Extended Data Fig. 1: High Protein diets increase atherosclerotic plaque formation and plaque complexity without altering serum metabolites.
From: High-protein diets increase cardiovascular risk by activating macrophage mTOR to suppress mitophagy

(a) Average daily food intake over 1 week for ApoE-KO mice fed a standard Western diet (n = 5) or high protein Western diet (n = 5) (b–d) Cohorts of ApoE-KO mice were placed on a standard Western diet (Std. WD) or high protein Western diet (HP WD) and after 8 weeks, (b) Body composition (fat and lean weights) (Std. WD: n = 4; HP WD: n = 5), (c) glucose tolerance test (GTT) and glucose AUC (Std. WD: n = 7; HP WD: n = 9), and (d) serum cholesterol, glucose, triglycerides, and free fatty acids (Std. WD: n = 11; HP WD: n = 14) were measured. (e) Quantification of atherosclerotic plaque burden using Oil Red O-stained aortic root sections from mice fed standard or high protein Western diets for 16 weeks; representative roots shown on right (Std. WD: n = 12; HP WD: n = 11). (f) Measurements of serum cholesterol in cohorts of ApoE-KO mice after 16 weeks of standard or high protein Western diets (Std WD: n = 6; HP WD: n = 8). (g-i) Plaque composition quantified by immunofluorescence staining of aortic root sections for (g) macrophage (MOMA-2+) (Std. WD: n = 12; HP WD: n = 13), (h) apoptosis (TUNEL+) (Std. WD: n = 13; HP WD: n = 13), (i) and necrotic core (acellular) (Std. WD: n = 13; HP WD: n = 13). For all graphs, data are presented as mean ±SEM. *P < 0.05, **P < 0.01, ***P < 0.001, two-tailed unpaired t-test.