Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Interpolation-based coordinate descent method for parameterized quantum circuits
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 07 January 2026

Interpolation-based coordinate descent method for parameterized quantum circuits

  • Zhijian Lai  ORCID: orcid.org/0009-0001-1548-07941,
  • Jiang Hu2,
  • Taehee Ko  ORCID: orcid.org/0000-0003-2522-01253,
  • Jiayuan Wu4 &
  • …
  • Dong An  ORCID: orcid.org/0000-0002-2964-36031 

Communications Physics , Article number:  (2026) Cite this article

  • 1375 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Computational science
  • Quantum information

Abstract

Parameterized quantum circuits (PQCs) are fundamental to many hybrid quantum-classical algorithms. However, existing structure-based optimizers for the training of PQCs, such as Rotosolve and sequential minimal optimization, rely on heuristic node selection or ignore statistical noise, which limits their robustness and accuracy. To address this issue, we propose an interpolation-based coordinate descent (ICD) method as a unified framework for all structure-based optimizers. ICD approximates the cost function through interpolation, recovers its trigonometric structure, and performs global one-dimensional updates on individual parameters. Unlike previous methods, ICD derives optimal interpolation nodes that minimize statistical errors from measurements. For the common case of r equidistant frequencies, we prove that equidistant nodes with spacing 2π/(2r + 1) jointly minimize the mean squared error of Fourier coefficient estimates, the condition number of the interpolation matrix, and the average variance of the approximated cost function. Numerical experiments confirm the superior robustness and efficiency of ICD over gradient-based methods.

Similar content being viewed by others

How to design an icosahedral quasicrystal through directional bonding

Article 18 August 2021

Decoding general error correcting codes and the role of complementarity

Article Open access 10 January 2025

The scaled-invariant Planckian metal and quantum criticality in Ce1−xNdxCoIn5

Article Open access 03 February 2023

Data availability

The data generated and analyzed in this study are available in Zenodo67.

Code availability

The code to reproduce the results of this study is available in Zenodo67.

References

  1. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Google Scholar 

  2. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    Google Scholar 

  3. Grimsley, H. R., Economou, S. E., Barnes, E. & Mayhall, N. J. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10, 3007 (2019).

    Google Scholar 

  4. Shang, Z.-X., Chen, M.-C., Yuan, X., Lu, C.-Y. & Pan, J.-W. Schrödinger-heisenberg variational quantum algorithms. Phys. Rev. Lett. 131, 060406 (2023).

    Google Scholar 

  5. Yuan, X., Endo, S., Zhao, Q., Li, Y. & Benjamin, S. C. Theory of variational quantum simulation. Quantum 3, 191 (2019).

    Google Scholar 

  6. McArdle, S. et al. Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Inf. 5, 75 (2019).

    Google Scholar 

  7. Endo, S., Sun, J., Li, Y., Benjamin, S. C. & Yuan, X. Variational quantum simulation of general processes. Phys. Rev. Lett. 125, 010501 (2020).

    Google Scholar 

  8. Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014).

  9. Zhou, L., Wang, S.-T., Choi, S., Pichler, H. & Lukin, M. D. Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020).

    Google Scholar 

  10. Blekos, K. et al. A review on quantum approximate optimization algorithm and its variants. Phys. Rep. 1068, 1–66 (2024).

    Google Scholar 

  11. Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019).

    Google Scholar 

  12. Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 101, 032308 (2020).

    Google Scholar 

  13. Perdomo-Ortiz, A., Benedetti, M., Realpe-Gómez, J. & Biswas, R. Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Sci. Technol. 3, 030502 (2018).

    Google Scholar 

  14. Killoran, N. et al. Continuous-variable quantum neural networks. Phys. Rev. Res. 1, 033063 (2019).

    Google Scholar 

  15. Benedetti, M., Lloyd, E., Sack, S. & Fiorentini, M. Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 4, 043001 (2019).

    Google Scholar 

  16. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E. & Latorre, J. I. Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020).

    Google Scholar 

  17. Yu, Z., Yao, H., Li, M. & Wang, X. Power and limitations of single-qubit native quantum neural networks. Adv. Neural Inf. Process. Syst. 35, 27810–27823 (2022).

    Google Scholar 

  18. Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).

    Google Scholar 

  19. Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2021).

    Google Scholar 

  20. Sweke, R. et al. Stochastic gradient descent for hybrid quantum-classical optimization. Quantum 4, 314 (2020).

    Google Scholar 

  21. Wierichs, D., Izaac, J., Wang, C. & Lin, C. Y.-Y. General parameter-shift rules for quantum gradients. Quantum 6, 677 (2022).

    Google Scholar 

  22. Mari, A., Bromley, T. R. & Killoran, N. Estimating the gradient and higher-order derivatives on quantum hardware. Phys. Rev. A 103, 012405 (2021).

    Google Scholar 

  23. Ding, Z., Ko, T., Yao, J., Lin, L. & Li, X. Random coordinate descent: a simple alternative for optimizing parameterized quantum circuits. Phys. Rev. Res. 6, 033029 (2024).

    Google Scholar 

  24. Powell, M. J. A direct search optimization method that models the objective and constraint functions by linear interpolation. In Advances in Optimization and Numerical Analysis (eds Gomez, S. & Hennart, J.-P.) 51–67 (Springer, 1994).

  25. Nelder, J. A. & Mead, R. A simplex method for function minimization. Comput. J. 7, 308–313 (1965).

    Google Scholar 

  26. Powell, M. J. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7, 155–162 (1964).

    Google Scholar 

  27. Spall, J. C. Adaptive stochastic approximation by the simultaneous perturbation method. IEEE Trans. Autom. Control 45, 1839–1853 (2000).

    Google Scholar 

  28. Pellow-Jarman, A., Sinayskiy, I., Pillay, A. & Petruccione, F. A comparison of various classical optimizers for a variational quantum linear solver. Quantum Inf. Process. 20, 202 (2021).

    Google Scholar 

  29. Lockwood, O. An empirical review of optimization techniques for quantum variational circuits. arXiv preprint https://doi.org/10.48550/arXiv.2202.01389 (2022).

  30. Nocedal, J. & Wright, S. J. Numerical Optimization (Springer, 2006).

  31. Byrd, R. H., Lu, P., Nocedal, J. & Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995).

    Google Scholar 

  32. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In Proc. International Conference on Learning Representations (ICLR 2015).

  33. Reddi, S. J., Kale, S. & Kumar, S. On the convergence of adam and beyond. In Proc. International Conference on Learning Representations (ICLR 2018).

  34. Stokes, J., Izaac, J., Killoran, N. & Carleo, G. Quantum natural gradient. Quantum 4, 269 (2020).

    Google Scholar 

  35. Crooks, G. E. Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition. arXiv preprint https://doi.org/10.48550/arXiv.1905.13311 (2019).

  36. Kyriienko, O. & Elfving, V. E. Generalized quantum circuit differentiation rules. Phys. Rev. A 104, 052417 (2021).

    Google Scholar 

  37. Hai, V. T. & Ho, L. B. Lagrange interpolation approach for general parameter-shift rule. In Quantum Computing: Circuits, Systems, Automation and Applications (eds Thapliyal, H. & Humble, T.) 1–17 (Springer, 2023).

  38. Markovich, L., Malikis, S., Polla, S. & Tura, J. Parameter shift rule with optimal phase selection. Phys. Rev. A 109, 062429 (2024).

    Google Scholar 

  39. Hoch, F. et al. Variational approach to photonic quantum circuits via the parameter shift rule. Phys. Rev. Res. 7, 023227 (2025).

    Google Scholar 

  40. Ostaszewski, M., Grant, E. & Benedetti, M. Structure optimization for parameterized quantum circuits. Quantum 5, 391 (2021).

    Google Scholar 

  41. PennyLane. qml.RotosolveOptimizer https://docs.pennylane.ai/en/stable/code/api/pennylane.RotosolveOptimizer.html (2024).

  42. TensorFlow Quantum. tfq.optimizers.rotosolve_minimize https://www.tensorflow.org/quantum/api_docs/python/tfq/optimizers/rotosolve_minimize (2024).

  43. Vidal, J. G. & Theis, D. O. Calculus on parameterized quantum circuits. arXiv preprint https://doi.org/10.48550/arXiv.1812.06323 (2018).

  44. Parrish, R. M., Iosue, J. T., Ozaeta, A. & McMahon, P. L. A Jacobi diagonalization and Anderson acceleration algorithm for variational quantum algorithm parameter optimization. arXiv preprint https://doi.org/10.48550/arXiv.1904.03206 (2019).

  45. Nakanishi, K. M., Fujii, K. & Todo, S. Sequential minimal optimization for quantum-classical hybrid algorithms. Phys. Rev. Res. 2, 043158 (2020).

    Google Scholar 

  46. Jäger, J., Kaldenbach, T. N., Haas, M. & Schultheis, E. Fast gradient-free optimization of excitations in variational quantum eigensolvers. Commun. Phys. 8, 418 (2025).

  47. Nemkov, N. A., Kiktenko, E. O. & Fedorov, A. K. Fourier expansion in variational quantum algorithms. Phys. Rev. A 108, 032406 (2023).

    Google Scholar 

  48. Fontana, E., Rungger, I., Duncan, R. & Círstoiu, C. Efficient recovery of variational quantum algorithms landscapes using classical signal processing. arXiv preprint https://doi.org/10.48550/arXiv.2208.05958 (2022).

  49. Okumura, S. & Ohzeki, M. Fourier coefficient of parameterized quantum circuits and barren plateau problem. arXiv preprint https://doi.org/10.48550/arXiv.2309.06740 (2023).

  50. Stȩchły, M., Gao, L., Yogendran, B., Fontana, E. & Rudolph, M. Connecting the Hamiltonian structure to the QAOA energy and Fourier landscape structure. arXiv preprint https://doi.org/10.48550/arXiv.2305.13594 (2023).

  51. Boyd, J. P. Computing the zeros, maxima and inflection points of Chebyshev, Legendre and Fourier series: solving transcendental equations by spectral interpolation and polynomial rootfinding. J. Eng. Math. 56, 203–219 (2006).

    Google Scholar 

  52. McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9, https://doi.org/10.1038/s41467-018-07090-4 (2018).

  53. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, 2010).

  54. Shi, H.-J. M., Tu, S., Xu, Y. & Yin, W. A primer on coordinate descent algorithms. arXiv preprint https://doi.org/10.48550/arXiv.1610.00040 (2016).

  55. Horn, R. A. & Johnson, C. R. Matrix Analysis (Cambridge University Press, 2012).

  56. Trefethen, L. N. & Bau, D. Numerical Linear Algebra, Twenty-fifth Anniversary Edition (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2022).

  57. Community, Q. Qiskit: An Open-source Framework For Quantum Computing https://github.com/Qiskit/qiskit (2017).

  58. Wiersema, R. et al. Exploring entanglement and optimization within the Hamiltonian variational ansatz. PRX Quantum 1, 020319 (2020).

    Google Scholar 

  59. Grange, C., Poss, M. & Bourreau, E. An introduction to variational quantum algorithms for combinatorial optimization problems. 4OR 21, 363–403 (2023).

    Google Scholar 

  60. Larocca, M. et al. Barren plateaus in variational quantum computing. Nat. Rev. Phys. 7, 174–189 (2025).

  61. Arrasmith, A., Holmes, Z., Cerezo, M. & Coles, P. J. Equivalence of quantum barren plateaus to cost concentration and narrow gorges. Quantum Sci. Technol. 7, 045015 (2022).

    Google Scholar 

  62. Wiersema, R., Kökcü, E., Kemper, A. F. & Bakalov, B. N. Classification of dynamical lie algebras of 2-local spin systems on linear, circular and fully connected topologies. npj Quantum Inf. 10, 110 (2024).

    Google Scholar 

  63. Schreiber, F. J., Eisert, J. & Meyer, J. J. Classical surrogates for quantum learning models. Phys. Rev. Lett. 131, 100803 (2023).

    Google Scholar 

  64. Xu, Y. & Yin, W. A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6, 1758–1789 (2013).

    Google Scholar 

  65. Bittel, L. & Kliesch, M. Training variational quantum algorithms is NP-hard. Phys. Rev. Lett. 127, 120502 (2021).

    Google Scholar 

  66. Warga, J. Minimizing certain convex functions. J. Soc. Ind. Appl. Math. 11, 588–593 (1963).

    Google Scholar 

  67. Lai, Z. OICD_for_VQA, v1.0.0. Zenodo. https://doi.org/10.5281/zenodo.17733224 (2025).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under the grant numbers 12501419, 12288101, and 12331010, and the National Key R&D Program of China under the grant number 2024YFA1012901. D.A. acknowledges the support by the Quantum Science and Technology-National Science and Technology Major Project via Project 2024ZD0301900, and the Fundamental Research Funds for the Central Universities, Peking University. Part of this work was completed while JH was affiliated with UC Berkeley. We would like to express our sincere gratitude to Liyuan Cao, Zhiyan Ding, Tianyou Li, Xiantao Li, Xiufan Li, Lin Lin, Yin Liu, and Zaiwen Wen for their valuable feedback and insightful comments on the manuscript.

Author information

Authors and Affiliations

  1. Beijing International Center for Mathematical Research, Peking University, Beijing, China

    Zhijian Lai & Dong An

  2. Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

    Jiang Hu

  3. School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea

    Taehee Ko

  4. Wharton Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, USA

    Jiayuan Wu

Authors
  1. Zhijian Lai
    View author publications

    Search author on:PubMed Google Scholar

  2. Jiang Hu
    View author publications

    Search author on:PubMed Google Scholar

  3. Taehee Ko
    View author publications

    Search author on:PubMed Google Scholar

  4. Jiayuan Wu
    View author publications

    Search author on:PubMed Google Scholar

  5. Dong An
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Z.L. conceived the idea and carried out the theoretical analysis. Z.L., T.K. and J.W. performed the numerical simulations. Z.L., J.H. and D.A. analyzed the results. All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Zhijian Lai or Dong An.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks David Wierichs, Zhiyan Ding and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Z., Hu, J., Ko, T. et al. Interpolation-based coordinate descent method for parameterized quantum circuits. Commun Phys (2026). https://doi.org/10.1038/s42005-025-02473-8

Download citation

  • Received: 15 April 2025

  • Accepted: 17 December 2025

  • Published: 07 January 2026

  • DOI: https://doi.org/10.1038/s42005-025-02473-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics