Abstract
Stimuli-responsive supramolecular systems enable spatiotemporal control of nucleic acid (NA) delivery. To achieve precise and programmable vectors, we designed azobenzene-bridged ionizable amphiphilic Janus glycosides (IAJGs) as single-component, light-responsive DNA carriers. These glucopyranose-based dimers undergo reversible E/Z photoisomerization while forming stable nanocomplexes with plasmid DNA (pDNA). Photoisomerization alters nanocomplex size, surface charge, and internal order, resulting in distinct transfection outcomes. In vitro, O- and S-glycoside derivatives displayed isomer-dependent activity across COS-7, HepG2, and RAW264.7 cells, with pronounced switching effects specially in macrophages. In vivo, systemic administration revealed organ-selective responses: O-glycosides shifted expression from liver to lung upon E → Z conversion, whereas S-glycosides favored spleen targeting. All formulations maintained high cell viability. These results highlight photoswitchable IAJGs as structurally defined vectors for adjustable control over NA delivery and organ tropism.

Data availability
The authors declare that the data supporting the findings of this study related to chemical synthesis, photoswitching studies, and nanocomplex formulation are available within the paper and its Supplementary Information files. The raw data that support the biological findings of this study are available in Zenodo with the identifier https://doi.org/10.5281/zenodo.18223163.
References
Badeau, B. A. & DeForest, C. A. Programming stimuli-responsive behavior into biomaterials. Annu. Rev. Biomed. Eng. 21, 241–65 (2019).
Huang, H.-J., Tsai, Y.-L. -, Lin, S.-H. - & Hsu, S. H. Smart polymers for cell therapy and precision medicine. J. Biomed. Sci. 26, 73 (2019).
Zheng, R. et al. Engineering stimuli-responsive materials for precision medicine. Small 21, 2406439 (2025).
Blanco-Gómez, A. et al. Controlled binding of organic guests by stimuli-responsive macrocycles. Chem. Soc. Rev. 49, 3834–3862 (2020).
Shigemitsu, H. & Hamachi, I. Supramolecular assemblies responsive to biomolecules toward biological applications. Chem. Asian J. 10, 2026–2038 (2015).
Wang, L., Gong, C., Yuan, X. & Wei, G. Controlling the self-assembly of biomolecules into functional nanomaterials through internal interactions and external stimulations: a review. Nanomaterials 9, 285 (2019).
Lu, S., Shen, J., Fan, C., Li, Q. & Yang, X. DNA assembly-based stimuli-responsive systems. Adv. Sci. 8, 2100328 (2021).
Hong, Y., Ma, W., Wang, M. & Wang, H.-H. Advances in programmable DNA nanostructures enabling stimuli-responsive drug delivery and multimodal biosensing RSC. Chem. Biol. 6, 1366–1385 (2025).
Zhou, H. et al. Stimuli-responsive nanotechnology for RNA delivery. Adv. Sci. 27, 2303597 (2023).
Lin, M. & Qi, X. Advances and challenges of stimuli-responsive nucleic acids delivery system in gene therapy. Pharmaceutics 15, 1450 (2023).
Arabi, F., Mansouri, V. & Ahmadbeigi, N. Gene therapy clinical trials, where do we go? An overview. Biomed. Pharmacother. 53, 113324 (2022).
Colella, P., Ronzitti, G. & Mingozzi, F. Emerging issues in AAV-mediated in vivo gene therapy. Mol. Ther.–Methods Clin. Dev. 8, 87–104 (2018).
Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy. Signal Transduct. Target. Ther. 6, 53 (2021).
Liu, L. et al. Non-viral nucleic acid delivery system for RNA therapeutics. Adv. Therap. 6, 2300005 (2023).
Li, Y. et al. Recent developments of polymeric delivery systems in gene therapeutics. Polym. Chem. 15, 1908–1931 (2024).
Sharma, D., Sanjay Arora, S., Singh, J. & Layek, B. A review of the tortuous path of nonviral gene delivery and recent progress. Int. J. Biol. Macromol. 183, 2055–2073 (2021).
Cullis, P. R. & Felgner, P. L. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat. Biotechnol. 23, 709–722 (2024).
Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater 6, 1078–1094 (2021).
Wilson, B. & Geetha, K. M. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. J. Drug Deliv. Sci. Technol. 74, 103553 (2022).
Pardi, N. & Krammer, F. mRNA vaccines for infectious diseases—advances, challenges and opportunities. Nat. Rev. Drug Discov. 23, 838–861 (2024).
Ramezanpour, M. et al. Ionizable amino lipid interactions with POPC: implications for lipid nanoparticle function. Nanoscale 11, 14141–14146 (2019).
Kulkarni, J. A. et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12, 4787–4795 (2018).
Chatterjee, S., Kon, E., Sharma, P. & Peer, D. Endosomal escape: a bottleneck for LNP-mediated therapeutics. Proc. Natl Acad. Sci. USA 121, e2307800120 (2024).
Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023).
Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).
Dilliard, S. A., Chenga, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).
Álvarez-Benedicto, E. et al. Spleen SORT LNP generated in situ CAR T cells extend survival in a mouse model of lymphoreplete B cell lymphoma. Angew. Chem. Int. Ed. 62, e202310395 (2023).
Wei, T. et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat. Commun. 14, 7322 (2023).
Lian, X. et al. Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells. Nat. Nanotechnol. 19, 1409–1417 (2024).
Sun, Y. et al. In vivo editing of lung stem cells for durable gene correction in mice. Science 384, 1196–1202 (2024).
Vaidya, A. et al. Expanding RNAi to kidneys, lungs, and spleen via selective organ targeting (SORT) siRNA lipid nanoparticles. Adv. Mater. 36, 2313791 (2024).
Kim, M. et al. Dual SORT LNPs for multi-organ base editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02675-z (2025).
Robinson, J. J. et al. Reducing complexity in lipid nanoparticles: three-component zwitterionic amino lipids for targeted extrahepatic mRNA delivery. ACS Biomater. Sci. Eng. 11, 4853–4868 (2025).
Peña, A. et al. Multicomponent thiolactone-based ionizable lipid screening platform for efficient and tunable mRNA delivery to the lungs. Commun. Chem. 8, 116 (2025).
Lee, S. M. et al. Structure–activity relationship of ionizable lipids for siRNA and mRNA lipid nanoparticle design. ACS Biomater. Sci. Eng. 11, 4844–4852 (2025).
Shim, M. S. & Kwon, Y. J. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv. Drug Deliv. Rev. 24, 1046–1059 (2012).
Peng, L. & Wagner, E. Polymeric carriers for nucleic acid delivery: current designs and future directions. Biomacromolecules 20, 3613–3626 (2019).
Lu, M., Xing, H., Zheng, A., Huang, Y. & Lian, X.-J. Overcoming pharmaceutical bottlenecks for nucleic acid drug development. Acc. Chem. Res. 56, 224236 (2023).
Thakkar, D., Sehgal, R., Narula, A. K. & Deswal, D. Smart polymers: key to targeted therapeutic interventions. Chem. Commun. 61, 192–206 (2025).
Paryente, S., Aledwan, H. & Saady, A. Cyclodextrin-based rotaxanes as a versatile platform for biological and medicinal applications. Commun. Chem. 8, 149 (2025).
Jiménez Blanco, J. L., Benito, J. M., Ortiz Mellet, C. & García Fernández, J. M. Molecular nanoparticle-based gene delivery systems. J. Drug Deliv. Sci. Technol. 42, 18–37 (2017).
Ortiz Mellet, C., Benito, J. M. & García Fernández, J. M. Preorganized, macromolecular gene delivery systems. Chem. Eur. J. 16, 6728–6742 (2010).
Revdekar, A., Salvi, B. V. & Shende, P. Active transfection of genetic materials using cyclodextrin-anchored nanovectors. Mater. Adv. 5, 9548–9564 (2024).
Rivero-Barbarroja, G., Benito, J. M., Ortiz Mellet, C. & García Fernández, J. M. Cyclodextrin-based functional glyconanomaterials. Nanomaterials 10, 2517 (2020).
Rivero-Barbarroja, G. et al. β-Cyclodextrin-based geometrically frustrated amphiphiles as one-component, cell-specific and organ-specific nucleic acid delivery systems. Carbohydr. Polym. 347, 122776 (2025).
Neva, T. et al. Tuning the topological landscape of DNA- cyclodextrin nanocomplexes by molecular design. Chem. Eur. J. 26, 15259–15269 (2020).
Gallego-Yerga, L. et al. Plasmid-templated control of DNA-cyclodextrin nanoparticle morphology through molecular vector design for effective gene delivery. Chem. Eur. J. 24, 3825–3835 (2018).
Gooding, M. et al. Synthesis and characterization of rabies virus glycoprotein-tagged amphiphilic cyclodextrins for siRNA delivery in human glioblastoma cells: in vitro analysis. Eur. J. Pharm. Sci. 71, 80–92 (2015).
Guo, J., Ogier, J. R., Desgranges, S., Darcy, R. & O’Driscoll, C. Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice. Biomaterials 33, 7775–7784 (2012).
Ortega-Caballero, F. et al. Trehalose-polyamine/DNA nanocomplexes: impact of vector architecture on cell and organ transfection selectivity. J. Mater. Chem. B 12, 3445–3452 (2024).
Carbajo-Gordillo, A. I. et al. Trifaceted Mickey mouse amphiphiles for programmable self-assembly, DNA complexation and organ-selective gene delivery. Chem. Eur. J. 27, 94299438 (2021).
Jiménez Blanco, J. L. et al. Trehalose-based Janus cyclooligosaccharides: The “click” synthesis and DNA-directed assembly into pH-sensitive transfectious nanoparticles. Chem. Commun. 52, 10117–10120 (2016).
Gallego-Yerga, L. et al. Cyclodextrin- and calixarene-based polycationic amphiphiles as gene delivery systems: a structure-activity relationship study. Org. Biomol. Chem. 13, 1708–1723 (2015).
Bagnacani, V. et al. Arginine clustering on calix[4]arene macrocycles for improved cell penetration and DNA delivery. Nat. Commun. 4, 1721 (2013).
Sansone, F. et al. DNA condensation and cell transfection properties of guanidinium calixarenes: Dependence on macrocycle lipophilicity, size, and conformation. J. Am. Chem. Soc. 128, 14528–14536 (2006).
Zhang, D. One-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer delivery systems for mRNA. J. Am. Chem. Soc. 143, 12315–12327 (2021).
Zhang, D. et al. Targeted delivery of mRNA with one-component ionizable amphiphilic Janus dendrimers. J. Am. Chem. Soc. 143, 17975–17982 (2021).
Sahoo, D. et al. Toward a complete elucidation of the primary structure−activity in pentaerythritol-based one-component ionizable amphiphilic Janus dendrimers for in vivo delivery of Luc-mRNA. Biomacromolecules 26, 726–737 (2025).
Meshanni, J. A. et al. Targeted delivery of TGF-β mRNA to murine lung parenchyma using one-component ionizable amphiphilic Janus Dendrimers. Nat. Commun. 16, 1806 (2025).
Arshad, M. et al. Harnessing the electron-withdrawing inductive effect of one-component ionizable amphiphilic Janus dendrimers unveils cation−π interactions and their important roles to targeted mRNA delivery. J. Am. Chem. Soc. 143, 21347–21356 (2025).
Yagai, S. & Kitamura, A. Recent advances in photoresponsive supramolecular self-assemblies. Chem. Soc. Rev. 37, 1520 (2008).
Jiang, Q., Zhang, Y., Zhuo, R. & Jiang, X. Supramolecular host-guest polycationic gene delivery system based on poly(cyclodextrin) and azobenzene-terminated polycations. Colloids Surf. B: Biointerfaces 147, 25–35 (2016).
Li, F.-Q. et al. Highly efficient photocontrolled targeted delivery of siRNA by a cyclodextrin-based supramolecular nanoassembly. Chem. Commun. 56, 3907–3910 (2020).
Yasen, W. et al. Visible light-guided gene delivery with nonviral supramolecular block copolymer vectors. ACS Appl. Mater. Interfaces 15, 41817–41827 (2023).
Jerca, F. A., Jerca, V. V. & Hoogenboom, R. Advances and opportunities in the exciting world of azobenzenes. Nat. Rev. Chem. 6, 51–69 (2022).
Fuchter, M. J. On the promise of photopharmacology using photoswitches. J. Med. Chem. 63, 11436–11447 (2020).
Kobauri, P., Dekker, F. J., Szymanski, W. & Feringa, B. L. Rational design in photopharmacology with molecular photoswitches. Angew. Chem. Int. Ed. 62, e202300681 (2023).
Most, M. M., Boll, L. B., Gödtel, P., Pianowski, Z. L. & Lewandowski, B. Glucose-derived receptors for photo-controlled binding of amino acid esters in water. Commun. Chem. 8, 50 (2025).
Zhu, G. et al. Developing intelligent control of photoresponsive materials: from switch-type to multi-mode. Chem. Soc. Rev. 54, 7347–7376 (2025).
Lubbe, A. S., Szymanski, W. & Feringa, B. L. Recent developments in reversible photoregulation of oligonucleotide structure and function. Chem. Soc. Rev. 46, 1052–1079 (2017).
Abodja, O., Touati, N., Morel, M., Rudiuk, S. & Baigl, D. ATP/azobenzene-guanidinium selfassembly into fluorescent and multistimuli-responsive supramolecular aggregates. Commun. Chem. 7, 142 (2024).
Bergen, A. et al. Photodependent melting of unmodified DNA using a photosensitive intercalator: a new and generic tool for photoreversible assembly of DNA nanostructures at constant temperature. Nano Lett 16, 773–780 (2016).
Dohno, C., Uno, S. & Nakatani, K. Photoswitchable molecular glue for DNA. J. Am. Chem. Soc. 129, 11898–11899 (2007).
Wang, X. et al. Conformational switching of G-quadruplex DNA by photoregulation. Angew. Chem. Int. Ed. 49, 5305–5309 (2010).
Dudek, M. et al. A rationally designed azobenzene photoswitch for DNA G-quadruplex regulation in live cells. Angew. Chem. Int. Ed. Engl. 64, e202413000 (2025).
Le Ny, A. L. M. & Lee, C. T. Photoreversible DNA condensation using light-responsive surfactants. J. Am. Chem. Soc. 128, 6400–6408 (2006).
Sollogoub, M. et al. Photocontrol of single-chain DNA conformation in cell-mimicking microcompartments. ChemBioChem 9, 1201–1206 (2008).
Zakrevskyy, Y. et al. DNA compaction by azobenzene-containing surfactant. Phys. Rev. E 84, 021909 (2011).
Zhou, Y., Ye, H., Chen, Y., Zhu, R. & Yin, L. Photoresponsive drug/gene delivery systems. Biomacromolecules 19, 1840–1857 (2018).
Estévez-Torres, A. et al. Sequence-independent and reversible photocontrol of transcription/expression systems using a photosensitive nucleic acid binder. Proc. Natl Acad. Sci. USA 106, 12219–12223 (2009).
Berdnikova, D. V. Photoswitches for controllable RNA binding: a future approach in the RNA-targeting therapy. Chem. Commun. 57, 10819–10826 (2021).
Pearson, S., Feng, J. & del Campo, A. Lighting the path: light delivery strategies to activate photoresponsive biomaterials in vivo. Adv. Funct. Mater. 31, 2105989 (2021).
Menon, S., Krishnan, A. & Roy, S. Engineering azo compounds for visible and NIR light responsiveness: taking a molecular point of view. Mater. Today Chem. 47, 102836 (2025).
Cabré, G. et al. Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation. Nat. Commun. 10, 907 (2019).
Dong, M. et al. Near-infrared photoswitching of azobenzenes under physiological conditions. J. Am. Chem. Soc. 139, 13483–13486 (2017).
Dong, M., Babalhavaeji, A., Samanta, S., Beharry, A. A. & Woolley, G. A. Red-shifting azobenzene photoswitches for in vivo use. Acc. Chem. Res. 48, 2662–2670 (2015).
Wegener, M., Hansen, M. J., Driessen, A. J. M. M., Szymanski, W. & Feringa, B. L. Photocontrol of antibacterial activity: shifting from UV to red light activation. J. Am. Chem. Soc. 139, 17979–17986 (2017).
Tang, Y. & Wang, G. NIR light-responsive nanocarriers for controlled release. J. Photochem. Photobiol. C Photochem. Rev. 47, 100420 (2021).
Li, X., Liu, D., Wang, Y., Xu, S. & Liu, H. Water dispersive upconversion nanoparticles for intelligent drug delivery system. Colloids Surf. A 555, 55–62 (2018).
Chen, G. et al. NIR-induced spatiotemporally controlled gene silencing by upconversion nanoparticle-based siRNA nanocarrier. J. Control. Release 282, 148–155 (2018).
Yao, C. et al. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater. 28, 9341–9348 (2016).
Younis, M. et al. Recent progress in azobenzene-based supramolecular materials and applications. Chem. Rec. 23, e202300126 (2023).
Carbajo-Gordillo, A. I. et al. Trehalose-based Siamese twin amphiphiles with tunable self-assembling, DNA nanocomplexing and gene delivery properties. Chem. Commun. 55, 8227–8230 (2019).
Méndez-Ardoy, A. et al. Preorganized macromolecular gene delivery systems: amphiphilic β-cyclodextrin “click clusters”. Org. Biomol. Chem. 7, 2681–2684 (2009).
Zhao, C.-C. et al. Azobenzene-based liposomes with nanomechanical action for cytosolic chemotherapeutic drug delivery. Colloids Surf. B: Biointerfaces 245, 114198 (2025).
Noguchi, Y. et al. Photoinduced shape changes of giant vesicles comprising phospholipids and azobenzene-containing cationic amphiphiles. Chem. Asian J. 20, e202401426 (2025).
Pritzl, S. D. et al. Photoswitchable phospholipids for the optical control of membrane processes, protein function, and drug delivery. Commun. Mater. 6, 59 (2025).
Li, H., Du, W., Li, C., Bai, L. & Jiang, X. β-Thioglycosylation from unactivated carbohydrates. J. Am. Chem. Soc. 147, 20978–20988 (2025).
Berry, J., Lindhorst, T. K. & Despras, G. Sulfur and azobenzenes, a profitable liaison: straightforward synthesis of photoswitchable thioglycosides with tunable properties. Chem. Eur. J. 28, e202200354 (2022).
Wang, Z., Maisonneuve, S. & Xie, J. One-pot synthesis of water-soluble glycosyl azobenzenes and their photoswitching properties in water. J. Org. Chem. 87, 16165–16174 (2022).
Dokka, S., Toledo, D., Shi, X., Ye, J. & Rojanasakul, Y. High-efficiency gene transfection of macrophages by lipoplexes. Int. J. Pharm. 206, 97–104 (2000).
Jansig, E. et al. Viromers as carriers for mRNA-mediated expression of therapeutic molecules under inflammatory conditions. Sci. Rep. 10, 15090 (2020).
Méndez-Ardoy et al. β-Cyclodextrin-based polycationic amphiphilic “click” clusters: effect of structural modifications in their DNA complexing and delivery properties. J. Org. Chem. 76, 5882–5894 (2011).
Acknowledgements
Z.W. gratefully acknowledges China Scholarship Council (CSC) for a doctoral scholarship. G.R.-B. acknowledges funding from the Ministerio de Ciencia, Innovación y Universidades through an FPU fellowship (Grant FPU18/02922). Additional support from the ENS Paris-Saclay Booster Program for mobility is also acknowledged. J.M.G.F. thanks Red de Enfermedades Raras CSIC (RER-CSIC) and PTI+ Salud Global – CSIC for continuous support. C.O.M. also acknowledge the CITIUS (Univ. Seville), for infrastructural support. The authors would like to thank Dr. Cyril Colas from the “Fédération de Recherche” ICOA/CBM (FR2708) for HRMS analysis. This work was supported by the Ministerio de Ciencia, Innovación y Universidades and the Agencia Estatal de Investigación, AEI/10.130 39/501100011033 and “ERDF A way of making Europe” (PID2021-124247OB-C21, PID2021-124247OB-C22, PID2022-141034OB-C21, PID2024-157753OB-C21 and PID2024-157753OB-C22). We also acknowledge funding by the European Union’s Horizon Europe research and innovation program under the Marie Skłodowska-Curie grant agreement 101130235 – Bicyclos.
Author information
Authors and Affiliations
Contributions
Z.W. carried most of the synthesis and the photocharacterization experiments; G.R.-B. and J.M.B. contributed to the synthesis and photocharacterization and also conducted the formulation of the nanococomplexes and their physicochemical characterization; S.M. contributed to curation and analysis of the photochemical data; I.V., I.J.-G., M.J.G., and C.T.deI. performed and analyzed the biological assays; all authors contributed to experimental design, data analysis and manuscript edition; J.M.B., S.M., C.T.deI., C.O.M., J.X., and J.M.G.F. wrote the paper. C.O.M., J.X., and J.M.G.F. devised and supervised the work.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Wang, Z., Rivero-Barbarroja, G., Benito, J.M. et al. Azobenzene-bridged ionizable amphiphilic Janus glycosides for light-controlled, single-component and organ-modulable pDNA delivery. Commun Chem (2026). https://doi.org/10.1038/s42004-026-01920-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42004-026-01920-z