Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Recommendation
  • Published:

Protocols and tools to enable reproducibility in 2D materials research

Abstract

Despite the rapid growth of 2D materials research over the past two decades in both academic and industrial settings, there remain big challenges in producing consistent, reproducible results in the field. Subtle variations in methods or materials can lead to drastically different outcomes, undermining reliability and slowing down advances. However, owing to a culture of placing greater value on novelty rather than on reproducibility, little effort is expended in ensuring that results are collected and presented in a way that enables reproducibility. This Expert Recommendation presents two protocols that researchers can follow to improve reproducibility in 2D materials science, as well as practical recommendations on how researchers can engage constructively with funders, publishers and industry to create a stronger basis for reproducibility, transparency and trust in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of reproducibility, repeatability and validation challenges and efforts from the literature.

Similar content being viewed by others

References

  1. Begley, C. G. & Ellis, L. M. Raise standards for preclinical cancer research. Nature 483, 531–533 (2012).

    Article  ADS  Google Scholar 

  2. Errington, T. M., Denis, A., Perfito, N., Iorns, E. & Nosek, B. A. Reproducibility in cancer biology: challenges for assessing replicability in preclinical cancer biology. eLife 10, e67995 (2021).

    Article  Google Scholar 

  3. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).

    Article  ADS  Google Scholar 

  4. Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).

    Article  Google Scholar 

  5. Baker, M. & Dolgin, E. Cancer reproducibility project releases first results. Nature 541, 269 (2017).

    Article  ADS  Google Scholar 

  6. Johansson, P. et al. Ten ways to fool the masses when presenting battery research. Batteries Supercaps 4, 1785–1788 (2021).

    Article  Google Scholar 

  7. Boggild, P. Research on scalable graphene faces a reproducibility gap. Nat. Commun. 14, 1126 (2023).

    Article  ADS  Google Scholar 

  8. Lanza, M., Smets, Q., Huyghebaert, C. & Li, L. J. Yield, variability, reliability, and stability of two-dimensional materials based solid-state electronic devices. Nat. Commun. 11, 5689 (2020).

    Article  ADS  Google Scholar 

  9. Kauling, A. P. et al. The worldwide graphene flake production. Adv. Mater. 30, 1803784 (2018).

    Article  Google Scholar 

  10. Chatterjee, S., Abadie, T., Wang, M. H., Matar, O. K. & Ruoff, R. S. Repeatability and reproducibility in the chemical vapor deposition of 2D films: a physics-driven exploration of the reactor black box. Chem. Mater. 36, 1290–1298 (2024).

    Article  Google Scholar 

  11. Amontree, J. et al. Reproducible graphene synthesis by oxygen-free chemical vapour deposition. Nature 630, 636–642 (2024).

    Article  ADS  Google Scholar 

  12. Guo, W., Wu, B., Wang, S. & Liu, Y. Q. Controlling fundamental fluctuations for reproducible growth of large single-crystal graphene. ACS Nano 12, 1778–1784 (2018).

    Article  Google Scholar 

  13. Turner, P. et al. International interlaboratory comparison of Raman spectroscopic analysis of CVD-grown graphene. 2D Mater. 9, 035010 (2022).

    Article  Google Scholar 

  14. Mackenzie, D. M. A. et al. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping. Opt. Express 26, 9220–9229 (2018).

    Article  ADS  Google Scholar 

  15. Fan, Y. et al. Recent advances in growth of large-sized 2D single crystals on Cu substrates. Adv. Mater. 33, e2003956 (2021).

    Article  Google Scholar 

  16. Wittmann, S. et al. Assessment of wafer-level transfer techniques of graphene with respect to semiconductor industry requirements. Adv. Mater. Technol. 8, 2201587 (2023).

    Article  Google Scholar 

  17. Cheng, Z. H. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 416–423 (2022).

    Article  ADS  Google Scholar 

  18. Cheng, Z. H. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 620–620 (2022).

    Article  Google Scholar 

  19. McClellan, C. J. et al. 2D Device Trends (Stanford, accessed 17 April 2025); http://2d.stanford.edu/2D_Trends.html.

  20. Díez-Mérida, J. et al. High-yield fabrication of bubble-free magic-angle twisted bilayer graphene devices with high twist angle homogeneity. Newton 1, 100007 (2025).

    Article  Google Scholar 

  21. Canto, B. et al. Multi-project wafer runs for electronic graphene devices in the European 2D-experimental pilot line project. Nat. Commun. 16, 1417 (2025).

    Article  ADS  Google Scholar 

  22. Nosek, B. et al. Reproducibility and transparency: what’s going on and how can we help. Nat. Commun. 16, 1082 (2025).

    Article  ADS  Google Scholar 

  23. Munafò, M. Raising research quality will require collective action. Nature 576, 183–183 (2019).

    Article  ADS  Google Scholar 

  24. Kent, B. A. et al. Recommendations for empowering early career researchers to improve research culture and practice. PLoS Biol. 20, e3001680 (2022).

    Article  Google Scholar 

  25. Higginson, A. D. & Munafò, M. R. Current incentives for scientists lead to underpowered studies with erroneous conclusions. PLoS Biol. 14, e2000995 (2016).

    Article  Google Scholar 

  26. Gammelgaard, L., Whelan, P. R., Booth, T. J. & Boggild, P. Long-term stability and tree-ring oxidation of WSe2 using phase-contrast AFM. Nanoscale 13, 19238–19246 (2021).

    Article  Google Scholar 

  27. Johann, D., Neufeld, J., Thomas, K., Rathmann, J. & Rauhut, H. The impact of researchers’ perceived pressure on their publication strategies. Res. Eval. https://doi.org/10.1093/reseval/rvae011 (2024).

  28. Smith, A. Who discovered the magnetocaloric effect? Eur. Phys. J. H. 38, 507–517 (2013).

    Article  Google Scholar 

  29. Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moire materials. Nature 602, 41–50 (2022).

    Article  ADS  Google Scholar 

  30. Kapfer, M. et al. Programming twist angle and strain profiles in 2D materials. Science 381, 677–681 (2023).

    Article  ADS  Google Scholar 

  31. Knoepfler, P. Reviewing post-publication peer review. Trends Genet. 31, 221–223 (2015).

    Article  Google Scholar 

  32. Dance, A. Stop the peer-review treadmill. I want to get off. Nature 614, 581–583 (2023).

    Article  ADS  Google Scholar 

  33. Woolston, C. Workplace habits: full-time is full enough. Nature 546, 175–177 (2017).

    Article  Google Scholar 

  34. Promoting reproducibility with registered reports. Nat. Hum. Behav. 1, 0034 (2017).

  35. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  Google Scholar 

  36. Clifford, C. A. et al. The importance of international standards for the graphene community. Nat. Rev. Phys. 3, 233–235 (2021).

    Article  Google Scholar 

  37. The Danish Code of Conduct for Research Integrity. https://ufm.dk/en/publications/2014/the-danish-code-of-conduct-for-research-integrity (accessed 6 June 2025). The European Code of Conduct for Research Integrity. https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/european-code-of-conduct-for-research-integrity_horizon_en.pdf (accessed 6 June 2025).

  38. Go forth and replicate! Nature 536, 373 (2016).

  39. Begley, C. G., Buchan, A. M. & Dirnagl, U. Robust research institutions must do their part for reproducibility. Nature 525, 25–27 (2015).

    Article  ADS  Google Scholar 

  40. Shiffrin, R. M., Börner, K. & Stigler, S. M. Scientific progress despite irreproducibility: a seeming paradox. Proc. Natl Acad. Sci. USA 115, 2632–2639 (2018).

    Article  ADS  Google Scholar 

  41. Yuan, Y. et al. On the quality of commercial chemical vapour deposited hexagonal boron nitride. Nat. Commun. 15, 4518 (2024).

    Article  ADS  Google Scholar 

  42. Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    Article  ADS  Google Scholar 

  43. Whelan, P. R. et al. Electrical homogeneity mapping of epitaxial graphene on silicon carbide. ACS Appl. Mater. Interfaces 10, 31641–31647 (2018).

    Article  Google Scholar 

  44. Consort 2010. Lancet 375, 1136 (2010).

  45. von Elm, E. et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370, 1453–1457 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

P.B. acknowledges financial support from BIOMAG — Novo Nordisk Foundation Challenge Programme (grant no. NNF21OC0066526) and DFF METATUNE (grant no. 1032-00496B). N.L. gratefully acknowledges financial support from the Swiss National Science Foundation (Postdoc Mobility P500PT_211105) and the Villum Foundation (Villum Experiment 50355). B.S.J. acknowledges financial support from BioNWire — Novo Nordisk Foundation Interdisciplinary Synergy Project (grant no. NNF23OC0084494). K.D. acknowledges financial support from the Novo Nordisk Foundation CO2 Research Center (grant no. NNF21SA0072700). A.J.P. acknowledges funding from the National Measurement System (NMS) of the Department for Science, Innovation and Technology (DSIT), UK (Project no. 127931). The authors acknowledge input and discussions with A. Wotherspoon, I. Asselberghs, R. Taboryski, S. Arpiainen and C. Huyghebaert.

Author information

Authors and Affiliations

Authors

Contributions

P.B. conceived the study and wrote the first draft of the manuscript. B.S.J., O.B. and A.S. wrote the STEP examples. All authors have read and provided input to the manuscript.

Corresponding author

Correspondence to Peter Bøggild.

Ethics declarations

Competing interests

The authors declare no conflicts of interest. The opinions expressed in this paper reflect the views of the individual authors and should not be considered as statements of the official policy of their institutions.

Peer review

Peer-review information

Nature Reviews Physics thanks Mario Lanza, Xiaomeng Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bøggild, P., Booth, T.J., Jessen, B.S. et al. Protocols and tools to enable reproducibility in 2D materials research. Nat Rev Phys 7, 728–738 (2025). https://doi.org/10.1038/s42254-025-00875-9

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00875-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing