Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Granular Ta-Te nanowire superconductivity exceeding the Pauli limit
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 February 2026

Granular Ta-Te nanowire superconductivity exceeding the Pauli limit

  • Lingxiao Zhao1 na1,
  • Yi Zhao  ORCID: orcid.org/0000-0001-7909-79301 na1,
  • Zhen-Bo Qi1 na1,
  • Xin-Zhi Li1,
  • Lin Xiong1,2,
  • Haiyin Zhu1,2,
  • Cuiying Pei1,
  • Qi Wang1,3,
  • Changhua Li1,
  • Weizheng Cao1,
  • Tianping Ying4,
  • Wen-Yu He  ORCID: orcid.org/0000-0002-1595-88071 &
  • …
  • Yanpeng Qi  ORCID: orcid.org/0000-0003-2722-13751,2,3 

Communications Physics , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Nanowires
  • Superconducting properties and materials

Abstract

Achieving higher upper-critical-field (μ0Hc2(0)) superconductors is of great interest for both fundamental science and practical applications. While reducing the thickness of two-dimensional (2D) bulk crystals to a few layers significantly enhances μ0Hc2(0) with accompanied potential unconventional pairing mechanisms, further dimensional reduction to 1D compounds rarely exceeds the Pauli limit. Here, we report the synthesis of a 1D granular Ta-Te nanowire that becomes superconducting under high pressure, with a maximum critical temperature (Tc) of 5.1 K. The μ0Hc2(0) reaches 16 T, which is twice the Pauli limit. Our proposed strategy may have potential applications in high magnetic fields, and the granular Ta-Te nanowire serves as an ideal platform for further investigations of the mechanisms between dimensionality and μ0Hc2(0).

Data availability

The authors declare that the data that support the findings of this study are available within the article. The original data of the figures are exhibited in the supplementary data 1-4. All other relevant data are available from the Corresponding authors upon request.

References

  1. Wickramaratne, D., Khmelevskyi, S., Agterberg, D. F. & Mazin, I. I. Ising Superconductivity and Magnetism in NbSe2. Phys. Rev. X 10, 041003 (2020).

    Google Scholar 

  2. Zhang, H. et al. Tailored Ising superconductivity in intercalated bulk NbSe2. Nat. Phys. 18, 1425–1430 (2022).

    Google Scholar 

  3. Yi, H. et al. Crossover from Ising- to Rashba-type superconductivity in epitaxial Bi2Se3/monolayer NbSe2 heterostructures. Nat. Mater. 21, 1366–1372 (2022).

    Google Scholar 

  4. Li, L. et al. Converting a monolayered NbSe2 into an Ising superconductor with nontrivial band topology via physical or chemical pressuring. Nano Lett. 22, 6767–6774 (2022).

    Google Scholar 

  5. Wan, P. et al. Orbital Fulde–Ferrell–Larkin–Ovchinnikov state in an Ising superconductor. Nature 619, 46–51 (2023).

    Google Scholar 

  6. Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    Google Scholar 

  7. de la Barrera, S. C. et al. Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 9, 1427 (2018).

    Google Scholar 

  8. Lu, J. et al. Full superconducting dome of strong Ising protection in gated monolayer WS2. Proc. Natl. Acad. Sci. USA 115, 3551–3556 (2018).

    Google Scholar 

  9. Tian, M. et al. Observation of superconductivity in granular Bi nanowires fabricated by electrodeposition. Nano Lett. 6, 2773–2780 (2006).

    Google Scholar 

  10. Tian, M., Wang, J., Ning, W., Mallouk, T. E. & Chan, M. H. W. Surface Superconductivity in Thin Cylindrical Bi Nanowire. Nano Lett. 15, 1487–1492 (2015).

    Google Scholar 

  11. Tian, M. et al. Superconductivity and quantum oscillations in crystalline Bi nanowire. Nano Lett. 9, 3196–3202 (2009).

    Google Scholar 

  12. Sun, L. et al. Pressure-induced superconducting state in crystalline boron nanowires. Phys. Rev. B 79, 140505 (2009).

    Google Scholar 

  13. Wang, J. et al. Proximity-induced superconductivity in nanowires: minigap state and differential magnetoresistance oscillations. Phys. Rev. Lett. 102, 247003 (2009).

    Google Scholar 

  14. Córdoba, R., Ibarra, A., Mailly, D. & De Teresa, J. M. Vertical growth of superconducting crystalline hollow nanowires by He+ focused ion beam induced deposition. Nano Lett. 18, 1379–1386 (2018).

    Google Scholar 

  15. Sadki, E. S., Ooi, S. & Hirata, K. Focused-ion-beam-induced deposition of superconducting nanowires. Appl. Phys. Lett. 85, 6206–6208 (2004).

    Google Scholar 

  16. Selte, K. & Kjekshus, A. The crystal structures of Nb3Se4 and Nb3Te4. Acta Crystallogr. 17, 1568–1572 (1964).

    Google Scholar 

  17. Ishihara, Y. & Nakada, I. Electrical transport properties of a quasi-one-dimensional Nb3Te4 single crystal. Solid State Commun. 45, 129–132 (1983).

    Google Scholar 

  18. Rodin, A. S. & Fogler, M. M. Apparent Power-Law Behavior of Conductance in Disordered Quasi-One-Dimensional Systems. Phys. Rev. Lett. 105, 106801 (2010).

    Google Scholar 

  19. Wang, Q. et al. Charge Density Wave Orders and Enhanced Superconductivity under Pressure in the Kagome Metal CsV3Sb5. Adv. Mater. 33, 2102813 (2021).

    Google Scholar 

  20. Cui, J. et al. Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1Td-MoTe2. Nat. Commun. 10, 2044 (2019).

    Google Scholar 

  21. Annett J. F. Superconductivity, Superfluids, and Condensates (2004).

  22. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Google Scholar 

  23. Cao, Y., Park, J. M., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Pauli-limit violation and re-entrant superconductivity in moiré graphene. Nature 595, 526–531 (2021).

    Google Scholar 

  24. Chow, L. E. et al. Pauli-Limit Violation in Lanthanide Infinite-Layer Nickelate Superconductors (2022).

  25. Liu, X., Zhang, N. J., Watanabe, K., Taniguchi, T. & Li, J. I. A. Isospin order in superconducting magic-angle twisted trilayer graphene. Nat. Phys. 18, 522–527 (2022).

    Google Scholar 

  26. Squire, O. P. et al. Superconductivity beyond the Conventional Pauli Limit in High-Pressure ${{\mathrm{CeSb}}}_{2}$. Phys. Rev. Lett. 131, 026001 (2023).

    Google Scholar 

  27. Machida, K. Violation of Pauli-Clogston limit in the heavy-fermion superconductor ${{\mathrm{CeRh}}}_{2}{{\mathrm{As}}}_{2}$: Duality of itinerant and localized $4f$ electrons. Phys. Rev. B 106, 184509 (2022).

    Google Scholar 

  28. Nakamura, D., Adachi, T., Omori, K., Koike, Y. & Takeyama, S. Pauli-limit upper critical field of high-temperature superconductor La1.84Sr0.16CuO4. Sci. Rep. 9, 16949 (2019).

    Google Scholar 

  29. Gao, Z. et al. Superconducting properties of granular SmFeAsO1−xFx wires with Tc = 52 K prepared by the powder-in-tube method. Supercond. Sci. Technol.21, 112001 (2008).

    Google Scholar 

  30. Qi, Y. et al. Superconductivity at 34.7 K in the iron arsenide Eu0.7Na0.3Fe2As2. N. J. Phys. 10, 123003 (2008).

    Google Scholar 

  31. Mercure, J. F. et al. Upper critical magnetic field far above the paramagnetic pair-breaking limit of superconducting one-dimensional ${{\mathrm{Li}}}_{0.9}{{\mathrm{Mo}}}_{6}{{\mathbf{O}}}_{17}$ Single Crystals. Phys. Rev. Lett. 108, 187003 (2012).

    Google Scholar 

  32. Lu, J. et al. Emergence of a real-space symmetry axis in the magnetoresistance of the one-dimensional conductor Li0.9Mo6O17. Sci. Adv. 5, eaar8027 (2019).

    Google Scholar 

  33. Yang, J. et al. Spin-triplet superconductivity in K2Cr3As3. Sci. Adv. 7, eabl4432 (2021).

    Google Scholar 

  34. Edwards, H. K. et al. Growth and microstructural characterization of single crystalline Nb3Te4 nanowires. Cryst. Growth Des. 5, 1633–1637 (2005).

    Google Scholar 

  35. Pei, C., et al. Pressure-induced superconductivity at 32 K in MoB2. Natl. Sci. Rev. 10, (2023).

  36. Mao, H. K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. Solid Earth 91, 4673–4676 (1986).

    Google Scholar 

  37. Porrati, F. et al. Crystalline niobium carbide superconducting nanowires prepared by focused Ion beam direct writing. ACS Nano 13, 6287–6296 (2019).

    Google Scholar 

  38. He, M. et al. Giant” Enhancement of the upper critical field and fluctuations above the bulk Tc in superconducting ultrathin lead nanowire arrays. ACS Nano 7, 4187–4193 (2013).

    Google Scholar 

  39. Ning, W. et al. Superconductor–insulator transition in quasi-one-Dimensional Single-Crystal Nb2PdS5 Nanowires. Nano Lett. 15, 869–875 (2015).

    Google Scholar 

  40. Ridderbos, J. et al. Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires. Nano Lett. 20, 122–130 (2020).

    Google Scholar 

  41. Sun, Y. et al. Voltage-current properties of superconducting amorphous tungsten nanostrips. Sci. Rep. 3, 2307 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge Prof. Kam Tuen Law and Mr. Tian Xiang for valuable discussions and advices. Y. Q. acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 52272265) and the National Key R&D Program of China (Grant No. 2023YFA1607400). W.-Y.H. acknowledges the support from the National Natural Science Foundation of China (No. 12304200), the BHYJRC Program from the Ministry of Education of China (No. SPST-RC-10), the Shanghai Rising-Star Program (24QA2705400), and the start-up funding from ShanghaiTech University.

Author information

Author notes
  1. These authors contributed equally: Lingxiao Zhao, Yi Zhao, Zhen-Bo Qi.

Authors and Affiliations

  1. School of Physical Science and Technology, ShanghaiTech University, Shanghai, China

    Lingxiao Zhao, Yi Zhao, Zhen-Bo Qi, Xin-Zhi Li, Lin Xiong, Haiyin Zhu, Cuiying Pei, Qi Wang, Changhua Li, Weizheng Cao, Wen-Yu He & Yanpeng Qi

  2. Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China

    Lin Xiong, Haiyin Zhu & Yanpeng Qi

  3. ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, China

    Qi Wang & Yanpeng Qi

  4. Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China

    Tianping Ying

Authors
  1. Lingxiao Zhao
    View author publications

    Search author on:PubMed Google Scholar

  2. Yi Zhao
    View author publications

    Search author on:PubMed Google Scholar

  3. Zhen-Bo Qi
    View author publications

    Search author on:PubMed Google Scholar

  4. Xin-Zhi Li
    View author publications

    Search author on:PubMed Google Scholar

  5. Lin Xiong
    View author publications

    Search author on:PubMed Google Scholar

  6. Haiyin Zhu
    View author publications

    Search author on:PubMed Google Scholar

  7. Cuiying Pei
    View author publications

    Search author on:PubMed Google Scholar

  8. Qi Wang
    View author publications

    Search author on:PubMed Google Scholar

  9. Changhua Li
    View author publications

    Search author on:PubMed Google Scholar

  10. Weizheng Cao
    View author publications

    Search author on:PubMed Google Scholar

  11. Tianping Ying
    View author publications

    Search author on:PubMed Google Scholar

  12. Wen-Yu He
    View author publications

    Search author on:PubMed Google Scholar

  13. Yanpeng Qi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.X.Z., Y.Z., L.X., and H.Y.Z. performed the experiments with the help of C.Y.P., Q.W., C.H.L, and W.Z.C.. Y.P.Q., W.Y.H., T.P.Y., L.X.Z., and Y.Z. conceived the project. Z.B.Q., X.Z.L., and W.Y.H. provided the theoretical model and the corresponding analysis. L.X.Z., Y.Z., and Z.B.Q. wrote the manuscript with the help of all authors. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Tianping Ying, Wen-Yu He or Yanpeng Qi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks Soon-Gil Jung and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

The supplementray information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary data 2

Supplementary Data 3

Supplementary data 4

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Zhao, Y., Qi, ZB. et al. Granular Ta-Te nanowire superconductivity exceeding the Pauli limit. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02519-5

Download citation

  • Received: 29 November 2024

  • Accepted: 20 January 2026

  • Published: 02 February 2026

  • DOI: https://doi.org/10.1038/s42005-026-02519-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing