Abstract
The integration of deep learning techniques and physics-driven designs is reforming the way we address inverse problems, in which accurate physical properties are extracted from complex observations. This is particularly relevant for quantum chromodynamics (QCD) — the theory of strong interactions — with its inherent challenges in interpreting observational data and demanding computational approaches. This Perspective highlights advances of physics-driven learning methods, focusing on predictions of physical quantities towards QCD physics and drawing connections to machine learning. Physics-driven learning can extract quantities from data more efficiently in a probabilistic framework because embedding priors can reduce the optimization effort. In the application of first-principles lattice QCD calculations and QCD physics of hadrons, neutron stars and heavy-ion collisions, we focus on learning physically relevant quantities, such as perfect actions, spectral functions, hadron interactions, equations of state and nuclear structure. We also emphasize the potential of physics-driven designs of generative models beyond QCD physics.
Key points
-
Inverse problems in physical sciences determine causes or parameters from observations.
-
Physics-driven learning integrates domain-specific physical knowledge into machine learning to solve inverse problems.
-
Physics-driven learning can help to extract physical properties and build probability distributions from data.
-
In quantum chromodynamics, physics-driven learning can deduce hadron forces, dense matter equations of state, and nuclear structure.
-
Physics-driven designs can innovate the development of deep learning and generative models.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Gross, F. et al. 50 years of quantum chromodynamics. Eur. Phys. J. C 83, 1125 (2023).
Gattringer, C & Lang, C. B. Quantum Chromodynamics on the Lattice Vol. 788 (Springer, 2010).
Baym, G. et al. From hadrons to quarks in neutron stars: a review. Rept. Prog. Phys. 81, 056902 (2018).
Yagi, K., Hatsuda, T. & Miake, Y. Quark-Gluon Plasma: From Big Bang to Little Bang Vol. 23 (Cambridge Univ. Press, 2005).
Tanaka, A., Tomiya, A. & Hashimoto, K. Deep Learning and Physics Vol. 1 (Springer, 2021).
Zhou, K., Wang, L., Pang, L.-G. & Shi, S. Exploring QCD matter in extreme conditions with machine learning. Prog. Part. Nucl. Phys. 135, 104084 (2024).
Kaipio, J. & Somersalo, E. Statistical and Computational Inverse Problems Vol. 160 (Springer, 2006).
Asakawa, M., Hatsuda, T. & Nakahara, Y. Maximum entropy analysis of the spectral functions in lattice QCD. Prog. Part. Nucl. Phys. 46, 459–508 (2001).
Yunes, N., Miller, M. C. & Yagi, K. Gravitational-wave and X-ray probes of the neutron star equation of state. Nat. Rev. Phys. 4, 237–246 (2022).
Boehnlein, A. et al. Colloquium: machine learning in nuclear physics. Rev. Mod. Phys. 94, 031003 (2022).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Bishop, C. M. & Bishop, H. Deep learning: Foundations and Concepts (Springer Nature, 2023).
Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics informed deep learning (part I): data-driven solutions of nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).
Thuerey, N. et al. Physics-based deep learning. Preprint at https://doi.org/10.48550/arXiv.2109.05237 (2021).
Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019).
LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M. & Huang, F. in Predicting Structured Data 191–246 (MIT Press, 2007).
Jaynes, E. T. Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957).
Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N. & Ganguli, S. Deep unsupervised learning using nonequilibrium thermodynamics. In ICML'15: Proc. 32nd International Conference on International Conference on Machine Learning (ICML, 2015).
Müller, B, Reinhardt, J & Strickland, M. T. Neural Networks: An Introduction (Springer, 1995).
Murphy, K. P. Machine Learning: A Probabilistic Perspective (MIT Press, 2012).
Jin, K. H., McCann, M. T., Froustey, E. & Unser, M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26, 4509–4522 (2017).
Amin, G. R. & Emrouznejad, A. Inverse forecasting: a new approach for predictive modeling. Comput. Ind. Eng. 53, 491–498 (2007).
Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D. & Jacobsen, J.-H. Invertible residual networks. In International Conference on Machine Learning 573–582 (PMLR, 2019).
Qi, C. R., Su, H., Mo, K. & Guibas, L. J. PointNet: deep learning on point sets for 3D classification and segmentation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 652–660 (IEEE, 2017).
Tomiya, A. & Nagai, Y. Equivariant transformer is all you need. Proc. Sci. 453, 001 (2024).
Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).
Mattheakis, M., Protopapas, P., Sondak, D., Di Giovanni, M. & Kaxiras, E. Physical symmetries embedded in neural networks. Preprint at https://doi.org/10.48550/arXiv.1904.08991 (2019).
Zhang, W., Tanida, J., Itoh, K. & Ichioka, Y. Shift-invariant pattern recognition neural network and its optical architecture. In Proc. Annual Conference of the Japan Society of Applied Physics 6p-M-14, 734 (JSAP, 1988).
Geiger, M. & Smidt, T. e3nn: Euclidean neural networks. Preprint at https://doi.org/10.48550/arXiv.2207.09453 (2022).
Shlomi, J., Battaglia, P. & Vlimant, J.-R. Graph neural networks in particle physics. Mach. Learn. Sci. Technol. 2, 021001 (2020).
Kanwar, G. et al. Equivariant flow-based sampling for lattice gauge theory. Phys. Rev. Lett. 125, 121601 (2020).
Favoni, M., Ipp, A., Müller, D. I. & Schuh, D. Lattice gauge equivariant convolutional neural networks. Phys. Rev. Lett. 128, 032003 (2022).
Cranmer, K., Kanwar, G., Racanière, S., Rezende, D. J. & Shanahan, P. E. Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics. Nat. Rev. Phys. 5, 526–535 (2023).
Han, M.-Z., Jiang, J.-L., Tang, S.-P. & Fan, Y.-Z. Bayesian nonparametric inference of the neutron star equation of state via a neural network. Astrophys. J. 919, 11 (2021).
Shi, S., Wang, L. & Zhou, K. Rethinking the ill-posedness of the spectral function reconstruction — why is it fundamentally hard and how artificial neural networks can help. Comput. Phys. Commun. 282, 108547 (2023).
Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).
Baydin, A. G., Pearlmutter, B. A., Radul, A. A. & Siskind, J. M. Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res. 18, 1–43 (2018).
Cranmer, K., Brehmer, J. & Louppe, G. The frontier of simulation-based inference. Proc. Natl Acad. Sci. USA 117, 30055–30062 (2020).
Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).
Jalali, B., Zhou, Y., Kadambi, A. & Roychowdhury, V. Physics-AI symbiosis. Mach. Learn. Sci. Technol. 3, 041001 (2022).
Aarts, G. Introductory lectures on lattice QCD at nonzero baryon number. J. Phys. Conf. Ser. 706, 022004 (2016).
Boyda, D. et al. Applications of machine learning to lattice quantum field theory. Preprint at https://doi.org/10.48550/arXiv.2202.05838 (2022).
Hasenfratz, P. & Niedermayer, F. Perfect lattice action for asymptotically free theories. Nucl. Phys. B 414, 785–814 (1994).
DeGrand, T. A., Hasenfratz, A., Hasenfratz, P. & Niedermayer, F. The classically perfect fixed point action for SU(3) gauge theory. Nucl. Phys. B 454, 587–614 (1995).
Shanahan, P. E., Trewartha, A. & Detmold, W. Machine learning action parameters in lattice quantum chromodynamics. Phys. Rev. D 97, 094506 (2018).
Nagai, Y., Tanaka, A. & Tomiya, A. Self-learning Monte Carlo for non-Abelian gauge theory with dynamical fermions. Phys. Rev. D 107, 054501 (2023).
Blücher, S., Kades, L., Pawlowski, J. M., Strodthoff, N. & Urban, J. M. Towards novel insights in lattice field theory with explainable machine learning. Phys. Rev. D 101, 094507 (2020).
Holland, K., Ipp, A., Müller, D. I. & Wenger, U. Fixed point actions from convolutional neural networks. Proc. Sci. 453, 038 (2024).
Holland, K., Ipp, A., Müller, D. I. & Wenger, U. Machine learning a fixed point action for SU(3) gauge theory with a gauge equivariant convolutional neural network. Phys. Rev. D 110, 074502 (2024).
Zhou, K., Endrődi, G., Pang, L.-G. & Stöcker, H. Regressive and generative neural networks for scalar field theory. Phys. Rev. D 100, 011501 (2019).
Pawlowski, J. M. & Urban, J. M. Reducing autocorrelation times in lattice simulations with generative adversarial networks. Mach. Learn. Sci. Tech. 1, 045011 (2020).
Kanwar, G. Flow-based sampling for lattice field theories. In 40th International Symposium on Lattice Field Theory (Proceedings of Science, 2024); https://doi.org/10.22323/1.453.0114.
Song, Y. et al. Score-based generative modeling through stochastic differential equations. In NIPS '23: Proceedings of the 37th International Conference on Neural Information Processing Systems 37799–37812 (ACM, 2020).
Parisi, G. & Wu, Y. S. Perturbation theory without gauge fixing. Sci. Sin. 24, 483 (1980).
Wang, L., Aarts, G. & Zhou, K. Diffusion models as stochastic quantization in lattice field theory. J. High Energy Phys. 05, 060 (2024).
Wang, L., Aarts, G. & Zhou, K. Generative diffusion models for lattice field theory. In 37th Conference on Neural Information Processing Systems 21 (2023).
Zhu, Q., Aarts, G., Wang, W., Zhou, K. & Wang, L. Diffusion models for lattice gauge field simulations. In 38th conference on Neural Information Processing Systems 14 (2024).
Hirono, Y., Tanaka, A. & Fukushima, K. Understanding diffusion models by Feynman’s path integral. In Proc. 41st International Conference on Machine Learning (PMLR, 2024).
Cotler, J. & Rezchikov, S. Renormalizing diffusion models. Preprint at https://doi.org/10.48550/arXiv.2308.12355 (2023).
Müller, T., McWilliams, B., Rousselle, F., Gross, M. & Novák, J. Neural importance sampling. ACM Trans. Graph. 38, 1–19 (2019).
Ron, D., Swendsen, R. H. & Brandt, A. Inverse Monte Carlo renormalization group transformations for critical phenomena. Phys. Rev. Lett. 89, 275701 (2002).
Bachtis, D., Aarts, G., Di Renzo, F. & Lucini, B. Inverse renormalization group in quantum field theory. Phys. Rev. Lett. 128, 081603 (2022).
Bachtis, D. Inverse renormalization group of spin glasses. Phys. Rev. B 110, L140202 (2023).
Lehner, C. & Wettig, T. Gauge-equivariant neural networks as preconditioners in lattice QCD. Phys. Rev. D 108, 034503 (2023).
Aronsson, J., Müller, D. I. & Schuh, D. Geometrical aspects of lattice gauge equivariant convolutional neural networks. Preprint https://doi.org/10.48550/arXiv.2303.11448 (2023).
Lehner, C. & Wettig, T. Gauge-equivariant pooling layers for preconditioners in lattice QCD. Phys. Rev. D 110, 034517 (2023).
Cohen, T. S. & Welling, M. Group equivariant convolutional networks. In Proceedings of The 33rd International Conference on Machine Learning Vol. 48, 2990–2999 (PMLR, 2016).
Cohen, T. S., Weiler, M., Kicanaoglu, B. & Welling, M. Gauge equivariant convolutional networks and the icosahedral CNN. Proc. 36th International Conference on Machine Learning Vol. 97, 1321–1330 (PMLR, 2019).
Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431–434 (2017).
Wetzel, S. J. & Scherzer, M. Machine learning of explicit order parameters: from the Ising model to SU(2) lattice gauge theory. Phys. Rev. B 96, 184410 (2017).
Boyda, D. L. et al. Finding the deconfinement temperature in lattice Yang-Mills theories from outside the scaling window with machine learning. Phys. Rev. D 103, 014509 (2021).
Lee, J. et al. Deep neural networks as Gaussian processes. Preprint at https://doi.org/10.48550/arXiv.1711.00165 (2018).
Halverson, J., Maiti, A. & Stoner, K. Neural networks and quantum field theory. Mach. Learn. Sci. Tech. 2, 035002 (2021).
Bachtis, D., Aarts, G. & Lucini, B. Quantum field-theoretic machine learning. Phys. Rev. D 103, 074510 (2021).
Aarts, G., Lucini, B. & Park, C. Scalar field restricted Boltzmann machine as an ultraviolet regulator. Phys. Rev. D 109, 034521 (2024).
Aarts, G., Lucini, B. & Park, C. Stochastic weight matrix dynamics during learning and Dyson Brownian motion. Preprint at https://doi.org/10.48550/arXiv.2407.16427 (2024).
Rothkopf, A. Heavy quarkonium in extreme conditions. Phys. Rept. 858, 1–117 (2020).
Wang, L., Shi, S. & Zhou, K. Reconstructing spectral functions via automatic differentiation. Phys. Rev. D 106, L051502 (2022).
Guo, F.-K. et al. Hadronic molecules. Rev. Mod. Phys. 90, 015004 (2018).
Sombillo, D. L. B., Ikeda, Y., Sato, T. & Hosaka, A. Classifying the pole of an amplitude using a deep neural network. Phys. Rev. D 102, 016024 (2020).
Sombillo, D. L. B., Ikeda, Y., Sato, T. & Hosaka, A. Model independent analysis of coupled-channel scattering: a deep learning approach. Phys. Rev. D 104, 036001 (2021).
Albaladejo, M. et al. Novel approaches in hadron spectroscopy. Prog. Part. Nucl. Phys. 127, 103981 (2022).
Ng, L. et al. Deep learning exotic hadrons. Phys. Rev. D 105, L091501 (2022).
Keeble, J. W. T. & Rios, A. Machine learning the deuteron. Phys. Lett. B 809, 135743 (2020).
Adams, C., Carleo, G., Lovato, A. & Rocco, N. Variational Monte Carlo calculations of A ≤ 4 nuclei with an artificial neural-network correlator ansatz. Phys. Rev. Lett. 127, 022502 (2021).
Ishii, N., Aoki, S. & Hatsuda, T. The nuclear force from lattice QCD. Phys. Rev. Lett. 99, 022001 (2007).
Aoki, S. et al. Lattice QCD approach to nuclear physics. Prog. Theor. Exp. Phys. 2012, 01A105 (2012).
Aoki, S. & Doi, T. in Handbook of Nuclear Physics 1–31 (Springer, 2023).
Collaboration, A. et al. Unveiling the strong interaction among hadrons at the LHC. Nature 588, 232–238 (2020).
Lyu, Y. et al. Doubly charmed tetraquark \({T}_{cc}^{+}\) in (2+1)-flavor QCD near physical point. Proc. Sci. 453, 077 (2024).
Shi, S., Zhou, K., Zhao, J., Mukherjee, S. & Zhuang, P. Heavy quark potential in the quark-gluon plasma: deep neural network meets lattice quantum chromodynamics. Phys. Rev. D 105, 014017 (2022).
Wang, L., Doi, T., Hatsuda, T. & Lyu, Y. Building hadron potentials from lattice QCD with deep neural networks. Preprint at https://doi.org/10.48550/arXiv.2410.03082 (2024).
Fukushima, K., Mohanty, B. & Xu, N. Little-bang and femto-nova in nucleus-nucleus collisions. AAPPS Bull. 31, 1 (2021).
Steiner, A. W., Lattimer, J. M. & Brown, E. F. The neutron star mass-radius relation and the equation of state of dense matter. Astrophys. J. Lett. 765, L5 (2013).
Ozel, F. et al. The dense matter equation of state from neutron star radius and mass measurements. Astrophys. J. 820, 28 (2016).
Brandes, L., Weise, W. & Kaiser, N. Inference of the sound speed and related properties of neutron stars. Phys. Rev. D 107, 014011 (2023).
Fujimoto, Y., Fukushima, K. & Murase, K. Mapping neutron star data to the equation of state using the deep neural network. Phys. Rev. D 101, 054016 (2020).
Carvalho, V., Ferreira, M., Malik, T. & Providência, C. Decoding neutron star observations: revealing composition through Bayesian neural networks. Phys. Rev. D 108, 043031 (2023).
Carvalho, V., Ferreira, M. & Providência, C. From NS observations to nuclear matter properties: a machine learning approach. Phys. Rev. D 109, 123038 (2024).
Soma, S., Wang, L., Shi, S., Stöcker, H. & Zhou, K. Neural network reconstruction of the dense matter equation of state from neutron star observables. J. Cosmol. Astropart. Phys. 08, 071 (2022).
Soma, S., Wang, L., Shi, S., Stöcker, H. & Zhou, K. Reconstructing the neutron star equation of state from observational data via automatic differentiation. Phys. Rev. D 107, 083028 (2023).
Fujimoto, Y., Fukushima, K. & Murase, K. Extensive studies of the neutron star equation of state from the deep learning inference with the observational data augmentation. J. High Energy Phys. 03, 273 (2021).
Bass, S. A., Bernhard, J. E. & Moreland, J. S. Determination of quark-gluon-plasma parameters from a global Bayesian analysis. Nucl. Phys. A 967, 67–73 (2017).
Pang, L.-G. et al. An equation-of-state-meter of quantum chromodynamics transition from deep learning. Nature Commun. 9, 210 (2018).
Du, Y.-L. et al. Identifying the nature of the QCD transition in heavy-ion collisions with deep learning. Nucl. Phys. A 1005, 121891 (2021).
Steinheimer, J. et al. A machine learning study on spinodal clumping in heavy ion collisions. Nucl. Phys. A 1005, 121867 (2021).
Jiang, L., Wang, L. & Zhou, K. Deep learning stochastic processes with QCD phase transition. Phys. Rev. D 103, 116023 (2021).
Omana Kuttan, M., Zhou, K., Steinheimer, J., Redelbach, A. & Stoecker, H. An equation-of-state-meter for CBM using PointNet. J. High Energy Phys. 21, 184 (2020).
Pratt, S., Sangaline, E., Sorensen, P. & Wang, H. Constraining the eq. of state of super-hadronic matter from heavy-ion collisions. Phys. Rev. Lett. 114, 202301 (2015).
Omana Kuttan, M., Steinheimer, J., Zhou, K. & Stoecker, H. QCD equation of state of dense nuclear matter from a Bayesian analysis of heavy-ion collision data. Phys. Rev. Lett. 131, 202303 (2023).
Bernhard, J. E., Moreland, J. S. & Bass, S. A. Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma. Nat. Phys. 15, 1113–1117 (2019).
Everett, D. et al. Phenomenological constraints on the transport properties of QCD matter with data-driven model averaging. Phys. Rev. Lett. 126, 242301 (2021).
Nijs, G., van der Schee, W., Gürsoy, U. & Snellings, R. Transverse momentum differential global analysis of heavy-ion collisions. Phys. Rev. Lett. 126, 202301 (2021).
Li, F.-P., Lü, H.-L., Pang, L.-G. & Qin, G.-Y. Deep-learning quasi-particle masses from QCD equation of state. Phys. Lett. B 844, 138088 (2023).
Cheng, Y.-L., Shi, S., Ma, Y.-G., Stöcker, H. & Zhou, K. Examination of nucleon distribution with Bayesian imaging for isobar collisions. Phys. Rev. C 107, 064909 (2023).
Giacalone, G., Nijs, G. & van der Schee, W. Determination of the neutron skin of Pb208 from ultrarelativistic nuclear collisions. Phys. Rev. Lett. 131, 202302 (2023).
David, C., Freslier, M. & Aichelin, J. Impact parameter determination for heavy-ion collisions by use of a neural network. Phys. Rev. C 51, 1453–1459 (1995).
Bass, S. A., Bischoff, A., Maruhn, J. A., Stoecker, H. & Greiner, W. Neural networks for impact parameter determination. Phys. Rev. C 53, 2358–2363 (1996).
De Sanctis, J. et al. Classification of the impact parameter in nucleus-nucleus collisions by a support vector machine method. J. Phys. G 36, 015101 (2009).
Omana Kuttan, M., Steinheimer, J., Zhou, K., Redelbach, A. & Stoecker, H. A fast centrality-meter for heavy-ion collisions at the CBM experiment. Phys. Lett. B 811, 135872 (2020).
Feickert, M. & Nachman, B. A living review of machine learning for particle physics. Preprint at https://doi.org/10.48550/arXiv.2102.02770 (2021).
Hashimoto, K., Sugishita, S., Tanaka, A. & Tomiya, A. Deep learning and the AdS/CFT correspondence. Phys. Rev. D 98, 046019 (2018).
Hashimoto, K., Sugishita, S., Tanaka, A. & Tomiya, A. Deep learning and holographic QCD. Phys. Rev. D 98, 106014 (2018).
Cai, R.-G., He, S., Li, L. & Zeng, H.-A. QCD phase diagram at finite magnetic field and chemical potential: a holographic approach using machine learning. Preprint at https://doi.org/10.48550/arXiv.2406.12772 (2024).
Kadambi, A., de Melo, C., Hsieh, C.-J., Srivastava, M. & Soatto, S. Incorporating physics into data-driven computer vision. Nat. Mach. Intell. 5, 572–580 (2023).
Reichstein, M. et al. Deep learning and process understanding for data-driven earth system science. Nature 566, 195–204 (2019).
Cichos, F., Gustavsson, K., Mehlig, B. & Volpe, G. Machine learning for active matter. Nat. Mach. Intell. 2, 94–103 (2020).
Huerta, E. A. et al. Enabling real-time multi-messenger astrophysics discoveries with deep learning. Nat. Rev. Phys. 1, 600–608 (2019).
Acknowledgements
The authors thank L. Brandes, Y. Fujimoto, S. Kamata, D. I. Müller, K. Murase, A. Tanaka and A. Tomiya for the helpful discussions and all collaborators for their contributions. The authors also thank the DEEP-IN working group at RIKEN-iTHEMS, the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), and the ExtreMe Matter Institute (EMMI) for their support in the preparation of this paper. G.A. is supported by STFC Consolidated Grant ST/T000813/1. K.F. is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant numbers 22H01216 and 22H05118. T.H. is supported by the Japan Science and Technology Agency (JST) as part of Adopting Sustainable Partnerships for Innovative Research Ecosystem (ASPIRE), grant number JPMJAP2318. S.S. acknowledges Tsinghua University under grant number 53330500923. L.W. thanks the National Natural Science Foundation of China (number 12147101) for supporting his visit to Fudan University. K.Z. is supported by the CUHK-Shenzhen University Development Fund under grant numbers UDF01003041 and UDF03003041, and Shenzhen Peacock fund under grant number 2023TC0179.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Long-Gang Pang and Danilo Jimenez Rezende for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Artificial neural networks
-
(ANNs). Models inspired by the structure and function of biological neural networks in human brains.
- Convolutional neural networks
-
(CNNs). Excel with image, speech and audio inputs; they consist of three main types of layers: convolutional, pooling and fully connected layers.
- Deep neural networks
-
Complex ANNs with multiple layers, including input, output and at least one hidden layer.
- Recurrent neural networks
-
Bi-directional ANNs, unlike the uni-directional feedforward network; they allow outputs from nodes to influence subsequent inputs to the same nodes.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Aarts, G., Fukushima, K., Hatsuda, T. et al. Physics-driven learning for inverse problems in quantum chromodynamics. Nat Rev Phys 7, 154–163 (2025). https://doi.org/10.1038/s42254-024-00798-x
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s42254-024-00798-x
This article is cited by
-
High-resolution ensemble retrieval of cloud properties for all-day based on geostationary satellite
npj Climate and Atmospheric Science (2025)
-
Hydrodynamical transports in generic AdS Gauss-Bonnet-scalar gravity
Journal of High Energy Physics (2025)
-
Dense matter in neutron stars with eXTP
Science China Physics, Mechanics & Astronomy (2025)


