Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Characterizing second-order topological insulators via entanglement topological invariant in two-dimensional systems
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 22 January 2026

Characterizing second-order topological insulators via entanglement topological invariant in two-dimensional systems

  • Yu-Long Zhang1,2,
  • Cheng-Ming Miao  ORCID: orcid.org/0000-0002-8095-80533,
  • Qing-Feng Sun  ORCID: orcid.org/0000-0002-5512-96083,4,
  • Jian-Jun Liu  ORCID: orcid.org/0000-0002-8062-33411,2 &
  • …
  • Ying-Tao Zhang  ORCID: orcid.org/0000-0003-2783-13251 

Communications Physics , Article number:  (2026) Cite this article

  • 626 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electronic properties and materials
  • Topological insulators

Abstract

Higher-order topological insulators have attracted significant interest in recent years. However, identifying a universal topological invariant capable of characterizing higher-order topology remains challenging. Here, we propose a entanglement topological invariant designed to characterize second-order topological systems. This entanglement topological invariant captures the entanglement of topological corner states under open boundary conditions by employing a bipartite entanglement entropy method. In several representative models, the entanglement topological invariant assumes a nonzero value exclusively in the presence of second-order topology, with its magnitude exactly matching the number of topologically protected corner states. Consequently, the proposed entanglement topological invariant not only provides a clear criterion for detecting higher-order topology, but also offers a quantitative measure for the related corner states. Our study establishes a universal and precise method for characterizing higher-order topological phases, opening avenues for their fundamental understanding and future investigations.

Similar content being viewed by others

Variable-order topological insulators

Article Open access 19 June 2023

Intrinsic second-order topological insulators in two-dimensional polymorphic graphyne with sublattice approximation

Article Open access 29 November 2024

Nonlinear second-order photonic topological insulators

Article Open access 01 July 2021

Data availability

The data that support the findings of this study are available in the Supplementary Data file or from the corresponding author upon request.

Code availability

The codes associated with this manuscript are available from the corresponding author upon request.

References

  1. Song, Z., Fang, Z. & Fang, C. (d-2)-Dimensional Edge States of Rotation Symmetry Protected Topological States. Phys. Rev. Lett. 119, 246402 (2017).

    Google Scholar 

  2. Langbehn, J., Peng, Y., Trifunovic, L., von Oppen, F. & Brouwer, P. W. Reflection-Symmetric Second-Order Topological Insulators and Superconductors. Phys. Rev. Lett. 119, 246401 (2017).

    Google Scholar 

  3. Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, eaat0346 (2018).

    Google Scholar 

  4. Franca, S., van den Brink, J. & Fulga, I. C. An anomalous higher-order topological insulator. Phys. Rev. B 98, 201114 (2018).

    Google Scholar 

  5. Wang, Z. et al. Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides XTe2 (X = Mo, W). Phys. Rev. Lett. 123, 186401 (2019).

    Google Scholar 

  6. Ezawa, M. Higher-Order Topological Insulators and Semimetals on the Breathing Kagome and Pyrochlore Lattices. Phys. Rev. Lett. 120, 026801 (2018).

    Google Scholar 

  7. Călugăru, D., Juricić, V. & Roy, B. Higher-order topological phases: A general principle of construction. Phys. Rev. B 99, 041301 (2019).

    Google Scholar 

  8. Trifunovic, L. & Brouwer, P. W. Higher-Order Bulk-Boundary Correspondence for Topological Crystalline Phases. Phys. Rev. X 9, 011012 (2019).

    Google Scholar 

  9. Khalaf, E. Higher-order topological insulators and superconductors protected by inversion symmetry. Phys. Rev. B 97, 205136 (2018).

    Google Scholar 

  10. Zeng, J., Liu, H., Jiang, H., Sun, Q.-F. & Xie, X. C. Multiorbital model reveals a second-order topological insulator in 1H transition metal dichalcogenides. Phys. Rev. B 104, L161108 (2021).

    Google Scholar 

  11. Wang, Z. et al. Realization of a three-dimensional photonic higher-order topological insulator. Nat. Commun. 16, 3122 (2025).

    Google Scholar 

  12. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Google Scholar 

  13. Kane, C. L. & Mele, E. J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Google Scholar 

  14. Kane, C. L. & Mele, E. J. \({{\mathbb{Z}}}_{2}\) Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett. 95, 146802 (2005).

    Google Scholar 

  15. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61 (2017).

    Google Scholar 

  16. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017).

    Google Scholar 

  17. Ono, S. et al. Difficulties in operator-based formulation of the bulk quadrupole moment. Phys. Rev. B 100, 245133 (2019).

    Google Scholar 

  18. Li, C.-A. et al. Topological insulators in disordered electric quadrupole insulators. Phys. Rev. Lett. 125, 166801 (2020).

    Google Scholar 

  19. Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918 (2018).

    Google Scholar 

  20. Costa, M. et al. Discovery of higher-order topological insulators using the spin Hall conductivity as a topology signature. npj Comput. Mater. 7, 146 (2021).

    Google Scholar 

  21. Miao, C.-M., Sun, Q.-F. & Zhang, Y.-T. Second-order topological corner states in zigzag graphene nanoflake with different types of edge magnetic configurations. Phys. Rev. B 106, 165422 (2022).

    Google Scholar 

  22. Miao, C.-M., Wan, Y.-H., Sun, Q.-F. & Zhang, Y.-T. Engineering topologically protected zero-dimensional interface end states in antiferromagnetic heterojunction graphene nanoflakes. Phys. Rev. B 108, 075401 (2023).

    Google Scholar 

  23. Miao, C.-M., Liu, L., Wan, Y.-H., Sun, Q.-F. & Zhang, Y.-T. General principle behind magnetization-induced second-order topological corner states in the Kane-Mele model. Phys. Rev. B 109, 205417 (2024).

    Google Scholar 

  24. Yang, Y.-B. et al. Type-II quadrupole topological insulators. Phys. Rev. Res. 2, 033029 (2020).

    Google Scholar 

  25. Kitaev, A. & Preskill, J. Topological Entanglement Entropy. Phys. Rev. Lett. 96, 110404 (2006).

    Google Scholar 

  26. Levin, M. & Wen, X.-G. Detecting Topological Order in a Ground State Wave Function. Phys. Rev. Lett. 96, 110405 (2006).

    Google Scholar 

  27. Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008).

    Google Scholar 

  28. Calabrese, P. & Cardy, J. Entanglement entropy and conformal field theory. J. Phys. A: Math. Theor. 42, 504005 (2009).

    Google Scholar 

  29. Eisert, J., Cramer, M. & Plenio, M. B. Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010).

    Google Scholar 

  30. Fradkin, E. Field Theories of Condensed Matter Physics. Cambridge University Press, Cambridge https://doi.org/10.1017/CBO9781139015509 (2013).

  31. Tsomokos, D. I. et al. Topological order following a quantum quench. Phys. Rev. A 80, 060302 (2009).

    Google Scholar 

  32. Halász, G. B. & Hamma, A. Probing topological order with Rényi entropy. Phys. Rev. A 86, 062330 (2012).

    Google Scholar 

  33. Halász, G. B. & Hamma, A. Topological Rényi Entropy after a Quantum Quench. Phys. Rev. Lett. 110, 170605 (2013).

    Google Scholar 

  34. Depenbrock, S., McCulloch, I. P. & Schollwöck, U. Nature of the Spin-Liquid Ground State of the S=1/2 Heisenberg Model on the Kagome Lattice. Phys. Rev. Lett. 109, 067201 (2012).

    Google Scholar 

  35. Jiang, H.-C., Wang, Z. & Balents, L. Identifying topological order by entanglement entropy. Nat. Phys. 8, 902 (2012).

    Google Scholar 

  36. Isakov, S. V., Hastings, M. B. & Melko, R. G. Topological Entanglement Entropy of a Bose-Hubbard Spin Liquid. Nat. Phys. 7, 772 (2011).

    Google Scholar 

  37. Sankar, S., Sela, E. & Han, C. Measuring Topological Entanglement Entropy Using Maxwell Relations. Phys. Rev. Lett. 131, 016601 (2023).

    Google Scholar 

  38. Karamlou, A. H. et al. Probing entanglement in a 2D hard-core Bose–Hubbard lattice. Nature 629, 561–566 (2024).

    Google Scholar 

  39. Lin, Z.-K. et al. Measuring entanglement entropy and its topological signature for phononic systems. Nat. Commun. 15, 1601 (2024).

    Google Scholar 

  40. Chen, T. et al. Experimental observation of classical analogy of topological entanglement entropy. Nat. Commun. 10, 1557 (2019).

    Google Scholar 

  41. Li, H. & Haldane, F. D. M. Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States. Phys. Rev. Lett. 101, 010504 (2008).

    Google Scholar 

  42. Chandran, A. et al. Bulk-edge correspondence in entanglement spectra. Phys. Rev. B 84, 205136 (2011).

    Google Scholar 

  43. Prodan, E., Hughes, T. L. & Bernevig, B. A. Entanglement Spectrum of a Disordered Topological Chern Insulator. Phys. Rev. Lett. 105, 115501 (2010).

    Google Scholar 

  44. Mao, B.-B. et al. Sampling reduced density matrix to extract fine levels of entanglement spectrum and restore entanglement Hamiltonian. Nat. Commun. 16, 2880 (2025).

    Google Scholar 

  45. Wen, X. et al. Edge theory approach to topological entanglement entropy, mutual information, and entanglement negativity in Chern-Simons theories. Phys. Rev. B 93, 245140 (2016).

    Google Scholar 

  46. Fidkowski, L. Entanglement Spectrum of Topological Insulators and Superconductors. Phys. Rev. Lett. 104, 130502 (2010).

    Google Scholar 

  47. Alexandradinata, A., Hughes, T. L. & Bernevig, B. A. Trace index and spectral flow in the entanglement spectrum of topological insulators. Phys. Rev. B 84, 195103 (2011).

    Google Scholar 

  48. Hughes, T. L., Prodan, E. & Bernevig, B. A. Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011).

    Google Scholar 

  49. Fang, C., Gilbert, M. J. & Bernevig, B. A. Entanglement spectrum classification of Cn-invariant noninteracting topological insulators in two dimensions. Phys. Rev. B 87, 035119 (2013).

    Google Scholar 

  50. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum Spin Hall Effect and Topological Insulator in HgTe Quantum Wells. Science 314, 1757 (2006).

    Google Scholar 

  51. Maiellaro, A. et al. Topological squashed entanglement: Nonlocal order parameter for one-dimensional topological superconductors. Phys. Rev. Res. 4, 033088 (2022).

    Google Scholar 

  52. Maiellaro, A. et al. Edge states, Majorana fermions, and topological order in superconducting wires with generalized boundary conditions. Phys. Rev. B 106, 155407 (2022).

    Google Scholar 

  53. Maiellaro, A. et al. Squashed entanglement in one-dimensional quantum matter. Phys. Rev. B 107, 115160 (2023).

    Google Scholar 

  54. Maiellaro, A. et al. Resilience of topological superconductivity under particle current. Phys. Rev. B 107, 064505 (2023).

    Google Scholar 

  55. Liu, L. et al. Engineering second-order topological insulators via coupling two first-order topological insulators. Phys. Rev. B 110, 115427 (2024).

    Google Scholar 

  56. Peschel, I. & Eisler, V. Reduced density matrices and entanglement entropy in free lattice models. J. Phys. A 42, 504003 (2009).

    Google Scholar 

  57. Peschel, I. Calculation of reduced density matrices from correlation functions. J. Phys. A 36, L205 (2003).

    Google Scholar 

  58. Arad, I., Firanko, R. & Jain, R. An Area Law for the Maximally-Mixed Ground State in Arbitrarily Degenerate Systems with Good AGSP. Proc. 56th Annu. ACM Symp. Theory Comput.https://doi.org/10.1145/3618260.3649612 (2024).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 12274305, No. 12074097, No. 12374034 and No. 12447147), Natural Science Foundation of Hebei Province (Grant No. A2024205025), the National Key R and D Program of China (Grant No. 2024YFA1409002), the China Postdoctoral Science Foundation (Grant No. 2024M760070), and the Quantum Science and Technology-National Science and Technology Major Project (Grant No. 2021ZD0302403).

Author information

Authors and Affiliations

  1. College of Physics, Hebei Normal University, Shijiazhuang, China

    Yu-Long Zhang, Jian-Jun Liu & Ying-Tao Zhang

  2. Department of Physics, Shijiazhuang University, Shijiazhuang, China

    Yu-Long Zhang & Jian-Jun Liu

  3. International Center for Quantum Materials, School of Physics, Peking University, Beijing, China

    Cheng-Ming Miao & Qing-Feng Sun

  4. Hefei National Laboratory, Hefei, China

    Qing-Feng Sun

Authors
  1. Yu-Long Zhang
    View author publications

    Search author on:PubMed Google Scholar

  2. Cheng-Ming Miao
    View author publications

    Search author on:PubMed Google Scholar

  3. Qing-Feng Sun
    View author publications

    Search author on:PubMed Google Scholar

  4. Jian-Jun Liu
    View author publications

    Search author on:PubMed Google Scholar

  5. Ying-Tao Zhang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.-L.Z. and Y.-T.Z. conceived the work and designed the research strategy. Y.-L.Z. and C.-M.M. carried out the numerical calculations under the supervision of Y.-T.Z. and Q.-F.S. All authors, Y.-L.Z., C.-M.M., J.-J.L., Y.-T.Z., and Q.-F.S. performed the data analysis and wrote the paper together.

Corresponding authors

Correspondence to Qing-Feng Sun, Jian-Jun Liu or Ying-Tao Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Material

Description of Additional Supplementary Files

Supplementary Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YL., Miao, CM., Sun, QF. et al. Characterizing second-order topological insulators via entanglement topological invariant in two-dimensional systems. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02507-9

Download citation

  • Received: 02 July 2025

  • Accepted: 13 January 2026

  • Published: 22 January 2026

  • DOI: https://doi.org/10.1038/s42005-026-02507-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing