Abstract
Unravelling the connections between microscopic structure, emergent physical properties and slow dynamics has long been a challenge when studying the glass transition. The absence of clear visible structural order in amorphous configurations complicates the identification of the key physical mechanisms underpinning slow dynamics. The difficulty in sampling equilibrated configurations at low temperatures hampers thorough numerical and theoretical investigations. We explore the potential of machine learning (ML) techniques to face these challenges, building on the algorithms that have revolutionized computer vision and image recognition. We present both successful ML applications and open problems for the future, such as transferability and interpretability of ML approaches. To foster a collaborative community effort, we also highlight the ‘GlassBench’ dataset, which provides simulation data and benchmarks for both 2D and 3D glass formers. We compare the performance of emerging ML methodologies, in line with benchmarking practices in image and text recognition. Our goal is to provide guidelines for the development of ML techniques in systems displaying slow dynamics and inspire new directions to improve our theoretical understanding of glassy liquids.
Key points
-
Systematic characterization of amorphous glassy structures can be addressed by unsupervised learning, which requires an adequate choice of structural descriptors.
-
Finding structure–dynamics relationships in glassy liquids is a task that has many analogies with image recognition and can be tackled using supervised learning with various neural network architectures already successful in image recognition.
-
Major challenges and potential breakthroughs await in transferring trained models to extremely low temperatures, using them to create ultrastable glasses and design new phenomenological glass models.
-
Future directions also encompass generative modelling of low-temperature equilibrium configurations and development of self-supervised and reinforcement learning approaches.
-
Publicly available datasets and unified benchmarks that are fundamental to stimulate further development of ML techniques in condensed matter physics are provided.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
Data availability
The dataset GlassBench and Python scripts used to create the benchmarks presented in the section ‘Performance metrics and benchmarking’ are publicly available and can be downloaded from Zenodo at https://doi.org/10.5281/zenodo.10118191 (ref. 29).
References
Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).
Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 476, 51–124 (2009).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Alzubaidi, L. et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74 (2021).
Royall, C. P. & Williams, S. R. The role of local structure in dynamical arrest. Phys. Rep. 560, 1–75 (2015).
Tanaka, H., Tong, H., Shi, R. & Russo, J. Revealing key structural features hidden in liquids and glasses. Nat. Rev. Phys. 1, 333–348 (2019).
Marín-Aguilar, S., Wensink, H. H., Foffi, G. & Smallenburg, F. Tetrahedrality dictates dynamics in hard sphere mixtures. Phys. Rev. Lett. 124, 208005 (2020).
Richard, D. et al. Predicting plasticity in disordered solids from structural indicators. Phys. Rev. Mater. 4, 113609 (2020).
Boattini, E. et al. Autonomously revealing hidden local structures in supercooled liquids. Nat. Commun. 11, 5479 (2020).
Paret, J., Jack, R. L. & Coslovich, D. Assessing the structural heterogeneity of supercooled liquids through community inference. J. Chem. Phys. 152, 144502 (2020).
Oyama, N., Koyama, S. & Kawasaki, T. What do deep neural networks find in disordered structures of glasses? Front. Phys. 10, 1320 (2023).
Soltani, S., Sinclair, C. W. & Rottler, J. Exploring glassy dynamics with Markov state models from graph dynamical neural networks. Phys. Rev. E 106, 025308 (2022).
Widmer-Cooper, A. & Harrowell, P. Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys. Rev. Lett. 96, 185701 (2006).
Widmer-Cooper, A., Perry, H., Harrowell, P. & Reichman, D. R. Irreversible reorganization in a supercooled liquid originates from localized soft modes. Nat. Phys. 4, 711–715 (2008).
Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011).
Schoenholz, S. S., Cubuk, E. D., Sussman, D. M., Kaxiras, E. & Liu, A. J. A structural approach to relaxation in glassy liquids. Nat. Phys. 12, 469–471 (2016).
Cubuk, E. D. et al. Identifying structural flow defects in disordered solids using machine-learning methods. Phys Rev. Lett. 114, 108001 (2015).
Bapst, V. et al. Unveiling the predictive power of static structure in glassy systems. Nat. Phys. 16, 448–454 (2020).
Yang, Z.-Y., Wei, D., Zaccone, A. & Wang, Y.-J. Machine-learning integrated glassy defect from an intricate configurational-thermodynamic-dynamic space. Phys. Rev. B 104, 064108 (2021).
Boattini, E., Smallenburg, F. & Filion, L. Averaging local structure to predict the dynamic propensity in supercooled liquids. Phys. Rev. Lett. 127, 088007 (2021).
Alkemade, R. M., Boattini, E., Filion, L. & Smallenburg, F. Comparing machine learning techniques for predicting glassy dynamics. J. Chem. Phys. 156, 204503 (2022).
Shiba, H., Hanai, M., Suzumura, T. & Shimokawabe, T. BOTAN: BOnd TArgeting Network for prediction of slow glassy dynamics by machine learning relative motion. J. Chem. Phys. 158, 084503 (2023).
Alkemade, R. M., Smallenburg, F. & Filion, L. Improving the prediction of glassy dynamics by pinpointing the local cage. J. Chem. Phys. 158, 134512 (2023).
Ciarella, S., Chiappini, M., Boattini, E., Dijkstra, M. & Janssen, L. M. C. Dynamics of supercooled liquids from static averaged quantities using machine learning. Mach. Learn. Sci. Technol. 4, 025010 (2023).
Pezzicoli, F. S., Charpiat, G. & Landes, F. P. Rotation-equivariant graph neural networks for learning glassy liquids representations. SciPost Phys. 16, 136 (2024).
Ruiz-Garcia, M. et al. Discovering dynamic laws from observations: the case of self-propelled, interacting colloids. Phys. Rev. E 109, 064611 (2024).
Jung, G., Biroli, G. & Berthier, L. Predicting dynamic heterogeneity in glass-forming liquids by physics-inspired machine learning. Phys. Rev. Lett. 130, 238202 (2023).
Zhang, G. et al. Structuro-elasto-plasticity model for large deformation of disordered solids. Phys. Rev. Res. 4, 043026 (2022).
Jung, G. GlassBench. zenodo https://doi.org/10.5281/zenodo.10118191 (2023).
Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: the van Hove correlation function. Phys. Rev. E 51, 4626–4641 (1995).
Tarjus, G., Kivelson, D. & Viot, P. The viscous slowing down of supercooled liquids as a temperature-controlled super-Arrhenius activated process: a description in terms of frustration-limited domains. J. Phys. Condens. Matter 12, 6497 (2000).
Tanemura, M. et al. Geometrical analysis of crystallization of the soft-core model. Prog. Theor. Phys. 58, 1079–1095 (1977).
Malins, A., Williams, S. R., Eggers, J. & Royall, C. P. Identification of structure in condensed matter with the topological cluster classification. J. Chem. Phys. 139, 234506 (2013).
Honeycutt, J. D. & Andersen, H. C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987).
Lazar, E. A., Han, J. & Srolovitz, D. J. A topological framework for local structure analysis in condensed matter. Proc. Natl Acad. Sci. USA 112, E5769–E5776 (2015).
Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).
Mehta, P. et al. A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep. 810, 1–124 (2019).
Cheng, B. et al. Mapping materials and molecules. Acc. Chem. Res. 53, 1981–1991 (2020).
Glielmo, A. et al. Unsupervised learning methods for molecular simulation data. Chem. Rev. 121, 9722–9758 (2021).
Jarry, P. & Jakse, N. Medium range ordering in liquid Al-based alloys: towards a machine learning approach of solidification. IOP Conf. Ser. Mater. Sci. Eng. 1274, 012001 (2023).
Hu, W., Singh, R. R. P. & Scalettar, R. T. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: a critical examination. Phys. Rev. E 95, 062122 (2017).
Rodriguez-Nieva, J. F. & Scheurer, M. S. Identifying topological order through unsupervised machine learning. Nat. Phys. 15, 790–795 (2019).
Mendes-Santos, T., Turkeshi, X., Dalmonte, M. & Rodriguez, A. Unsupervised learning universal critical behavior via the intrinsic dimension. Phys. Rev. X 11, 011040 (2021).
Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).
Parsaeifard, B. et al. An assessment of the structural resolution of various fingerprints commonly used in machine learning. Mach. Learn. Sci. Technol. 2, 015018 (2021).
Midtvedt, B. et al. Single-shot self-supervised object detection in microscopy. Nat. Commun. 13, 7492 (2022).
Caro, M. A., Deringer, V. L., Koskinen, J., Laurila, T. & Csányi, G. Growth mechanism and origin of high sp3 in tetrahedral amorphous carbon. Phys. Rev. Lett. 120, 166101 (2018).
Monserrat, B., Brandenburg, J. G., Engel, E. A. & Cheng, B. Liquid water contains the building blocks of diverse ice phases. Nat. Commun. 11, 5757 (2020).
Coslovich, D., Jack, R. L. & Paret, J. Dimensionality reduction of local structure in glassy binary mixtures. J. Chem. Phys. 157, 204503 (2022).
Banerjee, A., Hsu, H.-P., Kremer, K. & Kukharenko, O. Data-driven identification and analysis of the glass transition in polymer melts. ACS Macro Lett. 12, 679–684 (2023).
Banerjee, A., Iscen, A., Kremer, K. & Kukharenko, O. Determining glass transition in all-atom acrylic polymeric melt simulations using machine learning. J. Chem. Phys. 159, 074108 (2023).
Offei-Danso, A., Hassanali, A. & Rodriguez, A. High-dimensional fluctuations in liquid water: combining chemical intuition with unsupervised learning. J. Chem. Theory Comput. 18, 3136–3150 (2022).
Campadelli, P., Casiraghi, E., Ceruti, C. & Rozza, A. Intrinsic dimension estimation: relevant techniques and a benchmark framework. Math. Probl. Eng. 2015, e759567 (2015).
Parsaeifard, B. & Goedecker, S. Manifolds of quasi-constant SOAP and ACSF fingerprints and the resulting failure to machine learn four-body interactions. J. Chem. Phys. 156, 034302 (2022).
Darby, J. P., Kermode, J. R. & Csányi, G. Compressing local atomic neighbourhood descriptors. npj Comput. Mater. 8, 1–13 (2022).
Darby, J. P. et al. Tensor-reduced atomic density representations. Phys. Rev. Lett. 131, 028001 (2023).
Coslovich, D., Ozawa, M. & Berthier, L. Local order and crystallization of dense polydisperse hard spheres. J. Phys. Condens. Matter 30, 144004 (2018).
Tong, H. & Tanaka, H. Emerging exotic compositional order on approaching low-temperature equilibrium glasses. Nat. Commun. 14, 4614 (2023).
Elliott, S. R. Medium-range structural order in covalent amorphous solids. Nature 354, 445–452 (1991).
Sheng, H., Luo, W., Alamgir, F., Bai, J. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).
Montes de Oca, J. M., Sciortino, F. & Appignanesi, G. A. A structural indicator for water built upon potential energy considerations. J. Chem. Phys. 152, 244503 (2020).
Faccio, C., Benzi, M., Zanetti-Polzi, L. & Daidone, I. Low- and high-density forms of liquid water revealed by a new medium-range order descriptor. J. Mol. Liq. 355, 118922 (2022).
Mauro, J. C., Tandia, A., Vargheese, K. D., Mauro, Y. Z. & Smedskjaer, M. M. Accelerating the design of functional glasses through modeling. Chem. Mater. 28, 4267–4277 (2016).
Cassar, D. R. et al. Predicting and interpreting oxide glass properties by machine learning using large datasets. Ceram. Int. 47, 23958–23972 (2021).
Bødker, M. L., Bauchy, M., Du, T., Mauro, J. C. & Smedskjaer, M. M. Predicting glass structure by physics-informed machine learning. npj Comput. Mater. 8, 192 (2022).
Bhattoo, R. et al. Artificial intelligence and machine learning in glass science and technology: 21 challenges for the 21st century. Int. J. Appl. Glass Sci. 12, 277–292 (2021).
Doliwa, B. & Heuer, A. What does the potential energy landscape tell us about the dynamics of supercooled liquids and glasses? Phys. Rev. Lett. 91, 235501 (2003).
Hocky, G. M., Coslovich, D., Ikeda, A. & Reichman, D. R. Correlation of local order with particle mobility in supercooled liquids is highly system dependent. Phys. Rev. Lett. 113, 157801 (2014).
Tong, H. & Tanaka, H. Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids. Phys. Rev. X 8, 011041 (2018).
Schoenholz, S. S., Cubuk, E. D., Kaxiras, E. & Liu, A. J. Relationship between local structure and relaxation in out-of-equilibrium glassy systems. Proc. Natl Acad. Sci. USA 114, 263–267 (2017).
Sussman, D. M., Schoenholz, S. S., Cubuk, E. D. & Liu, A. J. Disconnecting structure and dynamics in glassy thin films. Proc. Natl Acad. Sci. USA 114, 10601–10605 (2017).
Cubuk, E. D. et al. Structure-property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033–1037 (2017).
Harrington, M., Liu, A. J. & Durian, D. J. Machine learning characterization of structural defects in amorphous packings of dimers and ellipses. Phys. Rev. E 99, 022903 (2019).
Ma, X. et al. Heterogeneous activation, local structure, and softness in supercooled colloidal liquids. Phys Rev. Lett.122, 028001 (2019).
Cubuk, E. D., Liu, A. J., Kaxiras, E. & Schoenholz, S. S. Unifying framework for strong and fragile liquids via machine learning: a study of liquid silica. Preprint at https://doi.org/10.48550/arXiv.2008.09681 (2020).
Ridout, S. A., Rocks, J. W. & Liu, A. J. Correlation of plastic events with local structure in jammed packings across spatial dimensions. Proc. Natl Acad. Sci. USA 119, e2119006119 (2022).
Tah, I., Ridout, S. A., & Liu, A. J. Fragility in glassy liquids: a structural approach based on machine learning. J. Chem. Phys.157, 124501 (2022).
Liu, H., Smedskjaer, M. M. & Bauchy, M. Deciphering a structural signature of glass dynamics by machine learning. Phys. Rev. B 106, 214206 (2022).
Zhang, G., Ridout, S. A. & Liu, A. J. Interplay of rearrangements, strain, and local structure during avalanche propagation. Phys. Rev. X 11, 041019 (2021).
Xiao, H. et al. Machine learning-informed structuro-elastoplasticity predicts ductility of disordered solids. Preprint at https://doi.org/10.48550/arXiv.2303.12486 (2023).
Widmer-Cooper, A., Harrowell, P. & Fynewever, H. How reproducible are dynamic heterogeneities in a supercooled liquid? Phys. Rev. Lett. 93, 135701 (2004).
Berthier, L. & Jack, R. L. Structure and dynamics of glass formers: predictability at large length scales. Phys. Rev. E 76, 041509 (2007).
Jung, G., Biroli, G. & Berthier, L. Dynamic heterogeneity at the experimental glass transition predicted by transferable machine learning. Phys. Rev. B 109, 064205 (2024).
Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L. & Saarloos, W. Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Oxford Univ. Press, 2011).
Gidaris, S., Singh, P. & Komodakis, N. Unsupervised representation learning by predicting image rotations. Preprint at https://doi.org/10.48550/arXiv.1803.07728 (2018).
Toninelli, C., Wyart, M., Berthier, L., Biroli, G. & Bouchaud, J.-P. Dynamical susceptibility of glass formers: contrasting the predictions of theoretical scenarios. Phys. Rev. E 71, 041505 (2005).
Kingma, D. P. et al. An introduction to variational autoencoders. Found. Trends Mach. Learn. 12, 307–392 (2019).
Wang, Q. & Zhang, L. Inverse design of glass structure with deep graph neural networks. Nat. Commun. 12, 5359 (2021).
Kivelson, S. & Kivelson, S. Understanding complexity. Nat. Phys. 14, 426–427 (2018).
Wang, Q. et al. Predicting the propensity for thermally activated β events in metallic glasses via interpretable machine learning. npj Comput. Mater. 6, 194 (2020).
Miao, S., Liu, M. & Li, P. Interpretable and generalizable graph learning via stochastic attention mechanism. In Proc. 39th International Conference on Machine Learning, Volume 162 of Proceedings of Machine Learning Research (eds Chaudhuri, K. et al.) 15524–15543 (PMLR, 2022).
Duede, E. Deep learning opacity in scientific discovery. Philos. Sci. 90, 1089–1099 (2023).
Glielmo, A., Zeni, C., Cheng, B., Csányi, G. & Laio, A. Ranking the information content of distance measures. PNAS Nexus 1, pgac039 (2022).
Sandberg, J., Voigtmann, T., Devijver, E. & Jakse, N. Feature selection for high-dimensional neural network potentials with the adaptive group lasso. Mach. Learn. Sci. Technol. 5, 025043 (2024).
Sharma, A., Liu, C. & Ozawa, M. Selecting relevant structural features for glassy dynamics by information imbalance. J. Chem. Phys. 161, 184506 (2024).
Berthier, L., Flenner, E. & Szamel, G. Glassy dynamics in dense systems of active particles. J. Chem. Phys. 150, 200901 (2019).
Janzen, G. & Janssen, L. M. C. Rejuvenation and memory effects in active glasses induced by thermal and active cycling. Phys. Rev. Res. 6, 023257 (2024).
Janzen, G. et al. Dead or alive: distinguishing active from passive particles using supervised learning. Europhys. Lett. 143, 17004 (2023).
Janzen, G. et al. Classifying the age of a glass based on structural properties: a machine learning approach. Phys. Rev. Mater. 8, 025602 (2024).
Scalliet, C., Guiselin, B. & Berthier, L. Excess wings and asymmetric relaxation spectra in a facilitated trap model. J. Chem. Phys. 155, 064505 (2021).
Guiselin, B., Scalliet, C. & Berthier, L. Microscopic origin of excess wings in relaxation spectra of supercooled liquids. Nat. Phys. 18, 468–472 (2022).
Nicolas, A., Ferrero, E. E., Martens, K. & Barrat, J.-L. Deformation and flow of amorphous solids: Insights from elastoplastic models. Rev. Mod. Phys. 90, 045006 (2018).
Ozawa, M. & Biroli, G. Elasticity, facilitation and dynamic heterogeneity in glass-forming liquids. Phys. Rev. Lett. 130, 138201 (2023).
Tahaei, A., Biroli, G., Ozawa, M., Popović, M. & Wyart, M. Scaling description of dynamical heterogeneity and avalanches of relaxation in glass-forming liquids. Phys. Rev. X 13, 031034 (2023).
Lerbinger, M., Barbot, A., Vandembroucq, D. & Patinet, S. Relevance of shear transformations in the relaxation of supercooled liquids. Phys. Rev. Lett. 129, 195501 (2022).
Chacko, R. N. et al. Elastoplasticity mediates dynamical heterogeneity below the mode coupling temperature. Phys Rev. Lett. 127, 048002 (2021).
Monthus, C. & Bouchaud, J. P. Models of traps and glass phenomenology. J. Phys. A Math. Gen. 29 3847 (1996).
Ridout, S. A., Tah, I. & Liu, A. J. Building a “trap model” of glassy dynamics from a local structural predictor of rearrangements. Europhys. Lett. 144, 47001 (2023).
Ridout, S. A. & Liu, A. J. The dynamics of machine-learned “softness” in supercooled liquids describe dynamical heterogeneity. Preprint at https://doi.org/10.48550/arXiv.2406.05868 (2024).
Ciarella, S. et al. Finding defects in glasses through machine learning. Nat. Commun. 14, 4229 (2023).
Richard, D., Kapteijns, G. & Lerner, E. Detecting low-energy quasilocalized excitations in computer glasses. Phys. Rev. E 108, 044124 (2023).
Scalliet, C., Guiselin, B. & Berthier, L. Thirty milliseconds in the life of a supercooled liquid. Phys. Rev. X 12, 041028 (2022).
Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).
Tong, H. & Tanaka, H. Structural order as a genuine control parameter of dynamics in simple glass formers. Nat. Commun. 10, 5596 (2019).
Lačević, N., Starr, F. W., Schrøder, T. B. & Glotzer, S. C. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function. J. Chem. Phys. 119, 7372–7387 (2003).
Flenner, E., Zhang, M. & Szamel, G. Analysis of a growing dynamic length scale in a glass-forming binary hard-sphere mixture. Phys. Rev. E 83, 051501 (2011).
Jiang, X., Tian, Z., Li, K. & Hu, W. A geometry-enhanced graph neural network for learning the smoothness of glassy dynamics from static structure. J. Chem. Phys. 159, 144504 (2023).
Swendsen, R. H. & Wang, J.-S. Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 57, 2607 (1986).
Berthier, L., Coslovich, D., Ninarello, A. & Ozawa, M. Equilibrium sampling of hard spheres up to the jamming density and beyond. Phys. Rev. Lett. 116, 238002 (2016).
Fan, Z. & Ma, E. Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning. Nat. Commun. 12, 1506 (2021).
Du, T. et al. Predicting fracture propensity in amorphous alumina from its static structure using machine learning. ACS Nano 15, 17705–17716 (2021).
Font-Clos, F. et al. Predicting the failure of two-dimensional silica glasses. Nat. Commun. 13, 2820 (2022).
Liu, H., Fu, Z., Yang, K., Xu, X. & Bauchy, M. Machine learning for glass science and engineering: a review. J. Non Cryst. Solids 557, 119419 (2021).
Cassar, D. R. GlassNet: a multitask deep neural network for predicting many glass properties. Ceram. Int. 49, 36013–36024 (2023).
Tandia, A., Onbasli, M. C. & Mauro, J. C. in Springer Handbook of Glass 1157–1192 (2019).
Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).
Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021).
Volpe, G. et al. Roadmap on deep learning for microscopy. Preprint at https://doi.org/10.48550/arXiv.2303.03793 (2023).
Midtvedt, B., Pineda, J., Klein Morberg, H., Manzo, C. & Volpe, G. DeepTrack2. https://github.com/softmatterlab/DeepTrack2 (2024).
Gabrié, M. Mean-field inference methods for neural networks. J. Phys. A Math. Theor. 53, 223002 (2020).
Merchant, A., Metz, L., Schoenholz, S. S. & Cubuk, E. D. Learn2hop: learned optimization on rough landscapes. In International Conference on Machine Learning 7643–7653 (PMLR, 2021).
Gabrié, M., Ganguli, S., Lucibello, C. & Zecchina, R. Neural networks: from the perceptron to deep nets. Preprint at https://doi.org/10.48550/arXiv.2304.06636 (2023).
Bonnaire, T. et al. High-dimensional non-convex landscapes and gradient descent dynamics. J. Stat. Mech. 104004 (2024).
Mézard, M. Spin glass theory and its new challenge: structured disorder. Indian J. Phys. 98, 3757 (2023).
Vaswani, A. Attention is all you need. In 31st Conference on Neural Information Processing Systems (NIPS, 2017).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
Bratholm, L. A. et al. A community-powered search of machine learning strategy space to find NMR property prediction models. PLoS ONE 16, e0253612 (2021).
Qin, Y. et al. A dual-stage attention-based recurrent neural network for time series prediction. Preprint at https://doi.org/10.48550/arXiv.1704.02971 (2017).
Chapelle, O., Schölkopf, B. & Zien, A. (eds.) Semi-Supervised Learning (MIT Press, 2006).
Rong, Y. et al. Self-supervised graph transformer on large-scale molecular data. Adv. Neural Inf. Process. Syst. 33, 12559–12571 (2020).
Magar, R., Wang, Y. & Barati Farimani, A. Crystal twins: self-supervised learning for crystalline material property prediction. npj Comput. Mater. 8, 231 (2022).
Zhang, Z. et al. Graph self-supervised learning for optoelectronic properties of organic semiconductors. In ICML 2022 2nd AI for Science Workshop (2022).
Kaelbling, L. P., Littman, M. L. & Moore, A. W. Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996).
Shin, K. et al. Enhancing biomolecular sampling with reinforcement learning: a tree search molecular dynamics simulation method. ACS Omega 4, 138530–13862 (2019).
Fan, C. et al. Searching for spin glass ground states through deep reinforcement learning. Nat. Commun. 14, 725 (2023).
Ahuja, K., Green, W. H. & Li, Y.-P. Learning to optimize molecular geometries using reinforcement learning. J. Chem. Theory Comput. 17, 818–825 (2021).
Bihani, V., Manchanda, S., Sastry, S., Ranu, S. & Krishnan, N. A. Stridernet: a graph reinforcement learning approach to optimize atomic structures on rough energy landscapes. In International Conference on Machine Learning 2431–2451 (PMLR, 2023).
Bojesen, T. A. Policy-guided Monte Carlo: reinforcement-learning Markov chain dynamics. Phys. Rev. E 98, 063303 (2018).
Galliano, L., Rende, R. & Coslovich, D. Policy-guided Monte Carlo on general state spaces: application to glass-forming mixtures. J. Chem. Phys. 161, 064503 (2024).
Christiansen, H., Errica, F. & Alesiani, F. Self-tuning Hamiltonian Monte Carlo for accelerated sampling. J. Chem. Phys. 159, 234109 (2023).
Gabrié, M., Rotskoff, G. M. & Vanden-Eijnden, E. Adaptive Monte Carlo augmented with normalizing flows. Proc. Natl Acad. Sci. USA 119, e2109420119 (2022).
Ninarello, A., Berthier, L. & Coslovich, D. Models and algorithms for the next generation of glass transition studies. Phys. Rev. X 7, 021039 (2017).
Berthier, L. & Reichman, D. R. Modern computational studies of the glass transition. Nat. Rev. Phys. 5, 102–116 (2023).
Noé, F., Olsson, S., Köhler, J. & Wu, H. Boltzmann generators: sampling equilibrium states of many-body systems with deep learning. Science 365, eaaw1147 (2019).
Wu, D., Wang, L. & Zhang, P. Solving statistical mechanics using variational autoregressive networks. Phys. Rev. Lett. 122, 080602 (2019).
Köhler, J., Klein, L. & Noé, F. Equivariant flows: exact likelihood generative learning for symmetric densities. In International Conference on Machine Learning 5361–5370 (PMLR, 2020).
Dibak, M., Klein, L., Krämer, A. & Noé, F. Temperature steerable flows and Boltzmann generators. Phys. Rev. Res. 4, L042005 (2022).
Invernizzi, M., Krämer, A., Clementi, C. & Noé, F. Skipping the replica exchange ladder with normalizing flows. J. Phys. Chem. Lett. 13, 11643–11649 (2022).
Xu, M. et al. Geodiff: a geometric diffusion model for molecular conformation generation. Preprint at https://doi.org/10.48550/arXiv.2203.02923 (2022).
Coretti, A., Falkner, S., Geissler, P. & Dellago, C. Learning mappings between equilibrium states of liquid systems using normalizing flows. Preprint at https://doi.org/10.48550/arXiv.2208.10420 (2022).
van Leeuwen, S., de Alba Ortíz, A. P. & Dijkstra, M. A Boltzmann generator for the isobaric-isothermal ensemble. Preprint at https://doi.org/10.48550/arXiv.2305.08483 (2023).
Jung, G., Biroli, G. & Berthier, L. Normalizing flows as an enhanced sampling method for atomistic supercooled liquids. Mach. Learn. Sci. Technol. 5, 035053 (2024).
McNaughton, B., Milošević, M., Perali, A. & Pilati, S. Boosting Monte Carlo simulations of spin glasses using autoregressive neural networks. Phys. Rev. E 101, 053312 (2020).
Hibat-Allah, M., Inack, E. M., Wiersema, R., Melko, R. G. & Carrasquilla, J. Variational neural annealing. Nat. Mach. Intell. 3, 952–961 (2021).
Wu, D., Rossi, R. & Carleo, G. Unbiased Monte Carlo cluster updates with autoregressive neural networks. Phys. Rev. Res. 3, L042024 (2021).
Inack, E. M., Morawetz, S. & Melko, R. G. Neural annealing and visualization of autoregressive neural networks in the Newman–Moore model. Condens. Matter 7, 38 (2022).
Ciarella, S., Trinquier, J., Weigt, M. & Zamponi, F. Machine-learning-assisted Monte Carlo fails at sampling computationally hard problems. Mach. Learn. Sci. Technol. 4, 010501 (2023).
Schuetz, M. J., Brubaker, J. K., Zhu, Z. & Katzgraber, H. G. Graph coloring with physics-inspired graph neural networks. Phys. Rev. Res. 4, 043131 (2022).
Schuetz, M. J., Brubaker, J. K. & Katzgraber, H. G. Combinatorial optimization with physics-inspired graph neural networks. Nat. Mach. Intell. 4, 367–377 (2022).
Albergo, M. S., Kanwar, G. & Shanahan, P. E. Flow-based generative models for Markov chain Monte Carlo in lattice field theory. Phys. Rev. D 100, 034515 (2019).
Kanwar, G. et al. Equivariant flow-based sampling for lattice gauge theory. Phys. Rev. Lett. 125, 121601 (2020).
de Haan, P., Rainone, C., Cheng, M. C. & Bondesan, R. Scaling up machine learning for quantum field theory with equivariant continuous flows. Preprint at https://doi.org/10.48550/arXiv.2110.02673 (2021).
Gerdes, M., de Haan, P., Rainone, C., Bondesan, R. & Cheng, M. C. Learning lattice quantum field theories with equivariant continuous flows. SciPost Phys. 15, 238 (2023).
Luo, D., Carleo, G., Clark, B. K. & Stokes, J. Gauge equivariant neural networks for quantum lattice gauge theories. Phys. Rev. Lett. 127, 276402 (2021).
Marchand, T., Ozawa, M., Biroli, G. & Mallat, S. Wavelet conditional renormalization group. Preprint at https://doi.org/10.48550/arXiv.2207.04941 (2022).
Angelini, M. C. & Ricci-Tersenghi, F. Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set. Nat. Mach. Intell. 5, 29–31 (2023).
Boettcher, S. Inability of a graph neural network heuristic to outperform greedy algorithms in solving combinatorial optimization problems. Nat. Mach. Intell. 5, 24–25 (2023).
Boettcher, S. Deep reinforced learning heuristic tested on spin-glass ground states: the larger picture. Nat. Commun. 14, 5658 (2023).
Ghio, D., Dandi, Y., Krzakala, F. & Zdeborová, L. Sampling with flows, diffusion and autoregressive neural networks: a spin-glass perspective. Proc. Natl Acad. Sci. USA 121, e2311810121 (2024).
Acknowledgements
This paper originates from discussions and interactions at the AISSAI (AI for science, science for AI) workshop on ‘Machine Learning Glasses’ held in November 2022 in Paris. This workshop was organized by G.B., L.B. and G.J. The authors thank all participants for their attendance, discussions and feedback, in particular A. Banerjee, L. Janssen, M. Ruiz Garcia, S. Patinet, C. Scalliet, D. Richard, J. Rottler, O. Dauchot and O. Kukharenko for their valuable contributions. F.S.P. is supported by a public grant overseen by the French National Research Agency (ANR) through the programme UDOPIA, project funded by the ANR-20-THIA-0013-01. F.S.P. was granted access to the HPC resources of IDRIS under the allocation 2022-AD011014066 made by GENCI. H.S. acknowledges computational resources provided by ‘Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures (JHPCN)’ and ‘High Performance Computing Infrastructure (HPCI)’ in Japan (project ID: jh230064). A.J.L. is supported by the Simons Foundation via the Investigator Award #327939. In addition, A.J.L. thanks CCB at the Flatiron Institute and the Isaac Newton Institute for Mathematical Sciences under the programme ‘New Statistical Physics in Living Matter’ (EPSRC grant EP/R014601/1) for the support and hospitality. This work was supported by a grant from the Simons Foundation (#454933 to L.B., #454935 to G.B.). G.B. acknowledges funding from the French government under the management of Agence Nationale de la Recherche as part of the ‘Investissements d’avenir’ programme, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).
Author information
Authors and Affiliations
Contributions
G.J., L.B. and G.B. coordinated the manuscript and submission. D.C., L.F., A.J.L. and G.J. drafted original versions of the sections from ‘Machine learning locally favoured structures’ to ‘Performance metrics and benchmarking’. V.B., G.V., F.Z. and F.P.L. drafted original versions of the ‘Outlook’ section. L.F., R.M.A., F.P.L., F.S.P., D.C., H.S. and G.J. devised the benchmarks. All authors participated in proofreading and corrections.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Han Liu and the other, anonymous, referee(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jung, G., Alkemade, R.M., Bapst, V. et al. Roadmap on machine learning glassy dynamics. Nat Rev Phys 7, 91–104 (2025). https://doi.org/10.1038/s42254-024-00791-4
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s42254-024-00791-4
This article is cited by
-
Predicting fracture in disordered network materials using the local intelligent stress threshold indicator
Communications Physics (2025)
-
MultiCell: geometric learning in multicellular development
Nature Methods (2025)


