Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Chemistry
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications chemistry
  3. articles
  4. article
Azobenzene-bridged ionizable amphiphilic Janus glycosides for light-controlled, single-component and organ-modulable pDNA delivery
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Azobenzene-bridged ionizable amphiphilic Janus glycosides for light-controlled, single-component and organ-modulable pDNA delivery

  • Zhaoxin Wang1 na1,
  • Gonzalo Rivero-Barbarroja  ORCID: orcid.org/0000-0002-3124-93732 na1,
  • Juan M. Benito3,
  • Stéphane Maisonneuve1,
  • Itziar Vélaz4,
  • Inmaculada Juárez-Gonzálvez5,
  • María J. Garrido5,
  • Conchita Tros de Ilarduya5,
  • Carmen Ortiz Mellet  ORCID: orcid.org/0000-0002-7676-77212,
  • Juan Xie  ORCID: orcid.org/0000-0001-7664-55321 &
  • …
  • José M. García Fernández  ORCID: orcid.org/0000-0002-6827-03873 

Communications Chemistry , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Drug delivery
  • Photochemistry
  • Self-assembly

Abstract

Stimuli-responsive supramolecular systems enable spatiotemporal control of nucleic acid (NA) delivery. To achieve precise and programmable vectors, we designed azobenzene-bridged ionizable amphiphilic Janus glycosides (IAJGs) as single-component, light-responsive DNA carriers. These glucopyranose-based dimers undergo reversible E/Z photoisomerization while forming stable nanocomplexes with plasmid DNA (pDNA). Photoisomerization alters nanocomplex size, surface charge, and internal order, resulting in distinct transfection outcomes. In vitro, O- and S-glycoside derivatives displayed isomer-dependent activity across COS-7, HepG2, and RAW264.7 cells, with pronounced switching effects specially in macrophages. In vivo, systemic administration revealed organ-selective responses: O-glycosides shifted expression from liver to lung upon E → Z conversion, whereas S-glycosides favored spleen targeting. All formulations maintained high cell viability. These results highlight photoswitchable IAJGs as structurally defined vectors for adjustable control over NA delivery and organ tropism.

Data availability

The authors declare that the data supporting the findings of this study related to chemical synthesis, photoswitching studies, and nanocomplex formulation are available within the paper and its Supplementary Information files. The raw data that support the biological findings of this study are available in Zenodo with the identifier https://doi.org/10.5281/zenodo.18223163.

References

  1. Badeau, B. A. & DeForest, C. A. Programming stimuli-responsive behavior into biomaterials. Annu. Rev. Biomed. Eng. 21, 241–65 (2019).

    Google Scholar 

  2. Huang, H.-J., Tsai, Y.-L. -, Lin, S.-H. - & Hsu, S. H. Smart polymers for cell therapy and precision medicine. J. Biomed. Sci. 26, 73 (2019).

    Google Scholar 

  3. Zheng, R. et al. Engineering stimuli-responsive materials for precision medicine. Small 21, 2406439 (2025).

    Google Scholar 

  4. Blanco-Gómez, A. et al. Controlled binding of organic guests by stimuli-responsive macrocycles. Chem. Soc. Rev. 49, 3834–3862 (2020).

    Google Scholar 

  5. Shigemitsu, H. & Hamachi, I. Supramolecular assemblies responsive to biomolecules toward biological applications. Chem. Asian J. 10, 2026–2038 (2015).

    Google Scholar 

  6. Wang, L., Gong, C., Yuan, X. & Wei, G. Controlling the self-assembly of biomolecules into functional nanomaterials through internal interactions and external stimulations: a review. Nanomaterials 9, 285 (2019).

    Google Scholar 

  7. Lu, S., Shen, J., Fan, C., Li, Q. & Yang, X. DNA assembly-based stimuli-responsive systems. Adv. Sci. 8, 2100328 (2021).

    Google Scholar 

  8. Hong, Y., Ma, W., Wang, M. & Wang, H.-H. Advances in programmable DNA nanostructures enabling stimuli-responsive drug delivery and multimodal biosensing RSC. Chem. Biol. 6, 1366–1385 (2025).

    Google Scholar 

  9. Zhou, H. et al. Stimuli-responsive nanotechnology for RNA delivery. Adv. Sci. 27, 2303597 (2023).

    Google Scholar 

  10. Lin, M. & Qi, X. Advances and challenges of stimuli-responsive nucleic acids delivery system in gene therapy. Pharmaceutics 15, 1450 (2023).

    Google Scholar 

  11. Arabi, F., Mansouri, V. & Ahmadbeigi, N. Gene therapy clinical trials, where do we go? An overview. Biomed. Pharmacother. 53, 113324 (2022).

    Google Scholar 

  12. Colella, P., Ronzitti, G. & Mingozzi, F. Emerging issues in AAV-mediated in vivo gene therapy. Mol. Ther.–Methods Clin. Dev. 8, 87–104 (2018).

    Google Scholar 

  13. Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy. Signal Transduct. Target. Ther. 6, 53 (2021).

    Google Scholar 

  14. Liu, L. et al. Non-viral nucleic acid delivery system for RNA therapeutics. Adv. Therap. 6, 2300005 (2023).

    Google Scholar 

  15. Li, Y. et al. Recent developments of polymeric delivery systems in gene therapeutics. Polym. Chem. 15, 1908–1931 (2024).

    Google Scholar 

  16. Sharma, D., Sanjay Arora, S., Singh, J. & Layek, B. A review of the tortuous path of nonviral gene delivery and recent progress. Int. J. Biol. Macromol. 183, 2055–2073 (2021).

    Google Scholar 

  17. Cullis, P. R. & Felgner, P. L. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat. Biotechnol. 23, 709–722 (2024).

    Google Scholar 

  18. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater 6, 1078–1094 (2021).

    Google Scholar 

  19. Wilson, B. & Geetha, K. M. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. J. Drug Deliv. Sci. Technol. 74, 103553 (2022).

    Google Scholar 

  20. Pardi, N. & Krammer, F. mRNA vaccines for infectious diseases—advances, challenges and opportunities. Nat. Rev. Drug Discov. 23, 838–861 (2024).

    Google Scholar 

  21. Ramezanpour, M. et al. Ionizable amino lipid interactions with POPC: implications for lipid nanoparticle function. Nanoscale 11, 14141–14146 (2019).

    Google Scholar 

  22. Kulkarni, J. A. et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12, 4787–4795 (2018).

    Google Scholar 

  23. Chatterjee, S., Kon, E., Sharma, P. & Peer, D. Endosomal escape: a bottleneck for LNP-mediated therapeutics. Proc. Natl Acad. Sci. USA 121, e2307800120 (2024).

    Google Scholar 

  24. Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023).

    Google Scholar 

  25. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Google Scholar 

  26. Dilliard, S. A., Chenga, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Google Scholar 

  27. Álvarez-Benedicto, E. et al. Spleen SORT LNP generated in situ CAR T cells extend survival in a mouse model of lymphoreplete B cell lymphoma. Angew. Chem. Int. Ed. 62, e202310395 (2023).

    Google Scholar 

  28. Wei, T. et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat. Commun. 14, 7322 (2023).

    Google Scholar 

  29. Lian, X. et al. Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells. Nat. Nanotechnol. 19, 1409–1417 (2024).

    Google Scholar 

  30. Sun, Y. et al. In vivo editing of lung stem cells for durable gene correction in mice. Science 384, 1196–1202 (2024).

    Google Scholar 

  31. Vaidya, A. et al. Expanding RNAi to kidneys, lungs, and spleen via selective organ targeting (SORT) siRNA lipid nanoparticles. Adv. Mater. 36, 2313791 (2024).

    Google Scholar 

  32. Kim, M. et al. Dual SORT LNPs for multi-organ base editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02675-z (2025).

  33. Robinson, J. J. et al. Reducing complexity in lipid nanoparticles: three-component zwitterionic amino lipids for targeted extrahepatic mRNA delivery. ACS Biomater. Sci. Eng. 11, 4853–4868 (2025).

    Google Scholar 

  34. Peña, A. et al. Multicomponent thiolactone-based ionizable lipid screening platform for efficient and tunable mRNA delivery to the lungs. Commun. Chem. 8, 116 (2025).

    Google Scholar 

  35. Lee, S. M. et al. Structure–activity relationship of ionizable lipids for siRNA and mRNA lipid nanoparticle design. ACS Biomater. Sci. Eng. 11, 4844–4852 (2025).

    Google Scholar 

  36. Shim, M. S. & Kwon, Y. J. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv. Drug Deliv. Rev. 24, 1046–1059 (2012).

    Google Scholar 

  37. Peng, L. & Wagner, E. Polymeric carriers for nucleic acid delivery: current designs and future directions. Biomacromolecules 20, 3613–3626 (2019).

    Google Scholar 

  38. Lu, M., Xing, H., Zheng, A., Huang, Y. & Lian, X.-J. Overcoming pharmaceutical bottlenecks for nucleic acid drug development. Acc. Chem. Res. 56, 224236 (2023).

    Google Scholar 

  39. Thakkar, D., Sehgal, R., Narula, A. K. & Deswal, D. Smart polymers: key to targeted therapeutic interventions. Chem. Commun. 61, 192–206 (2025).

    Google Scholar 

  40. Paryente, S., Aledwan, H. & Saady, A. Cyclodextrin-based rotaxanes as a versatile platform for biological and medicinal applications. Commun. Chem. 8, 149 (2025).

    Google Scholar 

  41. Jiménez Blanco, J. L., Benito, J. M., Ortiz Mellet, C. & García Fernández, J. M. Molecular nanoparticle-based gene delivery systems. J. Drug Deliv. Sci. Technol. 42, 18–37 (2017).

    Google Scholar 

  42. Ortiz Mellet, C., Benito, J. M. & García Fernández, J. M. Preorganized, macromolecular gene delivery systems. Chem. Eur. J. 16, 6728–6742 (2010).

    Google Scholar 

  43. Revdekar, A., Salvi, B. V. & Shende, P. Active transfection of genetic materials using cyclodextrin-anchored nanovectors. Mater. Adv. 5, 9548–9564 (2024).

    Google Scholar 

  44. Rivero-Barbarroja, G., Benito, J. M., Ortiz Mellet, C. & García Fernández, J. M. Cyclodextrin-based functional glyconanomaterials. Nanomaterials 10, 2517 (2020).

    Google Scholar 

  45. Rivero-Barbarroja, G. et al. β-Cyclodextrin-based geometrically frustrated amphiphiles as one-component, cell-specific and organ-specific nucleic acid delivery systems. Carbohydr. Polym. 347, 122776 (2025).

    Google Scholar 

  46. Neva, T. et al. Tuning the topological landscape of DNA- cyclodextrin nanocomplexes by molecular design. Chem. Eur. J. 26, 15259–15269 (2020).

    Google Scholar 

  47. Gallego-Yerga, L. et al. Plasmid-templated control of DNA-cyclodextrin nanoparticle morphology through molecular vector design for effective gene delivery. Chem. Eur. J. 24, 3825–3835 (2018).

    Google Scholar 

  48. Gooding, M. et al. Synthesis and characterization of rabies virus glycoprotein-tagged amphiphilic cyclodextrins for siRNA delivery in human glioblastoma cells: in vitro analysis. Eur. J. Pharm. Sci. 71, 80–92 (2015).

    Google Scholar 

  49. Guo, J., Ogier, J. R., Desgranges, S., Darcy, R. & O’Driscoll, C. Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice. Biomaterials 33, 7775–7784 (2012).

    Google Scholar 

  50. Ortega-Caballero, F. et al. Trehalose-polyamine/DNA nanocomplexes: impact of vector architecture on cell and organ transfection selectivity. J. Mater. Chem. B 12, 3445–3452 (2024).

    Google Scholar 

  51. Carbajo-Gordillo, A. I. et al. Trifaceted Mickey mouse amphiphiles for programmable self-assembly, DNA complexation and organ-selective gene delivery. Chem. Eur. J. 27, 94299438 (2021).

    Google Scholar 

  52. Jiménez Blanco, J. L. et al. Trehalose-based Janus cyclooligosaccharides: The “click” synthesis and DNA-directed assembly into pH-sensitive transfectious nanoparticles. Chem. Commun. 52, 10117–10120 (2016).

    Google Scholar 

  53. Gallego-Yerga, L. et al. Cyclodextrin- and calixarene-based polycationic amphiphiles as gene delivery systems: a structure-activity relationship study. Org. Biomol. Chem. 13, 1708–1723 (2015).

    Google Scholar 

  54. Bagnacani, V. et al. Arginine clustering on calix[4]arene macrocycles for improved cell penetration and DNA delivery. Nat. Commun. 4, 1721 (2013).

    Google Scholar 

  55. Sansone, F. et al. DNA condensation and cell transfection properties of guanidinium calixarenes: Dependence on macrocycle lipophilicity, size, and conformation. J. Am. Chem. Soc. 128, 14528–14536 (2006).

    Google Scholar 

  56. Zhang, D. One-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer delivery systems for mRNA. J. Am. Chem. Soc. 143, 12315–12327 (2021).

    Google Scholar 

  57. Zhang, D. et al. Targeted delivery of mRNA with one-component ionizable amphiphilic Janus dendrimers. J. Am. Chem. Soc. 143, 17975–17982 (2021).

    Google Scholar 

  58. Sahoo, D. et al. Toward a complete elucidation of the primary structure−activity in pentaerythritol-based one-component ionizable amphiphilic Janus dendrimers for in vivo delivery of Luc-mRNA. Biomacromolecules 26, 726–737 (2025).

    Google Scholar 

  59. Meshanni, J. A. et al. Targeted delivery of TGF-β mRNA to murine lung parenchyma using one-component ionizable amphiphilic Janus Dendrimers. Nat. Commun. 16, 1806 (2025).

    Google Scholar 

  60. Arshad, M. et al. Harnessing the electron-withdrawing inductive effect of one-component ionizable amphiphilic Janus dendrimers unveils cation−π interactions and their important roles to targeted mRNA delivery. J. Am. Chem. Soc. 143, 21347–21356 (2025).

    Google Scholar 

  61. Yagai, S. & Kitamura, A. Recent advances in photoresponsive supramolecular self-assemblies. Chem. Soc. Rev. 37, 1520 (2008).

    Google Scholar 

  62. Jiang, Q., Zhang, Y., Zhuo, R. & Jiang, X. Supramolecular host-guest polycationic gene delivery system based on poly(cyclodextrin) and azobenzene-terminated polycations. Colloids Surf. B: Biointerfaces 147, 25–35 (2016).

    Google Scholar 

  63. Li, F.-Q. et al. Highly efficient photocontrolled targeted delivery of siRNA by a cyclodextrin-based supramolecular nanoassembly. Chem. Commun. 56, 3907–3910 (2020).

    Google Scholar 

  64. Yasen, W. et al. Visible light-guided gene delivery with nonviral supramolecular block copolymer vectors. ACS Appl. Mater. Interfaces 15, 41817–41827 (2023).

    Google Scholar 

  65. Jerca, F. A., Jerca, V. V. & Hoogenboom, R. Advances and opportunities in the exciting world of azobenzenes. Nat. Rev. Chem. 6, 51–69 (2022).

    Google Scholar 

  66. Fuchter, M. J. On the promise of photopharmacology using photoswitches. J. Med. Chem. 63, 11436–11447 (2020).

    Google Scholar 

  67. Kobauri, P., Dekker, F. J., Szymanski, W. & Feringa, B. L. Rational design in photopharmacology with molecular photoswitches. Angew. Chem. Int. Ed. 62, e202300681 (2023).

    Google Scholar 

  68. Most, M. M., Boll, L. B., Gödtel, P., Pianowski, Z. L. & Lewandowski, B. Glucose-derived receptors for photo-controlled binding of amino acid esters in water. Commun. Chem. 8, 50 (2025).

    Google Scholar 

  69. Zhu, G. et al. Developing intelligent control of photoresponsive materials: from switch-type to multi-mode. Chem. Soc. Rev. 54, 7347–7376 (2025).

    Google Scholar 

  70. Lubbe, A. S., Szymanski, W. & Feringa, B. L. Recent developments in reversible photoregulation of oligonucleotide structure and function. Chem. Soc. Rev. 46, 1052–1079 (2017).

    Google Scholar 

  71. Abodja, O., Touati, N., Morel, M., Rudiuk, S. & Baigl, D. ATP/azobenzene-guanidinium selfassembly into fluorescent and multistimuli-responsive supramolecular aggregates. Commun. Chem. 7, 142 (2024).

    Google Scholar 

  72. Bergen, A. et al. Photodependent melting of unmodified DNA using a photosensitive intercalator: a new and generic tool for photoreversible assembly of DNA nanostructures at constant temperature. Nano Lett 16, 773–780 (2016).

    Google Scholar 

  73. Dohno, C., Uno, S. & Nakatani, K. Photoswitchable molecular glue for DNA. J. Am. Chem. Soc. 129, 11898–11899 (2007).

    Google Scholar 

  74. Wang, X. et al. Conformational switching of G-quadruplex DNA by photoregulation. Angew. Chem. Int. Ed. 49, 5305–5309 (2010).

    Google Scholar 

  75. Dudek, M. et al. A rationally designed azobenzene photoswitch for DNA G-quadruplex regulation in live cells. Angew. Chem. Int. Ed. Engl. 64, e202413000 (2025).

    Google Scholar 

  76. Le Ny, A. L. M. & Lee, C. T. Photoreversible DNA condensation using light-responsive surfactants. J. Am. Chem. Soc. 128, 6400–6408 (2006).

    Google Scholar 

  77. Sollogoub, M. et al. Photocontrol of single-chain DNA conformation in cell-mimicking microcompartments. ChemBioChem 9, 1201–1206 (2008).

    Google Scholar 

  78. Zakrevskyy, Y. et al. DNA compaction by azobenzene-containing surfactant. Phys. Rev. E 84, 021909 (2011).

    Google Scholar 

  79. Zhou, Y., Ye, H., Chen, Y., Zhu, R. & Yin, L. Photoresponsive drug/gene delivery systems. Biomacromolecules 19, 1840–1857 (2018).

    Google Scholar 

  80. Estévez-Torres, A. et al. Sequence-independent and reversible photocontrol of transcription/expression systems using a photosensitive nucleic acid binder. Proc. Natl Acad. Sci. USA 106, 12219–12223 (2009).

    Google Scholar 

  81. Berdnikova, D. V. Photoswitches for controllable RNA binding: a future approach in the RNA-targeting therapy. Chem. Commun. 57, 10819–10826 (2021).

    Google Scholar 

  82. Pearson, S., Feng, J. & del Campo, A. Lighting the path: light delivery strategies to activate photoresponsive biomaterials in vivo. Adv. Funct. Mater. 31, 2105989 (2021).

    Google Scholar 

  83. Menon, S., Krishnan, A. & Roy, S. Engineering azo compounds for visible and NIR light responsiveness: taking a molecular point of view. Mater. Today Chem. 47, 102836 (2025).

    Google Scholar 

  84. Cabré, G. et al. Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation. Nat. Commun. 10, 907 (2019).

    Google Scholar 

  85. Dong, M. et al. Near-infrared photoswitching of azobenzenes under physiological conditions. J. Am. Chem. Soc. 139, 13483–13486 (2017).

    Google Scholar 

  86. Dong, M., Babalhavaeji, A., Samanta, S., Beharry, A. A. & Woolley, G. A. Red-shifting azobenzene photoswitches for in vivo use. Acc. Chem. Res. 48, 2662–2670 (2015).

    Google Scholar 

  87. Wegener, M., Hansen, M. J., Driessen, A. J. M. M., Szymanski, W. & Feringa, B. L. Photocontrol of antibacterial activity: shifting from UV to red light activation. J. Am. Chem. Soc. 139, 17979–17986 (2017).

    Google Scholar 

  88. Tang, Y. & Wang, G. NIR light-responsive nanocarriers for controlled release. J. Photochem. Photobiol. C Photochem. Rev. 47, 100420 (2021).

    Google Scholar 

  89. Li, X., Liu, D., Wang, Y., Xu, S. & Liu, H. Water dispersive upconversion nanoparticles for intelligent drug delivery system. Colloids Surf. A 555, 55–62 (2018).

    Google Scholar 

  90. Chen, G. et al. NIR-induced spatiotemporally controlled gene silencing by upconversion nanoparticle-based siRNA nanocarrier. J. Control. Release 282, 148–155 (2018).

    Google Scholar 

  91. Yao, C. et al. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater. 28, 9341–9348 (2016).

    Google Scholar 

  92. Younis, M. et al. Recent progress in azobenzene-based supramolecular materials and applications. Chem. Rec. 23, e202300126 (2023).

    Google Scholar 

  93. Carbajo-Gordillo, A. I. et al. Trehalose-based Siamese twin amphiphiles with tunable self-assembling, DNA nanocomplexing and gene delivery properties. Chem. Commun. 55, 8227–8230 (2019).

    Google Scholar 

  94. Méndez-Ardoy, A. et al. Preorganized macromolecular gene delivery systems: amphiphilic β-cyclodextrin “click clusters”. Org. Biomol. Chem. 7, 2681–2684 (2009).

    Google Scholar 

  95. Zhao, C.-C. et al. Azobenzene-based liposomes with nanomechanical action for cytosolic chemotherapeutic drug delivery. Colloids Surf. B: Biointerfaces 245, 114198 (2025).

    Google Scholar 

  96. Noguchi, Y. et al. Photoinduced shape changes of giant vesicles comprising phospholipids and azobenzene-containing cationic amphiphiles. Chem. Asian J. 20, e202401426 (2025).

    Google Scholar 

  97. Pritzl, S. D. et al. Photoswitchable phospholipids for the optical control of membrane processes, protein function, and drug delivery. Commun. Mater. 6, 59 (2025).

    Google Scholar 

  98. Li, H., Du, W., Li, C., Bai, L. & Jiang, X. β-Thioglycosylation from unactivated carbohydrates. J. Am. Chem. Soc. 147, 20978–20988 (2025).

    Google Scholar 

  99. Berry, J., Lindhorst, T. K. & Despras, G. Sulfur and azobenzenes, a profitable liaison: straightforward synthesis of photoswitchable thioglycosides with tunable properties. Chem. Eur. J. 28, e202200354 (2022).

    Google Scholar 

  100. Wang, Z., Maisonneuve, S. & Xie, J. One-pot synthesis of water-soluble glycosyl azobenzenes and their photoswitching properties in water. J. Org. Chem. 87, 16165–16174 (2022).

    Google Scholar 

  101. Dokka, S., Toledo, D., Shi, X., Ye, J. & Rojanasakul, Y. High-efficiency gene transfection of macrophages by lipoplexes. Int. J. Pharm. 206, 97–104 (2000).

    Google Scholar 

  102. Jansig, E. et al. Viromers as carriers for mRNA-mediated expression of therapeutic molecules under inflammatory conditions. Sci. Rep. 10, 15090 (2020).

    Google Scholar 

  103. Méndez-Ardoy et al. β-Cyclodextrin-based polycationic amphiphilic “click” clusters: effect of structural modifications in their DNA complexing and delivery properties. J. Org. Chem. 76, 5882–5894 (2011).

    Google Scholar 

Download references

Acknowledgements

Z.W. gratefully acknowledges China Scholarship Council (CSC) for a doctoral scholarship. G.R.-B. acknowledges funding from the Ministerio de Ciencia, Innovación y Universidades through an FPU fellowship (Grant FPU18/02922). Additional support from the ENS Paris-Saclay Booster Program for mobility is also acknowledged. J.M.G.F. thanks Red de Enfermedades Raras CSIC (RER-CSIC) and PTI+ Salud Global – CSIC for continuous support. C.O.M. also acknowledge the CITIUS (Univ. Seville), for infrastructural support. The authors would like to thank Dr. Cyril Colas from the “Fédération de Recherche” ICOA/CBM (FR2708) for HRMS analysis. This work was supported by the Ministerio de Ciencia, Innovación y Universidades and the Agencia Estatal de Investigación, AEI/10.130 39/501100011033 and “ERDF A way of making Europe” (PID2021-124247OB-C21, PID2021-124247OB-C22, PID2022-141034OB-C21, PID2024-157753OB-C21 and PID2024-157753OB-C22). We also acknowledge funding by the European Union’s Horizon Europe research and innovation program under the Marie Skłodowska-Curie grant agreement 101130235 – Bicyclos.

Author information

Author notes
  1. These authors contributed equally: Zhaoxin Wang, Gonzalo Rivero-Barbarroja.

Authors and Affiliations

  1. Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, ENS Paris-Saclay, CNRS, Gif-sur-Yvette, France

    Zhaoxin Wang, Stéphane Maisonneuve & Juan Xie

  2. Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain

    Gonzalo Rivero-Barbarroja & Carmen Ortiz Mellet

  3. Instituto de Investigaciones Químicas (IIQ), CSIC – Universidad de Sevilla, Seville, Spain

    Juan M. Benito & José M. García Fernández

  4. Department of Chemistry, School of Sciences, University of Navarra, Pamplona, Spain

    Itziar Vélaz

  5. Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain

    Inmaculada Juárez-Gonzálvez, María J. Garrido & Conchita Tros de Ilarduya

Authors
  1. Zhaoxin Wang
    View author publications

    Search author on:PubMed Google Scholar

  2. Gonzalo Rivero-Barbarroja
    View author publications

    Search author on:PubMed Google Scholar

  3. Juan M. Benito
    View author publications

    Search author on:PubMed Google Scholar

  4. Stéphane Maisonneuve
    View author publications

    Search author on:PubMed Google Scholar

  5. Itziar Vélaz
    View author publications

    Search author on:PubMed Google Scholar

  6. Inmaculada Juárez-Gonzálvez
    View author publications

    Search author on:PubMed Google Scholar

  7. María J. Garrido
    View author publications

    Search author on:PubMed Google Scholar

  8. Conchita Tros de Ilarduya
    View author publications

    Search author on:PubMed Google Scholar

  9. Carmen Ortiz Mellet
    View author publications

    Search author on:PubMed Google Scholar

  10. Juan Xie
    View author publications

    Search author on:PubMed Google Scholar

  11. José M. García Fernández
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Z.W. carried most of the synthesis and the photocharacterization experiments; G.R.-B. and J.M.B. contributed to the synthesis and photocharacterization and also conducted the formulation of the nanococomplexes and their physicochemical characterization; S.M. contributed to curation and analysis of the photochemical data; I.V., I.J.-G., M.J.G., and C.T.deI. performed and analyzed the biological assays; all authors contributed to experimental design, data analysis and manuscript edition; J.M.B., S.M., C.T.deI., C.O.M., J.X., and J.M.G.F. wrote the paper. C.O.M., J.X., and J.M.G.F. devised and supervised the work.

Corresponding authors

Correspondence to Carmen Ortiz Mellet, Juan Xie or José M. García Fernández.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supporting information

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Rivero-Barbarroja, G., Benito, J.M. et al. Azobenzene-bridged ionizable amphiphilic Janus glycosides for light-controlled, single-component and organ-modulable pDNA delivery. Commun Chem (2026). https://doi.org/10.1038/s42004-026-01920-z

Download citation

  • Received: 24 October 2025

  • Accepted: 22 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s42004-026-01920-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Chemistry (Commun Chem)

ISSN 2399-3669 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research