Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Unveiling nontrivial fusion rule of Majorana zero mode using a fermionic mode
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 January 2026

Unveiling nontrivial fusion rule of Majorana zero mode using a fermionic mode

  • Yu Zhang1,
  • Xiaoyu Zhu1,
  • Chunhui Li1,
  • Juntao Song  ORCID: orcid.org/0000-0001-5791-43542,
  • Jie Liu  ORCID: orcid.org/0000-0002-3944-16261,3 &
  • …
  • X. C. Xie3,4,5 

Communications Physics , Article number:  (2026) Cite this article

  • 802 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Theoretical physics
  • Topological matter

Abstract

Fusing Majorana zero modes (MZMs) leads to multiple outcomes, a property unique to non-Abelian anyons. The successful demonstration of this nontrivial fusion rule would be a hallmark for the development of topological quantum computation. Here, we propose that such fusion can be achieved by simply attaching a fermionic mode to a single Majorana zero mode. By modulation of the energy level of the fermionic mode (FM) as well as its coupling with MZM in different sequences, we show that a zero or integer charge pumping can be realized when different fusion loops are chosen. Such fusion loops are intimately related with the nontrivial fusion rule of Majorana modes and are solely determined by the crossings at zero energy in the parameter space. Finally, we demonstrate our proposal in a nanowire-based topological superconductor coupled to a quantum dot. We show that charge pumping is robust for MZMs in the realistic system irrespective of the initial condition of FM state.

Similar content being viewed by others

Interferometric single-shot parity measurement in InAs–Al hybrid devices

Article Open access 19 February 2025

Majorana modes in striped two-dimensional inhomogeneous topological superconductors

Article Open access 10 August 2024

Conductance spectroscopy of Majorana zero modes in superconductor-magnetic insulator nanowire hybrid systems

Article Open access 22 February 2023

Data availability

The data supporting the findings of this study are available in the article and in its Supplementary Information. Additional data are available from the corresponding authors upon reasonable request.

Code availability

The code that is deemed central to the conclusions is available from the corresponding author upon reasonable request.

References

  1. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Physics 44, 131 (2001).

    Google Scholar 

  2. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Google Scholar 

  3. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Google Scholar 

  4. Sau, J. D., Lutchyn, R. M., Tewari, S. & Das Sarma, S. Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 040502 (2010).

    Google Scholar 

  5. Fujimoto, S. Topological order and non-Abelian statistics in noncentrosymmetric s-wave superconductors. Phys. Rev. B 77, 220501(R) (2008).

    Google Scholar 

  6. Sato, M., Takahashi, Y. & Fujimoto, S. Non-Abelian topological orders and Majorana fermions in spin-singlet superconductors. Phys. Rev. B 82, 134521 (2010).

    Google Scholar 

  7. Alicea, J. Majorana fermions in a tunable semiconductor device. Phys. Rev. B 81, 125318 (2010).

    Google Scholar 

  8. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Google Scholar 

  9. Hell, M., Leijnse, M. & Flensberg, K. Two-dimensional platform for networks of Majorana bound states. Phys. Rev. Lett. 118, 107701 (2017).

    Google Scholar 

  10. Pientka, F. et al. Topological superconductivity in a planar Josephson junction. Phys. Rev. X 7, 021032 (2017).

    Google Scholar 

  11. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Google Scholar 

  12. Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).

    Google Scholar 

  13. Das, A. et al. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).

    Google Scholar 

  14. Gül, Ö. et al. Ballistic Majorana nanowire devices. Nat. Nanotechnol. 13, 192–197 (2018).

    Google Scholar 

  15. Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016).

    Google Scholar 

  16. Deng, M. T. et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 354, 1557–1562 (2016).

    Google Scholar 

  17. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    Google Scholar 

  18. Feldman, B. E. et al. High-resolution studies of the Majorana atomic chain platform. Nat. Phys. 13, 286–291 (2017).

    Google Scholar 

  19. Sun, H. H. et al. Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016).

    Google Scholar 

  20. Wang, D. F. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    Google Scholar 

  21. Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018).

    Google Scholar 

  22. Fornieri, A. et al. Evidence of topological superconductivity in planar Josephson junctions. Nature 569, 89–92 (2019).

    Google Scholar 

  23. Ren, H. C. et al. Topological superconductivity in a phase-controlled Josephson junction. Nature 569, 93–98 (2019).

    Google Scholar 

  24. Liu, J., Potter, A. C., Law, K. T. & Lee, P. A. Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states. Phys. Rev. Lett. 109, 267002 (2012).

    Google Scholar 

  25. Kells, G., Meidan, D. & Brouwer, P. W. Near-zero-energy end states in topologically trivial spin-orbit coupled superconducting nanowires with a smooth confinement. Phys. Rev. B 86, 100503(R) (2012).

    Google Scholar 

  26. Prada, E., San-Jose, P. & Aguado, R. Transport spectroscopy of NS nanowire junctions with Majorana fermions. Phys. Rev. B 86, 180503(R) (2012).

    Google Scholar 

  27. Liu, C. X., Sau, J. D. & Das Sarma, S. Distinguishing topological Majorana bound states from trivial Andreev bound states: proposed tests through differential tunneling conductance spectroscopy. Phys. Rev. B 97, 214502 (2018).

    Google Scholar 

  28. Moore, C., Stanescu, T. D. & Tewari, S. Two-terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor-superconductor heterostructures. Phys. Rev. B 97, 165302 (2018).

    Google Scholar 

  29. Vuik, A., Nijholt, B., Akhmerov, A. R. & Wimmer, M. Reproducing topological properties with quasi-Majorana states. SciPost Phys. 7, 061 (2019).

    Google Scholar 

  30. Penaranda, F., Aguado, R., San-Jose, P. & Prada, E. Quantifying wave-function overlaps in inhomogeneous Majorana nanowires. Phys. Rev. B 98, 235406 (2018).

    Google Scholar 

  31. Pan, H. N. & Das Sarma, S. Physical mechanisms for zero-bias conductance peaks in Majorana nanowires. Phys. Rev. Res. 2, 013377 (2020).

    Google Scholar 

  32. Fleckenstein, C., Dominguez, F., Ziani, N. T. & Trauzettel, B. Decaying spectral oscillations in a Majorana wire with finite coherence length. Phys. Rev. B 97, 155425 (2018).

    Google Scholar 

  33. Cao, Z., Chen, S. M., Zhang, G. & Liu, D. E. Recent progress on Majorana in semiconductor-superconductor heterostructures-engineering and detection. Sci. China Phys. Mech. Astron. 66, 267003 (2023).

    Google Scholar 

  34. Ivanov, D. A. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268 (2001).

    Google Scholar 

  35. Alicea, J., Oreg, Y., Refael, G., von Oppen, F. & Fisher, M. P. A. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011).

    Google Scholar 

  36. van Heck, B., Akhmerov, A. R., Hassler, F., Burrello, M. & Beenakker, C. W. J. Coulomb-assisted braiding of Majorana fermions in a Josephson junction array. New J. Phys. 14, 035019 (2012).

    Google Scholar 

  37. Liu, J., Chen, W. Q., Gong, M., Wu, Y. J. & Xie, X. C. Minimal setup for non-Abelian braiding of Majorana zero modes. Sci. China Phys. Mech. Astron. 64, 117811 (2021).

    Google Scholar 

  38. Mishmash, R. V., Bauer, B., von Oppen, F. & Alicea, J. Dephasing and leakage dynamics of noisy Majorana-based qubits: topological versus Andreev. Phys. Rev. B 101, 075404 (2020).

    Google Scholar 

  39. Fulga, I. C., van Heck, B., Burrello, M. & Hyart, T. Effects of disorder on Coulomb-assisted braiding of Majorana zero modes. Phys. Rev. B 88, 155435 (2013).

    Google Scholar 

  40. Manousakis, J. et al. Weak measurement protocols for Majorana bound state identification. Phys. Rev. Lett. 124, 096801 (2020).

    Google Scholar 

  41. Vijay, S. & Fu, L. Teleportation-based quantum information processing with Majorana zero modes. Phys. Rev. B 94, 235446 (2016).

    Google Scholar 

  42. Karzig, T. et al. Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes. Phys. Rev. B 95, 235305 (2017).

    Google Scholar 

  43. Schrade, C. & Fu, L. Majorana superconducting qubit. Phys. Rev. Lett. 121, 267002 (2018).

    Google Scholar 

  44. Oreg, Y. & von Oppen, F. Majorana zero modes in networks of cooper-pair boxes: topologically ordered states and topological quantum computation. Annu. Rev. Condens. Matter Phys. 11, 397–420 (2020).

    Google Scholar 

  45. Amorim, C. S., Ebihara, K., Yamakage, A., Tanaka, Y. & Sato, M. Majorana braiding dynamics in nanowires. Phys. Rev. B 91, 174305 (2015).

    Google Scholar 

  46. Harper, F., Pushp, A. & Roy, R. Majorana braiding in realistic nanowire Y-junctions and tuning forks. Phys. Rev. Res. 1, 033207 (2019).

    Google Scholar 

  47. Flensberg, K. Non-Abelian operations on Majorana fermions via single-charge control. Phys. Rev. Lett. 106, 090503 (2011).

    Google Scholar 

  48. Pandey, B., Okamoto, S. & Dagotto, E. Nontrivial fusion of Majorana zero modes in interacting quantum-dot arrays. Phys. Rev. Res. 6, 033314 (2024).

    Google Scholar 

  49. Aasen, D. et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 6, 031016 (2016).

    Google Scholar 

  50. Zhou, T. et al. Fusion of Majorana bound states with mini-gate control in two-dimensional systems. Nat. Commun. 13, 1738 (2022).

    Google Scholar 

  51. Pandey, B., Mohanta, N. & Dagotto, E. Nontrivial fusion of Majorana zero modes in interacting quantum-dot arrays. Phys. Rev. Res. 6, 033314 (2024).

    Google Scholar 

  52. Gong, M., Wu, Y. J., Jiang, H., Liu, J. & Xie, X. C. Unveiling non-Abelian statistics of vortex Majorana bound states in iron-based superconductors using fermionic modes. Phys. Rev. B 105, 014507 (2022).

    Google Scholar 

  53. Dvir, T. et al. Realization of a minimal Kitaev chain in coupled quantum dots. Nature 614, 445–450 (2023).

    Google Scholar 

  54. Levajac, V. et al. Subgap spectroscopy along hybrid nanowires by nm-thick tunnel barriers. Nat. Commun. 14, 6647 (2023).

    Google Scholar 

  55. Gao, Y. C. et al. Hard superconducting gap in pbte nanowires. Chin. Phys. Lett. 41, 038502 (2024).

    Google Scholar 

  56. Munk, M. I. K., Schulenborg, J., Egger, R. & Flensberg, K. Parity-to-charge conversion in Majorana qubit readout. Phys. Rev. Res. 2, 033254 (2020).

    Google Scholar 

  57. Microsoft Azure Quantum et al. Interferometric single-shot parity measurement in InAs-Al hybrid devices. Nature 638, 651–655 (2025).

    Google Scholar 

  58. Sun, D. H. & Liu, J. Quench dynamics of the Josephson current in a topological Josephson junction. Phys. Rev. B 97, 035311 (2018).

    Google Scholar 

  59. Wang, L., Troyer, M. & Dai, X. Topological charge pumping in a one-dimensional optical lattice. Phys. Rev. Lett. 111, 026802 (2013).

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (Grants No. 92265103, and No. 12574056), Quantum Science and Technology -National Science and Technology Major Project (Grant No. 2021ZD0302400).

Author information

Authors and Affiliations

  1. School of Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an, 710049, China

    Yu Zhang, Xiaoyu Zhu, Chunhui Li & Jie Liu

  2. Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang, 050024, China

    Juntao Song

  3. Hefei National Laboratory, Hefei, 230088, China

    Jie Liu & X. C. Xie

  4. International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China

    X. C. Xie

  5. Interdisciplinary Center for Theoretical Physics and Information Sciences, Fudan University, Shanghai, 200433, China

    X. C. Xie

Authors
  1. Yu Zhang
    View author publications

    Search author on:PubMed Google Scholar

  2. Xiaoyu Zhu
    View author publications

    Search author on:PubMed Google Scholar

  3. Chunhui Li
    View author publications

    Search author on:PubMed Google Scholar

  4. Juntao Song
    View author publications

    Search author on:PubMed Google Scholar

  5. Jie Liu
    View author publications

    Search author on:PubMed Google Scholar

  6. X. C. Xie
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.L. conceived the idea that fusion can be achieved by attaching a fermionic mode to a single Majorana zero mode after a discussion with X.C.X., Y.Z., and C.-H.L performed calculations with assistance from J.L., X.-Y.Z., and J.-T.S. Y.Z. and J.L. wrote the manuscript with contributions from all authors. J.L. and X.C.X. supervised the project.

Corresponding author

Correspondence to Jie Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Article File

Transparent Peer Review file

Supplementary material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhu, X., Li, C. et al. Unveiling nontrivial fusion rule of Majorana zero mode using a fermionic mode. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02504-y

Download citation

  • Received: 11 September 2025

  • Accepted: 09 January 2026

  • Published: 21 January 2026

  • DOI: https://doi.org/10.1038/s42005-026-02504-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing