Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Learning hadron emitting sources with deep neural networks
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 February 2026

Learning hadron emitting sources with deep neural networks

  • Lingxiao Wang  ORCID: orcid.org/0000-0003-3757-34031,2 &
  • Jiaxing Zhao3,4 

Communications Physics , Article number:  (2026) Cite this article

  • 488 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Characterization and analytical techniques
  • Theoretical nuclear physics

Abstract

The correlation function observed in high-energy collision experiments encodes critical information about the emitted source and hadronic interactions. While the proton-proton interaction potential is well constrained by nucleon-nucleon scattering data, these measurements offer a unique avenue to investigate the proton-emitting source, reflecting the dynamical properties of the collisions. In this context, the understanding of other hadronic interactions such as hyperon-nucleon remains limited. In this work, we present an unbiased approach to reconstruct proton-emitting sources from experimental correlation functions. Within an automatic differentiation framework, we parameterize the source functions with deep neural networks, to compute correlation functions. This approach achieves a lower chi-squared value compared to conventional Gaussian source functions and captures the long-tail behavior, in qualitative agreement with simulation predictions. We finally apply our method to extract hyperon-nucleon correlations.

Similar content being viewed by others

Measurement of the proton spin structure at long distances

Article 12 April 2021

4D-imaging of drip-line radioactivity by detecting proton emission from 54mNi pictured with ACTAR TPC

Article Open access 10 August 2021

New proton emitter 188At implies an interaction unprecedented in heavy nuclei

Article Open access 29 May 2025

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Code availability

The open codes can be found in a public GitHub repository, https://github.com/Anguswlx/InferSFs.

References

  1. Yukawa, H. On the interaction of elementary particles. I. Proc. Phys. Math. Soc. Jpn. 17, 48–57 (1935).

    Google Scholar 

  2. Bryan, R. A. & Scott, B. L. Nucleon-nucleon scattering from one-boson-exchange potentials. Phys. Rev. 135, B434–B450 (1964).

    Google Scholar 

  3. Kiang, D., Preston, M. A. & Yip, P. One-boson-exchange potential and nuclear matter. Phys. Rev. 170, 907–915 (1968).

    Google Scholar 

  4. Lacombe, M. et al. Parametrization of the Paris n n potential. Phys. Rev. C 21, 861–873 (1980).

    Google Scholar 

  5. Wiringa, R. B., Stoks, V. G. J. & Schiavilla, R. An accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C 51, 38–51 (1995).

    Google Scholar 

  6. Reid Jr, R. V. Local phenomenological nucleon-nucleon potentials. Ann. Phys. 50, 411–448 (1968).

    Google Scholar 

  7. Stoks, V. G. J., Klomp, R. A. M., Terheggen, C. P. F. & de Swart, J. J. Construction of high quality N N potential models. Phys. Rev. C 49, 2950–2962 (1994).

    Google Scholar 

  8. Nagels, M. M., Rijken, T. A. & Yamamoto, Y. Extended-soft-core baryon-baryon model ESC16. I. Nucleon-nucleon scattering. Phys. Rev. C 99, 044002 (2019).

    Google Scholar 

  9. Entem, D. R. & Machleidt, R. Accurate charge dependent nucleon nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001 (2003).

    Google Scholar 

  10. Machleidt, R. & Entem, D. R. Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1–75 (2011).

    Google Scholar 

  11. Epelbaum, E. Few-nucleon forces and systems in chiral effective field theory. Prog. Part. Nucl. Phys. 57, 654–741 (2006).

    Google Scholar 

  12. Drischler, C., Hebeler, K. & Schwenk, A. Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation. Phys. Rev. Lett. 122, 042501 (2019).

    Google Scholar 

  13. Hammer, H.-W., Nogga, A. & Schwenk, A. Three-body forces: from cold atoms to nuclei. Rev. Mod. Phys. 85, 197 (2013).

    Google Scholar 

  14. Gazit, D., Quaglioni, S. & Navratil, P. Three-nucleon low-energy constants from the consistency of interactions and currents in chiral effective field theory. Phys. Rev. Lett. 103, 102502 (2009).

    Google Scholar 

  15. Aoki, S. Hadron interactions in lattice QCD. Prog. Part. Nucl. Phys. 66, 687–726 (2011).

    Google Scholar 

  16. Iritani, T. et al. Systematics of the HAL QCD potential at low energies in lattice QCD. Phys. Rev. D. 99, 014514 (2019).

    Google Scholar 

  17. Yamazaki, T., Ishikawa, K. I., Kuramashi, Y. & Ukawa, A. Study of quark mass dependence of binding energy for light nuclei in 2+1 flavor lattice QCD. Phys. Rev. D 92, 014501 (2015).

    Google Scholar 

  18. Wagman, M. L. et al. Baryon-baryon Interactions and spin-flavor symmetry from lattice quantum chromodynamics. Phys. Rev. D 96, 114510 (2017).

    Google Scholar 

  19. Aoki, S. & Doi, T. Lattice QCD and Baryon-Baryon Interactions, 1–31 (Springer, 2023).

  20. Baym, G. et al. From hadrons to quarks in neutron stars: a review. Rep. Prog. Phys. 81, 056902 (2018).

    Google Scholar 

  21. Brown, R. H. & Twiss, R. Lxxiv. A new type of interferometer for use in radio astronomy. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 663–682 (1954).

    Google Scholar 

  22. Pratt, S. Pion Interferometry for exploding sources. Phys. Rev. Lett. 53, 1219–1221 (1984).

    Google Scholar 

  23. Lisa, M. A., Pratt, S., Soltz, R. & Wiedemann, U. Femtoscopy in relativistic heavy ion collisions. Ann. Rev. Nucl. Part. Sci. 55, 357–402 (2005).

    Google Scholar 

  24. Alt, C. et al. Bose-Einstein correlations of pi-pi- pairs in central Pb+Pb collisions at A-20, A-30, A-40, A-80, and A-158 GeV. Phys. Rev. C 77, 064908 (2008).

    Google Scholar 

  25. Li, Q. -f, Steinheimer, J., Petersen, H., Bleicher, M. & Stocker, H. Effects of a phase transition on HBT correlations in an integrated Boltzmann+Hydrodynamics approach. Phys. Lett. B 674, 111–116 (2009).

    Google Scholar 

  26. Wiedemann, U. A. & Heinz, U. W. Resonance contributions to HBT correlation radii. Phys. Rev. C 56, 3265–3286 (1997).

    Google Scholar 

  27. Kisiel, A., Florkowski, W. & Broniowski, W. Femtoscopy in hydro-inspired models with resonances. Phys. Rev. C 73, 064902 (2006).

    Google Scholar 

  28. Xu, J. et al. Imaging freeze-out sources and extracting strong interaction parameters in relativistic heavy-ion collisions. Chin. Phys. Lett. 42, 031401 (2025).

    Google Scholar 

  29. Si, D. et al. Extracting neutron-neutron interaction strength and spatiotemporal dynamics of neutron emission from the two-particle correlation function. Phys. Rev. Lett. 134, 222301 (2025).

    Google Scholar 

  30. Pratt, S. CRAB V3.0 https://web.pa.msu.edu/people/pratts/freecodes/crab/home.html.

  31. Mihaylov, D. L. et al. A femtoscopic correlation analysis tool using the Schrödinger equation (CATS). Eur. Phys. J. C 78, 394 (2018).

    Google Scholar 

  32. Fabbietti, L., Mantovani Sarti, V. & Vazquez Doce, O. Study of the strong interaction among hadrons with correlations at the LHC. Ann. Rev. Nucl. Part. Sci. 71, 377–402 (2021).

    Google Scholar 

  33. Adams, J. et al. Proton-lambda correlations in central Au+Au collisions at S(NN)**(1/2) = 200-GeV. Phys. Rev. C 74, 064906 (2006).

    Google Scholar 

  34. Adam, J. et al. The proton-Ω correlation function in Au+Au collisions at \(\sqrt{{s}_{NN}}\)=200 GeV. Phys. Lett. B 790, 490–497 (2019).

    Google Scholar 

  35. Adamczyk, L. et al. ΛΛ correlation function in Au+Au collisions at \(\sqrt{{s}_{NN}}=\) 200 GeV. Phys. Rev. Lett. 114, 022301 (2015).

    Google Scholar 

  36. Adamczyk, L. et al. Measurement of Interaction between antiprotons. Nature 527, 345–348 (2015).

    Google Scholar 

  37. Acharya, S. et al. p-p, p-Λ and Λ-Λ correlations studied via femtoscopy in pp reactions at \(\sqrt{s}\) = 7 TeV. Phys. Rev. C 99, 024001 (2019).

    Google Scholar 

  38. Acharya, S. et al. Experimental evidence for an attractive p-ϕ interaction. Phys. Rev. Lett. 127, 172301 (2021).

    Google Scholar 

  39. Acharya, S. et al. Investigation of the p–Σ0 interaction via femtoscopy in pp collisions. Phys. Lett. B 805, 135419 (2020).

    Google Scholar 

  40. Acharya, S. et al. First observation of an attractive interaction between a proton and a cascade Baryon. Phys. Rev. Lett. 123, 112002 (2019).

    Google Scholar 

  41. Acharya, S. et al. First measurement of the Λ–Ξ interaction in proton–proton collisions at the LHC. Phys. Lett. B 844, 137223 (2023).

    Google Scholar 

  42. Lednicky, R. & Lyuboshits, V. L. Final state interaction effect on pairing correlations between particles with small relative momenta. Yad. Fiz. 35, 1316–1330 (1981).

    Google Scholar 

  43. Ohnishi, A., Morita, K., Miyahara, K. & Hyodo, T. Hadron–hadron correlation and interaction from heavy–ion collisions. Nucl. Phys. A 954, 294–307 (2016).

    Google Scholar 

  44. Kisiel, A. Non-identical particle femtoscopy at s(NN)**(1/2) = 200-AGeV in hydrodynamics with statistical hadronization. Phys. Rev. C 81, 064906 (2010).

    Google Scholar 

  45. Sinyukov, Y. M., Shapoval, V. M. & Naboka, V. Y. On mT dependence of femtoscopy scales for meson and baryon pairs. Nucl. Phys. A 946, 227–239 (2016).

    Google Scholar 

  46. Csorgo, T., Hegyi, S. & Zajc, W. A. Bose-Einstein correlations for Levy stable source distributions. Eur. Phys. J. C 36, 67–78 (2004).

    Google Scholar 

  47. Aamodt, K. et al. Femtoscopy of pp collisions at \(\sqrt{s}=0.9\) and 7 TeV at the LHC with two-pion Bose-Einstein correlations. Phys. Rev. D 84, 112004 (2011).

    Google Scholar 

  48. Adam, J. et al. Two-pion femtoscopy in p-Pb collisions at \(\sqrt{{s}_{NN}}=5.02\) TeV. Phys. Rev. C 91, 034906 (2015).

    Google Scholar 

  49. Acharya, S. et al. Search for a common baryon source in high-multiplicity pp collisions at the LHC. Phys. Lett. B 811, 135849 (2020).

    Google Scholar 

  50. Acharya, S. et al. Common femtoscopic hadron-emission source in pp collisions at the LHC. Eur. Phys. J. C 85, 198 (2025).

  51. Sirunyan, A. M. et al. Bose-Einstein correlations in pp, pPb, and PbPb collisions at \(\sqrt{{s}_{NN}}=0.9-7\) TeV. Phys. Rev. C 97, 064912 (2018).

    Google Scholar 

  52. Sirunyan, A. M. et al. Bose-Einstein correlations of charged hadrons in proton-proton collisions at \(\sqrt{s}=\) 13 TeV. JHEP 03, 014 (2020).

    Google Scholar 

  53. Aad, G. et al. Two-particle Bose–Einstein correlations in pp collisions at \(\sqrt{{{{\bf{s}}}}}=\) 0.9 and 7 TeV measured with the ATLAS detector. Eur. Phys. J. C 75, 466 (2015).

    Google Scholar 

  54. Day, B. D. Three-body correlations in nuclear matter. Phys. Rev. C 24, 1203–1271 (1981).

    Google Scholar 

  55. Ohnishi, A. Hadrons, Quark-Gluon Plasma, and Neutron Stars, 1–58 (Springer, 2023).

  56. Aarts, G. et al. Physics-driven learning for inverse problems in quantum chromodynamics. Nat. Rev. Phys. 7, 154–163 (2025).

  57. Bishop, C. M. & Bishop, H. Deep learning: Foundations and concepts (Springer Nature, 2023).

  58. Bodmer, A. R., Usmani, Q. N. & Carlson, J. Binding energies of hypernuclei and three-body lambda N N forces. Phys. Rev. C 29, 684–687 (1984).

    Google Scholar 

  59. Rijken, T. A. & Yamamoto, Y. Extended-soft-core baryon-baryon model. II. Hyperon-nucleon interaction. Phys. Rev. C 73, 044008 (2006).

    Google Scholar 

  60. Sasaki, K., Oset, E. & Vicente Vacas, M. J. Scalar lambda N and lambda lambda interaction in a chiral unitary approach. Phys. Rev. C 74, 064002 (2006).

    Google Scholar 

  61. Polinder, H., Haidenbauer, J. & Meissner, U.-G. Hyperon-nucleon interactions: a chiral effective field theory approach. Nucl. Phys. A 779, 244–266 (2006).

    Google Scholar 

  62. Nagels, M. M., Rijken, T. A. & Yamamoto, Y. Extended-soft-core baryon-baryon model ESC16. II. Hyperon-nucleon interactions. Phys. Rev. C 99, 044003 (2019).

    Google Scholar 

  63. Haidenbauer, J. et al. Hyperon-nucleon interaction at next-to-leading order in chiral effective field theory. Nucl. Phys. A 915, 24–58 (2013).

    Google Scholar 

  64. Nemura, H. Lambda-nucleon and sigma-nucleon potentials from space-time correlation function on the lattice. PoS LATTICE2021, 272 (2022).

    Google Scholar 

  65. Wang, F. -q. & Pratt, S. Lambda proton correlations in relativistic heavy ion collisions. Phys. Rev. Lett. 83, 3138–3141 (1999).

    Google Scholar 

  66. Wu, L., Zhu, Z. & Weinan, E. Towards understanding generalization of deep learning: perspective of loss landscapes. Preprint at https://doi.org/10.48550/arXiv.1706.10239 (2017).

  67. Rosca, M., Weber, T., Gretton, A. & Mohamed, S. A case for new neural network smoothness constraints. In Proc. on “I Can’t Believe It’s Not Better!” At NeurIPS Workshops (eds Zosa Forde, J., Ruiz, F., Pradier, M. F. & Schein, A.) Vol. 137, 21–32 https://proceedings.mlr.press/v137/rosca20a.html (PMLR, 2020).

  68. Shi, S., Wang, L. & Zhou, K. Rethinking the ill-posedness of the spectral function reconstruction—why is it fundamentally hard and how artificial neural networks can help. Comput. Phys. Commun. 282, 108547 (2023).

    Google Scholar 

  69. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://doi.org/10.48550/arXiv.1412.6980 (2014).

  70. Wang, L., Shi, S. & Zhou, K. Automatic differentiation approach for reconstructing spectral functions with neural networks. In Proc. 35th Conference on Neural Information Processing Systems (Curran Associates, Inc., 2021).

  71. Shi, S., Zhou, K., Zhao, J., Mukherjee, S. & Zhuang, P. Heavy quark potential in the quark-gluon plasma: deep neural network meets lattice quantum chromodynamics. Phys. Rev. D 105, 014017 (2022).

    Google Scholar 

  72. Wang, L., Shi, S. & Zhou, K. Reconstructing spectral functions via automatic differentiation. Phys. Rev. D 106, L051502 (2022).

    Google Scholar 

  73. Soma, S., Wang, L., Shi, S., Stöcker, H. & Zhou, K. Reconstructing the neutron star equation of state from observational data via automatic differentiation. Phys. Rev. D 107, 083028 (2023).

    Google Scholar 

Download references

Acknowledgements

We thank Drs. Takumi Doi, Tetsuo Hatsuda, and Zhigang Xiao for helpful discussions. We thank the DEEP-IN working group at RIKEN-iTHEMS for support in the preparation of this paper. LW is supported by the RIKEN TRIP initiative (RIKEN Quantum), JSPS KAKENHI Grant No. 25H01560, and JST-BOOST Grant No. JPMJBY24H9. J.X. is support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the grant CRC-TR 211 “Strong-interaction matter under extreme conditions”-Project number 315477589-TRR 211.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, Japan

    Lingxiao Wang

  2. Institute for Physics of Intelligence, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

    Lingxiao Wang

  3. Helmholtz Research Academy Hesse for FAIR (HFHF), GSI Helmholtz Center for Heavy Ion Physics, Frankfurt, Germany

    Jiaxing Zhao

  4. Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany

    Jiaxing Zhao

Authors
  1. Lingxiao Wang
    View author publications

    Search author on:PubMed Google Scholar

  2. Jiaxing Zhao
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Both Jiaxing Zhao and Lingxiao Wang contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jiaxing Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks the anonymous reviewers for their contribution to the peer review of this work. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review File

Machine Learning Checklist

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhao, J. Learning hadron emitting sources with deep neural networks. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02530-w

Download citation

  • Received: 17 February 2025

  • Accepted: 28 January 2026

  • Published: 11 February 2026

  • DOI: https://doi.org/10.1038/s42005-026-02530-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing