complexity of the uranyl carbonate minerals and synthetic compounds. Crystals 11, 704 (2021).

    Google Scholar 

  7. Cowie, B. E., Purkis, J. M., Austin, J., Love, J. B. & Arnold, P. L. Thermal and photochemical reduction and functionalization chemistry of the uranyl dication, [UVIO2]2+. Chem. Rev. 119, 10595–10637 (2019).

    Google Scholar 

  8. Gautron, L. et al. Uranium in the Earth’s lower mantle. Geophys. Res. Lett. 43, L23301 (2006).

    Google Scholar 

  9. Perry, S. N., Pigott, J. S. & Panero, W. R. Ab initio calculations of uranium and thorium storage in CaSiO3-perovskite in the Earth’s lower mantle. Am. Mineral. 102, 321–326 (2017).

    Google Scholar 

  10. Kaminsky, F. Mineralogy of the lower mantle: A review of super-deep mineral inclusions in diamond. Earth Sci. Rev. 110, 127–147 (2012).

    Google Scholar 

  11. Deines, P. The carbon isotope geochemistry of mantle xenoliths. Earth-Sci. Rev. 58, 247–278 (2002).

    Google Scholar 

  12. Gu, T. et al. Hydrous peridotitic fragments of Earth’s mantle 660 km discontinuity sampled by a diamond. Nat. Geosci. 15, 950–954 (2022).

    Google Scholar 

  13. Bayarjargal, L., Fruhner, C.-J., Schrodt, N. & Winkler, B. CaCO3 phase diagram studied with Raman spectroscopy at pressures up to 50 GPa and high temperatures and DFT modeling. Phys. Earth Planet. Inter. 281, 31–45 (2018).

    Google Scholar 

  14. Binck, J. et al. Phase stabilities of MgCO3 and MgCO3-II studied by Raman spectroscopy, X-ray diffraction, and density functional theory calculations. Phys. Rev. Mater. 4, 055001 (2020).

    Google Scholar 

  15. Binck, J. et al. Synthesis of calcium orthocarbonate, Ca2CO4-Pnma at p, T-conditions of Earth’s transition zone and lowermantle. Am. Mineral. 107, 336–342 (2022).

    Google Scholar 

  16. König, J. et al. Novel calcium sp3-carbonate CaC2O5-\(I\overline{4}2d\) may be a carbon host in Earth’s lower mantle. Earth. Space Chem. 6, 73–80 (2022).

    Google Scholar 

  17. Spahr, D. et al. Tetrahedrally coordinated sp3-hybridized carbon in Sr2CO4 orthocarbonate at ambient conditions. Inorg. Chem. 60, 5419–5422 (2021).

    Google Scholar 

  18. Spahr, D. et al. Sr3[CO4]O antiperovskite with tetrahedrally-coordinated sp3-hybridized carbon and OSr6-octahedra. Inorg. Chem. 60, 14504–14508 (2021).

    Google Scholar 

  19. Spahr, D. et al. Sr[C2O5] is an inorganic pyrocarbonate salt with [C2O5]2− Complex Anions. J. Am. Chem. Soc. 144, 2899–2904 (2022).

    Google Scholar 

  20. Spahr, D. et al. Ca3[C2O5]2[CO3] is a pyrocarbonate which can be formed at p, T-conditions prevalent in the Earth’s transition zone. Commun. Chem. 7, 238 (2024).

    Google Scholar 

  21. Christ, C. L., Clark, J. R. & Evans Jr, H. T. Crystal Structure of Rutherfordine, U2CO3. Science 121, 472–473 (1995).

    Google Scholar 

  22. Finch, R. J., Cooper, M. A., Hawthorne, F. C. & Ewing, R. C. Refinement of the crystal structure of rutherfordine. Can. Mineral. 37, 929–938 (1999).

    Google Scholar 

  23. Sahoo, B. & Patnaik, D. Carbonates of uranium. Nature 185, 683 (1960).

    Google Scholar 

  24. Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. EPSL 298, 1–13 (2010).

    Google Scholar 

  25. Dasgupta, R. et al. EPSL575, 117181 (2021).

  26. MacDonald, M. R. et al. Identification of the +2 oxidation state for uranium in a crystalline molecular complex, [K(2.2.2-Cryptand)][(C5H4SiMe3)3U]. J. Am. Chem. Soc. 135, 13310–13313 (2013).

    Google Scholar 

  27. Deng, C. et al. Accessing five oxidation states of uranium in a retained ligand framework. Nat. Commun. 14, 4657 (2002).

    Google Scholar 

  28. Barluzzi, L., Giblin, S. R., Mansikkamäki, A. & Layfield, R. A. Identification of Oxidation State +1 in a Molecular Uranium Complex. J. Am. Chem. Soc. 144, 18229–18233 (2022).

    Google Scholar 

  29. Effenberger, H. & Zemann, J. Verfeinerung der Kristallstruktur Des Lithiumkarbonates, Li2CO3. Z. Kristallogr. 150, 133–138 (1979).

    Google Scholar 

  30. Spahr, D. et al. Synthesis and crystal structure of anhydrous di-iodyl carbonate (IO2)2[CO3], Hosting I5+-Cations. JACS Au 5, 4675–4680 (2025).

    Google Scholar 

  31. Bayarjargal, L. et al. High-pressure synthesis of an iron carbonate, Fe2[CO3]3. Inorg. Chem. 63, 21637–21644 (2024).

    Google Scholar 

  32. Wang, Y. et al. Cr3+-containing carbonates and Cr2O3-Pbcn at extreme conditions. Inorg. Chem. 64, 4996–5003 (2025).

    Google Scholar 

  33. Silva, C. L. et al. On the origin of low-valent uranium oxidation state. Nat. Commun. 15, 6861 (2024).

    Google Scholar 

  34. Wooles, A. J. et al. Uranium(III)-carbon multiple bonding supported by arene σ-bonding in mixed-valence hexauranium nanometre-scale rings. Nat. Commun. 9, 2097 (2018).

    Google Scholar 

  35. Keener, M. et al. Multielectron redox chemistry of uranium by accessing the +II oxidation state and enabling reduction to a U(I) Synthon. J. Am. Chem. Soc. 145, 16271–16283 (2023).

    Google Scholar 

  36. Drożdżyński, J. Tervalent uranium compounds. Coord. Chem. Rev. 249, 2351–2373 (2005).

    Google Scholar 

  37. Liu, L.-G. & Lin, C.-C. A calcite  → aragonite-type phase transition in CdCO3. Am. Mineral. 82, 643–646 (1997).

    Google Scholar 

  38. Bayarjargal, L. et al. Anhydrous aluminium carbonates and isostructural compounds. Inorg. Chem. 62, 13910–13918 (2023).

    Google Scholar 

  39. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976).

    Google Scholar 

  40. Spahr, D. et al. Synthesis and crystal structure of acentric anhydrous beryllium carbonate Be(CO3). Chem. Commun. 60, 10208–10211 (2024).

    Google Scholar 

  41. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Google Scholar 

  42. Ritsema, J., Xu, W., Stixrude, L. & Lithgow-Bertelloni, C. Estimates of the transition zone temperature in a mechanically mixed upper mantle. EPSL 277, 244–252 (2009).

    Google Scholar 

  43. Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T. & Ito, E. Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter. 183, 212–218 (2010).

    Google Scholar 

  44. Leinders, G., Cardinaels, T., Binnemans, K. & Verwerft, M. Accurate lattice parameter measurements of stoichiometric uranium dioxide. J. Nucl. Mater. 459, 135–142 (2015).

    Google Scholar 

  45. Bruneval, F., Freyss, M. & Crocombette, J.-P. Lattice constant in nonstoichiometric uranium dioxide from first principles. Phys. Rev. Mater. 2, 023801 (2018).

    Google Scholar 

  46. Mao, H. K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986).

    Google Scholar 

  47. Aoki, K., Yamawaki, H., Sakashita, M., Gotoh, Y. & Takemura, K. Crystal structure of the high-pressure phase of solid CO2. Science 263, 356–358 (1994).

    Google Scholar 

  48. Olijnyk, H. & Jephcoat, A. P. Vibrational studies on CO2 up to 40 GPa by Raman spectroscopy at room temperature. Phys. Rev. B 57, 879–888 (1998).

    Google Scholar 

  49. Scelta, D. et al. Extending the stability field of polymeric carbon dioxide phase V beyond the Earth’s geotherm. Phys. Rev. Lett. 126, 065701 (2021).

    Google Scholar 

  50. Yoo, C. S. et al. Crystal structure of pseudo-six-fold carbon dioxide phase II at high pressures and temperatures. Phys. Rev. B 65, 104103 (2002).

    Google Scholar 

  51. Datchi, F., Giordano, F. M., Munsch, P. & Saitta, A. M. Structure of carbon dioxide phase IV: breakdown of the intermediate bonding state scenario. Phys. Rev. Lett. 103, 185701 (2009).

    Google Scholar 

  52. Spahr, D. et al. 6-fold-coordinated beryllium in calcite-type be BeCO3. Inorg. Chem. 63, 19513–19517 (2024).

    Google Scholar 

  53. Hoppe, R. et al. A new route to charge distributions in ionic solids. J. Less Common Met. 156, 105–122 (1989).

    Google Scholar 

  54. Momma, A. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).

    Google Scholar 

  55. Zhang, F. X. et al. Structural transitions and electron transfer in coffinite, USiO4, at high pressure. Am. Mineral. 94, 916–920 (2009).

    Google Scholar 

  56. Bauer, J. D. et al. High-pressure phase transition of coffinite, USiO4. J. Phys. Chem. C. 118, 25141–25149 (2014).

    Google Scholar 

  57. Redfern, S. A. T. & Angel, R. J. High-pressure behaviour and equation of state of calcite, CaCO3. Contrib. Mineral. Petrol. 134, 102–106 (1999).

    Google Scholar 

  58. Pennacchioni, L., Speziale, S., Bayarjargal, L., Schneider, M. & Winkler, B. Elasticity of amorphous calcium carbonate at high pressure and its dependence on the H2O content: A Brillouin scattering study to 20 GPa. Phys. Earth Planet. Inter. 336, 106984 (2023).

    Google Scholar 

  59. Nguyen-Thanh, T. et al. Lattice dynamics and elasticity of SrCO3. J. Appl. Cryst. 49, 1982–1990 (2016).

    Google Scholar 

  60. Biedermann, N. et al. Equation of state and high-pressure phase behaviour of SrCO3. Eur. J. Mineral. 32, 575–586 (2020).

    Google Scholar 

  61. Wood, B. J., Blundy, J. D. & Robinson, J. A. C. The role of clinopyroxene in generating U-series disequilibrium during mantle melting. Geochim. Cosmochim. Acta 63, 1613–1620 (1999).

    Google Scholar 

  62. Gréaux, S. et al. X-ray absorption near edge structure (XANES) study of the speciation of uranium and thorium in Al-rich CaSiO3 perovskite. Am. Mineral. 96, 100–109 (2012).

    Google Scholar 

  63. Murphy, G. L. et al. Deconvoluting Cr states in Cr-doped UO2 nuclear fuels via bulk and single crystal spectroscopic studies. Nat. Commun. 14, 2455 (2023).

    Google Scholar 

  64. Murphy, G. L., Kegler, P. & Alekseev, E. V. Advances and perspectives of actinide chemistry from ex situ high pressure and high temperature chemical studies. Dalton Trans. 51, 7401–7415 (2022).

    Google Scholar 

  65. Boehler, R. New diamond cell for single–crystal X-ray diffraction. Rev. Sci. Instrum. 77, 115103–1–115103—3 (2006).

    Google Scholar 

  66. Liermann, H.-P. et al. The Extreme Conditions Beamline P02.2 and the Extreme Conditions Science Infrastructure at PETRAIII. J. Synchrotron Radiat. 22, 908–924 (2015).

    Google Scholar 

  67. Hohenberg, P. & Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 136, B864–B871 (1964).

    Google Scholar 

  68. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  69. Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005).

    Google Scholar 

  70. Tkatchenko, A. & Scheffler, M. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from the DFG (WI1232 and BA4020) and the BMBF (02NUK060).E.B. and M.B. acknowledge the support of the DFG Emmy-Noether Program (projects BY101/2-1 and BY112/2-1) and the Johanna-Quandt-Stiftung. M.B. acknowledges the support by the LOEWE program. B.W. is grateful for support by the Dassault Systémes Science Ambassador program. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III, beamline P02.2.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Goethe University Frankfurt, Institute of Geosciences, Frankfurt, Germany

    Dominik Spahr, Lkhamsuren Bayarjargal, Elena Bykova & Björn Winkler

  2. Goethe University Frankfurt, Institute of Inorganic and Analytical Chemistry, Frankfurt, Germany

    Maxim Bykov

  3. Institute of Fusion Energy & Nuclear Waste Management (IFN-2), Forschungszentrum Jülich GmbH, Jülich, Germany

    Gabriel L. Murphy & Philip Kegler

  4. Dassault Systèmes BIOVIA, Cambridge, UK

    Victor Milman

  5. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

    Nico Giordano

Authors
  1. Dominik Spahr
    View author publications

    Search author on:PubMed Google Scholar

  2. Lkhamsuren Bayarjargal
    View author publications

    Search author on:PubMed Google Scholar

  3. Elena Bykova
    View author publications

    Search author on:PubMed Google Scholar

  4. Maxim Bykov
    View author publications

    Search author on:PubMed Google Scholar

  5. Gabriel L. Murphy
    View author publications

    Search author on:PubMed Google Scholar

  6. Philip Kegler
    View author publications

    Search author on:PubMed Google Scholar

  7. Victor Milman
    View author publications

    Search author on:PubMed Google Scholar

  8. Nico Giordano
    View author publications

    Search author on:PubMed Google Scholar

  9. Björn Winkler
    View author publications

    Search author on:PubMed Google Scholar

Contributions

D.S., L.B., G.L.M., and P.K. performed experiments. V.M. and B.W. performed DFT calculations. N.G.managed the synchrotron beam line. B.W., E.B. and M.B. supervised the project.

Corresponding author

Correspondence to Dominik Spahr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental material for publication

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spahr, D., Bayarjargal, L., Bykova, E. et al. High-pressure synthesis of U2[CO3]3 and U[CO3]2 as potential host phases for uranium in the Earth’s mantle. Commun Chem (2026). https://doi.org/10.1038/s42004-026-01911-0

Download citation

  • Received: 11 August 2025

  • Accepted: 14 January 2026

  • Published: 30 January 2026

  • DOI: https://doi.org/10.1038/s42004-026-01911-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

f-block chemistry

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Chemistry (Commun Chem)

ISSN 2399-3669 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing