Table 1 Comparison of observables in Lindblad vs. Wigner trajectory frameworks

From: Chaotic and quantum dynamics in driven-dissipative bosonic chains

Observable

Lindblad

Wigner trajectories

Field \(\langle {\hat{a}}_{\ell }\rangle\)

\({{{\mathrm{Tr}}}}\,[{\hat{a}}_{\ell }\hat{\rho }]\)

α

Photon number \(\langle {\hat{a}}_{\ell }^{{{\dagger}} }{\hat{a}}_{\ell }\rangle\)

\({{{\mathrm{Tr}}}}\,[{\hat{a}}_{\ell }^{{{\dagger}} }{\hat{a}}_{\ell }\hat{\rho }]\)

α2〉 − 1/2

Spatial correlation \(\langle {\hat{a}}_{k}^{{{\dagger}} }{\hat{a}}_{\ell }\rangle\)

\({{{\mathrm{Tr}}}}\,[{\hat{a}}_{k}^{{{\dagger}} }{\hat{a}}_{\ell }\hat{\rho }]\)

\(\langle {\alpha }_{k}^{* }{\alpha }_{\ell }\rangle -{\delta }_{kl}/2\)

Kerr nonlinearity \(\langle {\hat{a}}_{\ell }^{{{\dagger}} 2}{\hat{a}}_{\ell }^{2}\rangle\)

\({{{\mathrm{Tr}}}}\,[{\hat{a}}_{\ell }^{{{\dagger}} 2}{\hat{a}}_{\ell }^{2}\hat{\rho }]\)

α4〉 − 2〈α2〉 + 1/2