Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Cryogenic electron microscopy and tomography for beam-sensitive materials

Abstract

In the life sciences, cryogenic electron microscopy (cryo-EM) has revolutionized structure determination by providing atomic-resolution structures of biomolecules in their native environment and in multiple conformational states. The applications of cryo-EM techniques have been extended from structural biology, which mainly focuses on structural information, to materials science, where chemical and physical information are equally important. In this Technical Review, we focus on sample preparation methods and imaging strategies to enable high-resolution imaging of beam-sensitive materials while avoiding electron-beam damage. We also survey emerging methods and applications, with an emphasis on energy materials.

Key points

  • Effective sample preparation is crucial for maintaining the native state of materials and preventing phase transitions or chemical reactions during imaging.

  • Advanced fast freezing techniques have demonstrated the potential of cryo-electron microscopy (cryo-EM) to capture intermediate states in energy-related processes by slowing or halting these processes at cryogenic temperatures. Applying external fields (electric, magnetic or light) during freezing could allow for even more precise control over these states.

  • The effect of electron radiation damage on cryo-EM imaging and spectroscopy can be mitigated by minimizing the beam dose using low-dose techniques, maximizing the signal-to-noise ratio with a direct electron detector, and optimizing imaging conditions based on specific material type and properties of the sample.

  • Analytical scanning transmission electron microscopy (STEM) techniques such as energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy at cryogenic temperatures, along with 4D-STEM and ptychography for detailed structural mapping, greatly expand the utility of cryo-EM in materials science.

  • The development of cryo-electron tomography and advanced data and image processing methods has further enabled 3D imaging and analysis of materials, opening new avenues for studying complex materials systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example protocols for sample preparation for cryo-electron microscopy.
Fig. 2: High-resolution imaging of beam-sensitive materials using low-dose cryo-EM.
Fig. 3: Examples of cryo-STEM applications in materials research.
Fig. 4: Cryo-electron tomography.

Similar content being viewed by others

References

  1. Cui, Y. & Kourkoutis, L. Imaging sensitive materials, interfaces, and quantum materials with cryogenic electron microscopy. Acc. Chem. Res. 54, 3619–3620 (2021).

    Article  Google Scholar 

  2. Cressey, D. & Callaway, E. Cryo-electron microscopy wins chemistry Nobel. Nature 550, 167 (2017).

    Article  ADS  Google Scholar 

  3. Taylor, K. A. & Glaeser, R. M. Electron diffraction of frozen, hydrated protein crystals. Science 186, 1036–1037 (1974).

    Article  ADS  Google Scholar 

  4. Dubochet, J., Chang, J.-J., Freeman, R., Lepault, J. & McDowall, A. W. Frozen aqueous suspensions. Ultramicroscopy 10, 55–61 (1982).

    Article  Google Scholar 

  5. Chiu, W., Downing, K. H. & Dubochet, J. Cryoprotection in electron microscopy. J. Microsc. 141, 385–391 (1986).

    Article  Google Scholar 

  6. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  Google Scholar 

  7. De Rosier, D. J. & Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130 (1968).

    Article  ADS  Google Scholar 

  8. Henderson, R. et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929 (1990).

    Article  Google Scholar 

  9. Sigworth, F. J. A. Maximum-likelihood approach to single-particle image refinement. J. Struct. Biol. 122, 328–339 (1998).

    Article  Google Scholar 

  10. Chiu, W. Electron microscopy of frozen, hydrated biological specimens. Annu. Rev. Biophys. Biophys. Chem. 15, 237–257 (1986).

    Article  Google Scholar 

  11. Nogales, E. The development of cryo-EM into a mainstream structural biology technique. Nat. Methods 13, 24–27 (2016).

    Article  Google Scholar 

  12. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    Article  ADS  Google Scholar 

  13. Li, Y. et al. Unravelling degradation mechanisms and atomic structure of organic-inorganic halide perovskites by cryo-EM. Joule 3, 2854–2866 (2019).

    Article  Google Scholar 

  14. Li, Y. et al. Cryo-EM structures of atomic surfaces and host-guest chemistry in metal-organic frameworks. Matter 1, 428–438 (2019).

    Article  Google Scholar 

  15. Li, Y. et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2, 2167–2177 (2018).

    Article  Google Scholar 

  16. Huang, W. et al. Nanostructural and electrochemical evolution of the solid-electrolyte interphase on CuO nanowires revealed by cryogenic-electron microscopy and impedance spectroscopy. ACS Nano 13, 737–744 (2019).

    Article  Google Scholar 

  17. Huang, W. et al. Evolution of the solid-electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic-electron microscopy. Nano Lett. 19, 5140–5148 (2019).

    Article  ADS  Google Scholar 

  18. Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid−liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

    Article  ADS  Google Scholar 

  19. Li, X. et al. Electron counting and beam- induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  Google Scholar 

  20. Levin, B. D. A. et al. Characterization of sulfur and nanostructured sulfur battery cathodes in electron microscopy without sublimation artifacts. Microsc. Microanal. 23, 155–162 (2017).

    Article  ADS  Google Scholar 

  21. Parent, L. R. et al. Directly observing micelle fusion and growth in solution by liquid-cell transmission electron microscopy. J. Am. Chem. Soc. 139, 17140–17151 (2017).

    Article  ADS  Google Scholar 

  22. Ianiro, A. et al. Liquid−liquid phase separation during amphiphilic self-assembly. Nat. Chem. 11, 320–328 (2019).

    Article  Google Scholar 

  23. Patterson, J. P. et al. Observing the growth of metal−organic frameworks by in situ liquid cell transmission electron microscopy. J. Am. Chem. Soc. 137, 7322–7328 (2015).

    Article  ADS  Google Scholar 

  24. Sood, A. et al. Electrochemical ion insertion from the atomic to the device scale. Nat. Rev. Mater. 6, 847–867 (2021).

    Article  ADS  Google Scholar 

  25. Bazant, M. Z., Thornton, K. & Ajdari, A. Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70, 021506 (2004).

    Article  ADS  Google Scholar 

  26. Bazant, M. Z. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc. Chem. Res. 46, 1144–1160 (2013).

    Article  Google Scholar 

  27. Alia, S. M. et al. Activity and durability of iridium nanoparticles in the oxygen evolution reaction. J. Electrochem. Soc. 163, F3105 (2016).

    Article  Google Scholar 

  28. Cherevko, S., Geiger, S., Kasian, O., Mingers, A. & Mayrhofer, K. J. Oxygen evolution activity and stability of iridium in acidic media. Part 2. Electrochemically grown hydrous iridium oxide. J. Electrochem. Soc. 774, 102–110 (2016).

    Google Scholar 

  29. Tang-Kong, R., Chidsey, C. E. & McIntyre, P. C. Reversible decay of oxygen evolution activity of iridium catalysts. J. Electrochem. Soc. 166, H712 (2019).

    Article  Google Scholar 

  30. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  Google Scholar 

  31. Li, Y. et al. Electrified operando-freezing of electrocatalytic CO2 reduction cells for cryogenic electron microscopy. Nano Lett. 24, 10409–10417 (2024).

    Article  ADS  Google Scholar 

  32. Pennycook, S. J. & Nellist, P. D. (eds) Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, 2011).

  33. Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).

    Article  ADS  Google Scholar 

  34. Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).

    Article  ADS  Google Scholar 

  35. Lovejoy, T. C., Corbin, G. C., Dellby, N., Hoffman, M. V. & Krivanek, O. L. Advances in ultra-high energy resolution STEM-EELS. Microsc. Microanal. 24, 446–447 (2018).

    Article  ADS  Google Scholar 

  36. Woodford, W. H., Carter, W. C. & Chiang, Y.-M. Design criteria for electrochemical shock resistant battery electrodes. Energy Environ. Sci. 5, 8014–8024 (2012).

    Article  Google Scholar 

  37. Gan, L. & Jensen, G. J. Electron tomography of cells. Q. Rev. Biophys. 45, 27–56 (2012).

    Article  Google Scholar 

  38. Schmid, M. F. in Recent Advances in Electron Cryomicroscopy, Part B (eds Ludtke, S. J. & Venkataram, P. B. V.) 37–65 (Elsevier, 2011).

  39. Hovden, R. & Muller, D. A. Electron tomography for functional nanomaterials. MRS Bull. 45, 298–304 (2020).

    Article  ADS  Google Scholar 

  40. Scott, M. C. et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444–447 (2012).

    Article  ADS  Google Scholar 

  41. Zhang, P. Correlative cryo-electron tomography and optical microscopy of cells. Curr. Opin. Struct. Biol. 23, 763–770 (2013).

    Article  Google Scholar 

  42. Chang, Y.-W. et al. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat. Methods 11, 737–739 (2014).

    Article  Google Scholar 

  43. Villa, E., Schaffer, M., Plitzko, J. M. & Baumeister, W. Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Curr. Opin. Struct. Biol. 23, 771–777 (2013).

    Article  Google Scholar 

  44. Egerton, R. F. Radiation damage to organic and inorganic specimens in the TEM. Micron 119, 72–87 (2019).

    Article  Google Scholar 

  45. Zhang, Z. et al. Resolving three-dimensional nanoscale heterogeneities in lithium metal batteries with cryoelectron tomography. Matter 8, 102266 (2025).

    Article  Google Scholar 

  46. Dubochet et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    Article  Google Scholar 

  47. Brüggeller, P. & Mayer, E. Complete vitrification in pure liquid water and dilute aqueous solutions. Nature 288, 569–571 (1980).

    Article  ADS  Google Scholar 

  48. Mayer, E. Vitrification of pure liquid water. J. Microsc. 140, 3–15 (1985).

    Article  Google Scholar 

  49. Dubochet, J. & McDowall, A. W. Vitrification of pure water for electron microscopy. J. Microsc. 124, 3–4 (1981).

    Article  Google Scholar 

  50. Dubochet, J. On the development of electron cryo-microscopy (Nobel Lecture). Angew. Chem. Int. Ed. 57, 10842–10846 (2018).

    Article  Google Scholar 

  51. Grassucci, R. A., Taylor, D. J. & Frank, J. Preparation of macromolecular complexes for cryo-electron microscopy. Nat. Protoc. 2, 3239–3246 (2007).

    Article  Google Scholar 

  52. Weissenberger, G., Henderikx, R. J. M. & Peters, P. J. Understanding the invisible hands of sample preparation for cryo-EM. Nat. Methods 18, 463–471 (2021).

    Article  Google Scholar 

  53. Huang, W. et al. Evolution of the solid–electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy. Nano Lett. 19, 5140–5148 (2019).

    Article  ADS  Google Scholar 

  54. Huang, W. et al. Dynamic structure and chemistry of the silicon solid-electrolyte interphase visualized by cryogenic electron microscopy. Matter 1, 1232–1245 (2019).

    Article  Google Scholar 

  55. Zhang, Z. et al. Cathode-electrolyte interphase in lithium batteries revealed by cryogenic electron microscopy. Matter 4, 302–312 (2021).

    Article  Google Scholar 

  56. Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).

    Article  ADS  Google Scholar 

  57. Russo, C. J., Scotcher, S. & Kyte, M. A precision cryostat design for manual and semi-automated cryo-plunge instruments. Rev. Sci. Instrum. 87, 114302 (2016).

    Article  ADS  Google Scholar 

  58. Wang, C. et al. Trapping and imaging dynamic battery nanointerfaces via electrified cryo-EM. Sci. Adv. 11, eadv3191 (2025).

    Article  ADS  Google Scholar 

  59. Cheng, D., Lu, B., Raghavendran, G., Zhang, M. & Meng, Y. S. Leveraging cryogenic electron microscopy for advancing battery design. Matter 5, 26–42 (2022).

    Article  Google Scholar 

  60. Zachman, M. J., Asenath-Smith, E., Estroff, L. A. & Kourkoutis, L. F. Site-specific preparation of intact solid–liquid interfaces by label-free in situ localization and cryo-focused ion beam lift-out. Microsc. Microanal. 22, 1338–1349 (2016).

    Article  ADS  Google Scholar 

  61. Cheng, D. et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 4, 2484–2500 (2020).

    Article  Google Scholar 

  62. Zachman, M. J., Tu, Z., Archer, L. A. & Kourkoutis, L. F. Nanoscale elemental mapping of intact solid–liquid interfaces and reactive materials in energy devices enabled by cryo-FIB/SEM. ACS Energy Lett. 5, 1224–1232 (2020).

    Article  Google Scholar 

  63. Li, G. et al. Atomically resolved imaging of radiation-sensitive metal-organic frameworks via electron ptychography. Nat. Commun. 16, 914 (2025).

    Article  ADS  Google Scholar 

  64. Shen, B. et al. A single molecule van der Waals compass. Nature 592, 541–544 (2021).

    Article  ADS  Google Scholar 

  65. Xiong, H. et al. In situ imaging of the sorption-induced sub-cell topological flexibility of a rigid zeolite framework. Science 376, 491–496 (2022).

    Article  ADS  Google Scholar 

  66. Wu, M. et al. Seeing structural evolution of organic molecular nano-crystallites using 4D scanning confocal electron diffraction (4D-SCED). Nat. Commun. 13, 2911 (2022).

    Article  ADS  Google Scholar 

  67. Liu, L. et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem. Int. Ed. 59, 819–825 (2020).

    Article  Google Scholar 

  68. Li, G. et al. Unraveling various stacking modes and local structures in poly(triazine imide) materials via low-dose electron microscopy. J. Am. Chem. Soc. 147, 3896–3903 (2025).

    Article  ADS  Google Scholar 

  69. Lv, J., Zhang, H., Zhang, D., Liu, L. & Han, Y. Low-dose electron microscopy imaging of electron beam-sensitive crystalline materials. Acc. Mater. Res. 3, 552–564 (2022).

    Article  Google Scholar 

  70. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  Google Scholar 

  71. Levin, B. D. A. Direct detectors and their applications in electron microscopy for materials science. J. Phys. Mater. 4, 042005 (2021).

    Article  Google Scholar 

  72. Wang, X. et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).

    Article  ADS  Google Scholar 

  73. Weng, S., Li, Y. & Wang, X. Cryo-EM for battery materials and interfaces: workflow, achievements, and perspectives. iScience 24, 103402 (2021).

    Article  ADS  Google Scholar 

  74. Wang, X., Li, Y. & Meng, Y. S. Cryogenic electron microscopy for characterizing and diagnosing batteries. Joule 2, 2225–2234 (2018).

    Article  Google Scholar 

  75. Quinn, J. et al. Tracking the oxidation of silicon anodes using cryo-EELS upon battery cycling. ACS Nano 16, 21063–21070 (2022).

    Article  Google Scholar 

  76. Xu, Y. et al. Sweeping potential regulated structural and chemical evolution of solid-electrolyte interphase on Cu and Li as revealed by cryo-TEM. Nano Energy 76, 105040 (2020).

    Article  Google Scholar 

  77. Dai, Q. et al. Cryo-EM studies of atomic-scale structures of interfaces in garnet-type electrolyte based solid-state batteries. Adv. Funct. Mater. 32, 2208682 (2022).

    Article  Google Scholar 

  78. Guo, B. et al. Cryo-EM revealing the origin of excessive capacity of the Se cathode in sulfide-based all-solid-state Li–Se batteries. ACS Nano 16, 17414–17423 (2022).

    Article  Google Scholar 

  79. Liu, Y. et al. Visualizing the sensitive lithium with atomic precision: cryogenic electron microscopy for batteries. Acc. Chem. Res. 54, 2088–2099 (2021).

    Article  Google Scholar 

  80. Ju, Z. Cryo-electron microscopy for unveiling the sensitive battery materials. Small Sci. 1, 2100055 (2021).

    Article  Google Scholar 

  81. Dou, W. et al. Review on the binders for sustainable high-energy-density lithium ion batteries: status, solutions, and prospects. Adv. Funct. Mater. 33, 2305161 (2023).

    Article  Google Scholar 

  82. Yousaf, M. et al. Visualization of battery materials and their interfaces/interphases using cryogenic electron microscopy. Mater. Today 58, 238–274 (2022).

    Article  Google Scholar 

  83. Zhang, J. et al. Construction of stable Li2O-rich solid electrolyte interphase for practical PEO-based Li-metal batteries. Adv. Energy Mater. 14, 2302587 (2024).

    Article  Google Scholar 

  84. Li, S. et al. Cation replacement method enables high-performance electrolytes for multivalent metal batteries. Nat. Energy 9, 285–297 (2024).

    Article  ADS  Google Scholar 

  85. Sun, T. et al. Atomic-level characterization of dynamics of a 3D covalent organic framework by cryo-electron diffraction tomography. J. Am. Chem. Soc. 141, 10962–10966 (2019).

    Article  ADS  Google Scholar 

  86. Beyeh, N. K. et al. Crystalline cyclophane–protein cage frameworks. ACS Nano 12, 8029–8036 (2018).

    Article  Google Scholar 

  87. Zhao, W. et al. Nanoscale covalent organic frameworks for enhanced photocatalytic hydrogen production. Nat. Commun. 15, 6482 (2024).

    Article  Google Scholar 

  88. Chen, J. et al. Chiral inorganic nanomaterials characterized by advanced TEM: a qualitative and quantitative study. Adv. Mater. 36, 2410676 (2024).

    Article  Google Scholar 

  89. Ogata, A. F. et al. Direct observation of amorphous precursor phases in the nucleation of protein-metal-organic frameworks. J. Am. Chem. Soc. 142, 1433–1442 (2020).

    Article  ADS  Google Scholar 

  90. Franco, C. et al. Biomimetic synthesis of sub-20 nm covalent organic frameworks in water. J. Am. Chem. Soc. 142, 3540–3547 (2020).

    Article  ADS  Google Scholar 

  91. Sun, B. et al. Homochiral porous nanosheets for enantiomer sieving. Nat. Mater. 17, 599–604 (2018).

    Article  ADS  Google Scholar 

  92. Fan, Q. et al. Phase segregation dynamics in mixed-halide perovskites revealed by plunge-freeze cryogenic electron microscopy. Cell Rep. Phys. Sci. 6, 102653 (2025).

    Article  Google Scholar 

  93. Huang, R. et al. Real-time direct observation of Li in LiCoO2 cathode material. Appl. Phys. Lett. 98, 051913 (2011).

    Article  ADS  Google Scholar 

  94. Fundenberger, J.-J., Morawiec, A., Bouzy, E. & Lecomte, J. S. Polycrystal orientation maps from TEM. Ultramicroscopy 96, 127–137 (2003).

    Article  Google Scholar 

  95. Kobler, A., Kashiwar, A., Hahn, H. & Kü bel, C. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals. Ultramicroscopy 128, 68–81 (2013).

    Article  Google Scholar 

  96. Usuda, K. et al. Strain relaxation of strained-Si layers on SiGe-on-insulator (SGOI) structures after mesa isolation. Appl. Surf. Sci. 224, 113–116 (2004).

    Article  ADS  Google Scholar 

  97. Béché, A., Rouviè re, J. L., Clément, L. & Hartmann, J. M. Improved precision in strain measurement using nanobeam electron diffraction. Appl. Phys. Lett. 95, 123114 (2009).

    Article  ADS  Google Scholar 

  98. Caswell, T. A. et al. A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope. Ultramicroscopy 109, 304–311 (2009).

    Article  Google Scholar 

  99. Savitzky, B. H. et al. Py4DSTEM: a software package for four-dimensional scanning transmission electron microscopy data analysis. Microsc. Microanal. 27, 712–743 (2021).

    Article  ADS  Google Scholar 

  100. Wakonig, K. et al. PtychoShelves, a versatile high-level framework for high-performance analysis of ptychographic data. J. Appl. Crystallogr. 53, 574–586 (2020).

    Article  ADS  Google Scholar 

  101. Jiang, Y. Fold_slice. GitHub https://github.com/yijiang1/fold_slice (2020).

  102. Panova, O. et al. Diffraction imaging of nanocrystalline structures in organic semiconductor molecular thin films. Nat. Mater. 18, 860 (2019).

    Article  ADS  Google Scholar 

  103. Bustillo, K. C. et al. 4D-STEM of beam-sensitive materials. Acc. Chem. Res. 54, 2543–2551 (2021).

    Article  Google Scholar 

  104. Tsarfati, Y. et al. The hierarchical structure of organic mixed ionic−electronic conductors and its evolution in water. Nat. Mater. 24, 101–108 (2025).

    Article  ADS  Google Scholar 

  105. Gallagher-Jones, M. et al. Nanoscale mosaicity revealed in peptide microcrystals by scanning electron nanodiffraction. Commun. Biol. 2, 26 (2019).

    Article  Google Scholar 

  106. Mu, X., Mazilkin, A., Sprau, C., Colsmann, A. & Kübel, C. Mapping structure and morphology of amorphous organic thin films by 4D-STEM pair distribution function analysis. Microscopy 68, 301–309 (2019).

    Article  Google Scholar 

  107. Donohue, J. et al. Cryogenic 4D-STEM analysis of an amorphous-crystalline polymer blend: combined nanocrystalline and amorphous phase mapping. iScience 25, 103882 (2022).

    Article  ADS  Google Scholar 

  108. Markovich, D. et al. Revealing the crystalline architecture of semicrystalline ion exchange membranes for the design of conductive and durable alkaline anion exchange membranes. ACS Nano 19, 20871–20880 (2025).

    Article  Google Scholar 

  109. Koh, H., Das, S., Zhang, Y., Detsi, E. & Stach, E. Electron beam-induced artifacts in SEI characterization: evidence from controlled-dose diffraction studies. ACS Energy Lett. 10, 534–540 (2025).

    Article  Google Scholar 

  110. Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 559, 343–349 (2018).

    Article  ADS  Google Scholar 

  111. Zhang, H. et al. Three-dimensional inhomogeneity of zeolite structure and composition revealed by electron ptychography. Science 380, 633–638 (2023).

    Article  ADS  Google Scholar 

  112. Zhou, L. et al. Low-dose phase retrieval of biological specimens using cryo-electron ptychography. Nat. Commun. 11, 2773 (2020).

    Article  ADS  Google Scholar 

  113. Pei, X. et al. Cryogenic electron ptychographic single particle analysis with wide bandwidth information transfer. Nat. Commun. 14, 3027 (2023).

    Article  ADS  Google Scholar 

  114. Küçükoğlu, B. et al. Low-dose cryo-electron ptychography of proteins at sub-nanometer resolution. Nat. Commun. 15, 8062 (2024).

    Article  ADS  Google Scholar 

  115. García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  ADS  Google Scholar 

  116. Dandey, V. P. et al. Time-resolved cryo-EM using Spotiton. Nat. Methods 17, 897–900 (2020).

    Article  Google Scholar 

  117. Hovden, R. et al. Atomic lattice disorder in charge-density-wave phases of exfoliated dichalcogenides (1T-TaS2). Proc. Natl Acad. Sci. USA 113, 11420 (2016).

    Article  ADS  Google Scholar 

  118. Savitzky, B. H. et al. Image registration of low signal-to-noise cryo-STEM data. Ultramicroscopy 191, 56–65 (2018).

    Article  Google Scholar 

  119. El Baggari, I. et al. Nature and evolution of incommensurate charge order in manganites visualized with cryogenic scanning transmission electron microscopy. Proc. Natl Acad. Sci. USA 115, 1445 (2018).

    Article  ADS  Google Scholar 

  120. El Baggari, I. et al. Charge order textures induced by non-linear couplings in a half-doped manganite. Nat. Commun. 12, 3747 (2021).

    Article  ADS  Google Scholar 

  121. Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    Article  Google Scholar 

  122. Han, M. et al. Topological magnetic-spin textures in two-dimensional van der Waals Cr2Ge2Te6. Nano Lett. 19, 7859–7865 (2019).

    Article  ADS  Google Scholar 

  123. Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nat. Mater. 8, 271–280 (2009).

    Article  ADS  Google Scholar 

  124. Hagen, W. J., Wan, W. & Briggs, J. A. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017).

    Article  Google Scholar 

  125. Hoppe, W., Langer, R., Knesch, G. & Poppe, C. Protein-Kristallstrukturanalyse mit Elektronenstrahlen. Naturwissenschaften 55, 333–336 (1968).

    Article  ADS  Google Scholar 

  126. Hart, R. G. Electron microscopy of unstained biological material: the polytropic montage. Science 159, 1464–1467 (1968).

    Article  ADS  Google Scholar 

  127. Cheng, Y. Single-particle cryo-EM — how did it get here and where will it go. Science 361, 876–880 (2018).

    Article  ADS  Google Scholar 

  128. Turk, M. & Baumeister, W. The promise and the challenges of cryo-electron tomography. FEBS Lett. 594, 3243–3261 (2020).

    Article  Google Scholar 

  129. Danev, R., Yanagisawa, H. & Kikkawa, M. Cryo-electron microscopy methodology: current aspects and future directions. Trends Biochem. Sci. 44, 837–848 (2019).

    Article  Google Scholar 

  130. Beck, M. & Baumeister, W. Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol. 26, 825–837 (2016).

    Article  Google Scholar 

  131. Vos, M. R. et al. Insights in the organization of DNA−surfactant monolayers using cryo-electron tomography. J. Am. Chem. Soc. 129, 11894–11895 (2007).

    Article  ADS  Google Scholar 

  132. Parry, A., Bomans, P. H., Holder, S. J., Sommerdijk, N. A. & Biagini, S. C. Cryo electron tomography reveals confined complex morphologies of tripeptide-containing amphiphilic double-comb diblock copolymers. Angew. Chem. Int. Ed. 47, 8859–8862 (2008).

    Article  Google Scholar 

  133. Pouget, E. M. et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323, 1455–1458 (2009).

    Article  ADS  Google Scholar 

  134. Allen, F. I. et al. Morphology of hydrated as-cast nafion revealed through cryo electron tomography. ACS Macro Lett. 4, 1–5 (2015).

    Article  ADS  Google Scholar 

  135. Wolf, S. G., Houben, L. & Elbaum, M. Cryo-scanning transmission electron tomography of vitrified cells. Nat. Methods 11, 423–428 (2014).

    Article  Google Scholar 

  136. Han, B. et al. Cryo-electron tomography of highly deformable and adherent solid-electrolyte interphase exoskeleton in Li-metal batteries with ether-based electrolyte. Adv. Mater. 34, 2108252 (2022).

    Article  Google Scholar 

  137. He, Y. et al. Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading. Nat. Nanotechnol. 16, 1113–1120 (2021).

    Article  ADS  Google Scholar 

  138. Radon, J. On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med. Imaging 5, 170–176 (1986).

    Article  ADS  Google Scholar 

  139. Bracewell, R. N. Strip integration in radio astronomy. Aust. J. Phys. 9, 198–217 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  140. Bepler, T. et al. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat. Commun. 11, 5208 (2020).

    Article  ADS  Google Scholar 

  141. Ding, G., Liu, Y., Zhang, R. & Xin, H. L. A joint deep learning model to recover information and reduce artifacts in missing-wedge sinograms for electron tomography and beyond. Sci. Rep. 9, 12803 (2019).

    Article  ADS  Google Scholar 

  142. Liu, J., He, J., Zhu, Q. & Xu, Z. TomoGAN: low-dose cryo-electron tomography with generative adversarial networks. Sci. Rep. 11, 664 (2021).

    ADS  Google Scholar 

  143. Susi, T., Meyer, J. C. & Kotakoski, J. Quantifying transmission electron microscopy irradiation effects using two-dimensional materials. Nat. Rev. Phys. 1, 397–405 (2019).

    Article  Google Scholar 

  144. Faruqi, A. R. & McMullan, G. Direct imaging detectors for electron microscopy. Nucl. Instrum. Methods Phys. Res. A 878, 180–190 (2018).

    Article  ADS  Google Scholar 

  145. Mendez, J. H., Mehrani, A., Randolph, P. & Stagg, S. Throughput and resolution with a next-generation direct electron detector. IUCrJ 6, 1007–1013 (2019).

    Article  Google Scholar 

  146. K3 direct detection cameras. Gatan https://www.sep.ae/storage/app/products/brochure/1712047444_K3DatasheetFL4.pdf.

  147. McMullan, G., Faruqi, A. R., Clare, D. & Henderson, A. R. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147, 156–163 (2014).

    Article  Google Scholar 

  148. Electron microscope pixel array detector (EMPAD). ThermoFisher https://assets.thermofisher.com/TFS-Assets/MSD/Datasheets/EMPAD-Datasheet.pdf (2021).

  149. User Manual Dectris Arina v1.8.1. Dectris https://media.dectris.com/filer_public/2f/0d/2f0d2d2d-320a-4190-96ed-d545b03fcc54/usermanual_arina_181.pdf (2024).

  150. Chiu, W. et al. Electron radiation damage of a thin protein crystal at 4 K. Ultramicroscopy 6, 291–295 (1981).

    Article  Google Scholar 

  151. Pfeil-Gardiner, O., Mills, D. J., Vonck, J. & Kuehlbrandt, W. A comparative study of single-particle cryo-EM with liquid-nitrogen and liquid-helium cooling. IUCrJ 6, 1099–1105 (2019).

    Article  Google Scholar 

  152. Egerton, R. F., McLeod, R., Wang, F. & Malac, M. Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110, 991–997 (2010).

    Article  Google Scholar 

  153. Wang, F. et al. Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy. ACS Nano 5, 1190–1197 (2011).

    Article  ADS  Google Scholar 

  154. Tzyy-Wen, J. & Chiu, W. Quantitative assessment of radiation damage in a thin protein crystal. J. Microsc. 136, 35–44 (1984).

    Article  Google Scholar 

  155. Benjamin, B. E. et al. Radiation damage effects at four specimen temperatures from 4–100 K. J. Struct. Biol. 169, 331–341 (2010).

    Article  Google Scholar 

  156. Mu, X. et al. Mapping structure and morphology of amorphous organic thin films by STEM pair distribution function analysis. Microscopy 68, 301–309 (2019).

    Article  Google Scholar 

  157. Egerton, R. F. Control of radiation damage in the TEM. Ultramicroscopy 127, 100–108 (2013).

    Article  Google Scholar 

  158. Hooley, R. W. M. et al. A quantitative evaluation of electron beam sensitivity in calcite nanoparticles. J. Phys. Conf. Ser. 902, 012005 (2017).

    Article  Google Scholar 

  159. Pan, M. & Crozier, P. A. Quantitative imaging and diffraction of zeolites using a slow-scan CCD camera. Ultramicroscopy 52, 487–498 (1993).

    Article  Google Scholar 

  160. Drummy, L. F., Yang, J. & Martin, D. C. Low-voltage electron microscopy of polymer and organic molecular thin films. Ultramicroscopy 99, 247–256 (2004).

    Article  Google Scholar 

  161. Glaeser, R. M. Limitations to significant information in biological electron microscopy as a result of radiation damage. J. Ultrastruct. Res. 36, 466–482 (1971).

    Article  Google Scholar 

  162. Glaeser, R. M. Retrospective: radiation damage and its associated ‘information limitations’. J. Struct. Biol. 163, 271–276 (2008).

    Article  Google Scholar 

  163. Siegel, G. Influence of very low temperature on radiation damage of organic crystals irradiated by 100-keV electrons. Z. Naturforsch. 27, 325–332 (1972).

    Article  ADS  Google Scholar 

  164. Fryer, J. R., McConnell, C. H., Zelmin, F. & Dorset, D. K. Effect of temperature on radiation damage to aromatic organic molecules. Ultramicroscopy 40, 163–169 (1992).

    Article  Google Scholar 

  165. Li, Y. et al. The cage effect of electron beam irradiation damage in cryo-electron microscopy. npj Comput. Mater. 10, 115 (2024).

    Article  ADS  Google Scholar 

  166. Fryer, J. R. Radiation damage in organic crystalline films. Ultramicroscopy 14, 227–236 (1984).

    Article  Google Scholar 

  167. Hobbs, L. W. Radiation damage in electron microscopy of inorganic solids. Ultramicroscopy 3, 381–386 (1978).

    Article  Google Scholar 

  168. Shockley, W. Problems related to p–n junctions in silicon. Czech. J. Phys. 11, 81 (1961).

    Article  ADS  Google Scholar 

  169. Arumainayagam, C. R. et al. Low-energy electron-induced reactions in condensed matter. Surf. Sci. Rep. 65, 1–44 (2010).

    Article  ADS  Google Scholar 

  170. Neelisetty, K. K. et al. Electron beam effects on oxide thin films — structure and electrical property correlations. Microsc. Microanal. 25, 592–600 (2019).

    Article  ADS  Google Scholar 

  171. Wu, B. & Neureuther, A. R. Energy deposition and transfer in electron-beam lithography. J. Vac. Sci. Technol. B 19, 2508–2511 (2001).

    Article  Google Scholar 

  172. Regev, O. et al. A study of the microstructure of a four-component nonionic microemulsion by cryo-TEM, NMR, SAXS, and SANS. Langmuir 12, 668–674 (1996).

    Article  Google Scholar 

  173. Nave, C. & Hill, M. A. Will reduced radiation damage occur with very small crystals? J. Synchrotron Radiat. 12, 299–303 (2005).

    Article  Google Scholar 

  174. Egerton, R. F., Lazar, S. & Libera, M. Delocalized radiation damage in polymers. Micron 43, 2–7 (2012).

    Article  Google Scholar 

  175. Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    Article  Google Scholar 

  176. Sansinena, M., Santos, M. V., Zaritzky, N. & Chirife, J. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation. Theriogenology 77, 1717–1721 (2012).

    Article  Google Scholar 

  177. Shirota, M. et al. Dynamic Leidenfrost effect: relevant time and length scales. Phys. Rev. Lett. 116, 064501 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge cryo-EM FWP support from the Office of Basic Energy Sciences, US Department of Energy, Division of Materials Science and Engineering, DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this work.

Corresponding authors

Correspondence to Wah Chiu or Yi Cui  (崔屹).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Yimo Han, Xuefeng Wang and Yu Han for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Zhang, Z., Sinclair, R. et al. Cryogenic electron microscopy and tomography for beam-sensitive materials. Nat Rev Phys 8, 40–54 (2026). https://doi.org/10.1038/s42254-025-00896-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00896-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing