Abstract
The tricarboxylic acid cycle, nutrient oxidation, histone acetylation and synthesis of lipids, glycans and haem all require the cofactor coenzyme A (CoA). Although the sources and regulation of the acyl groups carried by CoA for these processes are heavily studied, a key underlying question is less often considered: how is production of CoA itself controlled? Here, we discuss the many cellular roles of CoA and the regulatory mechanisms that govern its biosynthesis from cysteine, ATP and the essential nutrient pantothenate (vitamin B5), or from salvaged precursors in mammals. Metabolite feedback and signalling mechanisms involving acetyl-CoA, other acyl-CoAs, acyl-carnitines, MYC, p53, PPARα, PINK1 and insulin- and growth factor-stimulated PI3K–AKT signalling regulate the vitamin B5 transporter SLC5A6/SMVT and CoA biosynthesis enzymes PANK1, PANK2, PANK3, PANK4 and COASY. We also discuss methods for measuring CoA-related metabolites, compounds that target CoA biosynthesis and diseases caused by mutations in pathway enzymes including types of cataracts, cardiomyopathy and neurodegeneration (PKAN and COPAN).
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Robishaw, J. D. & Neely, J. R. Coenzyme A metabolism. Am. J. Physiol. 248, E1–E9 (1985).
Trefely, S. et al. Quantitative subcellular acyl-CoA analysis reveals distinct nuclear metabolism and isoleucine-dependent histone propionylation. Mol. Cell 82, 447–462 (2022).
Pietrocola, F., Galluzzi, L., Pedro, J. M. B. -S., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).
Trefely, S., Lovell, C. D., Snyder, N. W. & Wellen, K. E. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol. Metab. https://doi.org/10.1016/j.molmet.2020.01.005 (2020).
Guertin, D. A. & Wellen, K. E. Acetyl-CoA metabolism in cancer. Nat. Rev. Cancer 23, 156–172 (2023).
Wanders, R. J. A., Baes, M., Ribeiro, D., Ferdinandusse, S. & Waterham, H. R. The physiological functions of human peroxisomes. Physiol. Rev. 103, 957–1024 (2023).
Paiva, P. et al. Animal fatty acid synthase: a chemical nanofactory. Chem. Rev. 121, 9502–9553 (2021).
Nowinski, S. M., Vranken, J. G. V., Dove, K. K. & Rutter, J. Impact of mitochondrial fatty acid synthesis on mitochondrial biogenesis. Curr. Biol. 28, R1212–R1219 (2018).
Juarez, D. & Fruman, D. A. Targeting the mevalonate pathway in cancer. Trends Cancer 7, 525–540 (2021).
Paneque, A., Fortus, H., Zheng, J., Werlen, G. & Jacinto, E. The hexosamine biosynthesis pathway: regulation and function. Genes 14, 933 (2023).
Yien, Y. Y. & Perfetto, M. Regulation of heme synthesis by mitochondrial homeostasis proteins. Front. Cell Dev. Biol. 10, 895521 (2022).
Wang, Z. A. & Cole, P. A. The chemical biology of reversible lysine post-translational modifications. Cell Chem. Biol. 27, 953–969 (2020).
Resh, M. D. Fatty acylation of proteins: the long and the short of it. Prog. Lipid Res. 63, 120–131 (2016).
Gamage, S. T., Manage, S. A. H., Chu, T. T. & Meier, J. L. Cytidine acetylation across the tree of life. Acc. Chem. Res. 57, 338–348 (2024).
Beld, J., Sonnenschein, E. C., Vickery, C. R., Noel, J. P. & Burkart, M. D. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat. Prod. Rep. 31, 61–108 (2014).
Chen, N., Liu, Y., Li, Y. & Wang, C. Chemical proteomic profiling of protein 4′‐phosphopantetheinylation in mammalian cells. Angew. Chem. Int. Ed. Engl. 132, 16203–16209 (2020).
Tsybovsky, Y., Sereda, V., Golczak, M., Krupenko, N. I. & Krupenko, S. A. Structure of putative tumor suppressor ALDH1L1. Commun. Biol. 5, 3 (2022).
Drozak, J., Veiga‐da‐Cunha, M., Kadziolka, B. & Schaftingen, E. V. Vertebrate Acyl CoA synthetase family member 4 (ACSF4‐U26) is a β‐alanine‐activating enzyme homologous to bacterial non‐ribosomal peptide synthetase. FEBS J. 281, 1585–1597 (2014).
Tossounian, M. -A. et al. Profiling the site of protein CoAlation and coenzyme A stabilization interactions. Antioxidants 11, 1362 (2022).
Tsuchiya, Y. et al. Covalent Aurora A regulation by the metabolic integrator coenzyme A. Redox Biology https://doi.org/10.1016/j.redox.2019.101318 (2019).
Lim, D. C. et al. Redox priming promotes Aurora A activation during mitosis. Sci. Signal. 13, eabb6707 (2020).
Baković, J. et al. A key metabolic integrator, coenzyme A, modulates the activity of peroxiredoxin 5 via covalent modification. Mol. Cell. Biochem. 461, 91–102 (2019).
Yu, B. Y. K. et al. Regulation of metastasis suppressor NME1 by a key metabolic cofactor coenzyme A. Redox Biol. 44, 101978 (2021).
Gout, I. Coenzyme A, protein CoAlation and redox regulation in mammalian cells. Biochem Soc. Trans. 46, 721–728 (2018).
Gowda, G. A. N., Abell, L. & Tian, R. Extending the scope of 1H NMR spectroscopy for the analysis of cellular coenzyme A and acetyl coenzyme A. Anal. Chem. 91, 2464–2471 (2019).
Atomi, H., Tomita, H., Ishibashi, T., Yokooji, Y. & Imanaka, T. CoA biosynthesis in archaea. Biochem Soc. Trans. 41, 427–431 (2013).
Leonardi, R. & Jackowski, S. Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus https://doi.org/10.1128/ecosalplus.3.6.3.4 (2007).
Stein, E. D. & Diamond, J. M. Do dietary levels of pantothenic acid regulate its intestinal uptake in mice? J. Nutr. 119, 1973–1983 (1989).
Naquet, P., Kerr, E. W., Vickers, S. D. & Leonardi, R. Regulation of coenzyme A levels by degradation: the ‘ins and outs.’ Prog. Lipid Res. https://doi.org/10.1016/j.plipres.2020.101028. (2020).
Prasad, P. D. et al. Molecular and functional characterization of the intestinal Na+-dependent multivitamin transporter. Arch. Biochem. Biophys. 366, 95–106 (1999).
Quick, M. & Shi, L. The sodium/multivitamin transporter: a multipotent system with therapeutic implications. Vitam. Horm. 98, 63–100 (2015).
Sabui, S. et al. Biotin and pantothenic acid oversupplementation to conditional SLC5A6 KO mice prevents the development of intestinal mucosal abnormalities and growth defects. Am. J. Physiol. 315, C73–C79 (2018).
Pourcel, L. et al. Transient vitamin B5 starving improves mammalian cell homeostasis and protein production. Metab. Eng. 60, 77–86 (2020).
Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272 (2017).
Reibel, D. K., Wyse, B. W., Berkich, D. A., Palko, W. M. & Neely, J. R. Effects of diabetes and fasting on pantothenic acid metabolism in rats. Am. J. Physiol. 240, E597–E601 (1981).
Reibel, D. K., Wyse, B. W., Berkich, D. A. & Neely, J. R. Coenzyme A metabolism in pantothenic acid-deficient rats. J. Nutr. 112, 1144–1150 (1982).
Jackowski, S. & Rock, C. O. Regulation of coenzyme A biosynthesis. J. Bacteriol. 148, 926–932 (1981).
Rock, C. O., Calder, R. B., Karim, M. A. & Jackowski, S. Pantothenate kinase regulation of the intracellular concentration of coenzyme A. J. Biol. Chem. 275, 1377–1383 (2000).
Yao, J., Subramanian, C., Rock, C. O. & Jackowski, S. Human pantothenate kinase 4 is a pseudo‐pantothenate kinase. Protein Sci. 28, 1031–1047 (2019).
Zhang, Y. -M. et al. Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis. Chem. Biol. 14, 291–302 (2007).
Zhou, B. et al. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat. Genet. 28, 345–349 (2001).
Rock, C. O., Karim, M. A., Zhang, Y. -M. & Jackowski, S. The murine pantothenate kinase (Pank1) gene encodes two differentially regulated pantothenate kinase isozymes. Gene 291, 35–43 (2002).
Zhang, Y. -M., Rock, C. O. & Jackowski, S. Feedback regulation of murine pantothenate kinase 3 by coenzyme A and coenzyme A thioesters. J. Biol. Chem. 280, 32594–32601 (2005).
Hong, B. S. et al. Crystal structures of human pantothenate kinases. Insights into allosteric regulation and mutations linked to a neurodegeneration disorder. J. Biol. Chem. 282, 27984–27993 (2007).
Kotzbauer, P. T., Truax, A. C., Trojanowski, J. Q. & Lee, V. M. -Y. Altered neuronal mitochondrial coenzyme A synthesis in neurodegeneration with brain iron accumulation caused by abnormal processing, stability, and catalytic activity of mutant pantothenate kinase 2. J. Neurosci. 25, 689–698 (2005).
Daugherty, M. et al. Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics. J. Biol. Chem. 277, 21431–21439 (2002).
Mostert, K. J. et al. The coenzyme A level modulator hopantenate (HoPan) inhibits phosphopantotenoylcysteine synthetase activity. ACS Chem. Biol. 16, 2401–2414 (2021).
Manoj, N., Strauss, E., Begley, T. P. & Ealick, S. E. Structure of human phosphopantothenoylcysteine synthetase at 2.3 Å resolution. Structure 11, 927–936 (2003).
Iuso, A. et al. Mutations in PPCS, encoding phosphopantothenoylcysteine synthetase, cause autosomal-recessive dilated cardiomyopathy. Am. J. Hum. Genet. 102, 1018–1030 (2018).
Strauss, E., Zhai, H., Brand, L. A., McLafferty, F. W. & Begley, T. P. Mechanistic studies on phosphopantothenoylcysteine decarboxylase: Trapping of an enethiolate intermediate with a mechanism-based inactivating agent. Biochemistry 43, 15520–15533 (2004).
Manoj, N. & Ealick, S. E. Unusual space-group pseudosymmetry in crystals of human phosphopantothenoylcysteine decarboxylase. Acta Crystallogr. D Biol. Crystallogr. https://doi.org/10.1107/s0907444903016214 (2023).
Bravo‐Alonso, I. et al. Pathogenic variants of the coenzyme A biosynthesis‐associated enzyme phosphopantothenoylcysteine decarboxylase cause autosomal‐recessive dilated cardiomyopathy. J. Inherit. Metab. Dis. 46, 261–272 (2023).
Aghajanian, S. & Worrall, D. M. Identification and characterization of the gene encoding the human phosphopantetheine adenylyltransferase and dephospho-CoA kinase bifunctional enzyme (CoA synthase). Biochem. J. 365, 13–18 (2002).
Dusi, S. et al. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am. J. Hum. Genet. 94, 11–22 (2014).
Xue, L. et al. Probing coenzyme A homeostasis with semisynthetic biosensors. Nat. Chem. Biol. https://doi.org/10.1038/s41589-022-01172-7 (2022).
Dibble, C. C. et al. PI3K drives the de novo synthesis of coenzyme A from vitamin B5. Nature https://doi.org/10.1038/s41586-022-04984-8 (2022).
Huang, L. et al. A family of metal-dependent phosphatases implicated in metabolite damage-control. Nat. Chem. Biol. 12, 621–627 (2016).
Leonardi, R. et al. Modulation of pantothenate kinase 3 activity by small molecules that interact with the substrate/allosteric regulatory domain. Chem. Biol. 17, 892–902 (2010).
Li, X. et al. Pantothenate kinase 4 governs lens epithelial fibrosis by negatively regulating pyruvate kinase M2-related glycolysis. Aging Dis. 14, 1834–1852 (2023).
Leonardi, R., Rehg, J. E., Rock, C. O. & Jackowski, S. Pantothenate kinase 1 is required to support the metabolic transition from the fed to the fasted state. PLoS ONE 5, e11107 (2010).
Sun, M. et al. A novel mutation of PANK4 causes autosomal dominant congenital posterior cataract. Hum. Mutat. 40, 380–391 (2019).
Kuo, Y. -M. et al. Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia. Hum. Mol. Genet. 14, 49–57 (2005).
Garcia, M., Leonardi, R., Zhang, Y. -M., Rehg, J. E. & Jackowski, S. Germline deletion of pantothenate kinases 1 and 2 reveals the key roles for CoA in postnatal metabolism. PLoS ONE 7, e40871 (2012).
Jeong, S. Y. et al. 4′‐Phosphopantetheine corrects CoA, iron, and dopamine metabolic defects in mammalian models of PKAN. EMBO Mol. Med. 11, e10489 (2019).
DiMeo, I. et al. Neuronal Ablation of CoA synthase causes motor deficits, iron dyshomeostasis, and mitochondrial dysfunctions in a CoPAN mouse model. Int. J. Mol. Sci. 21, 9707 (2020).
Mignani, L., Gnutti, B., Zizioli, D. & Finazzi, D. Coenzyme a biochemistry: from neurodevelopment to neurodegeneration. Brain Sci. 11, 1031 (2021).
Hayflick, S. J., Jeong, S. Y. & Sibon, O. C. M. PKAN pathogenesis and treatment. Mol. Genet. Metab. 137, 283–291 (2022).
Munshi, M. I., Yao, S. J. & Mamoun, C. B. Redesigning therapies for pantothenate kinase-associated neurodegeneration. J. Biol. Chem. https://doi.org/10.1016/j.jbc.2022.101577 (2022).
Vickers, S. D. et al. NUDT7 regulates total hepatic CoA levels and the composition of the intestinal bile acid pool in male mice fed a Western diet. J. Biol. Chem. 299, 102745 (2023).
Shumar, S. A. et al. Nudt19 is a renal CoA diphosphohydrolase with biochemical and regulatory properties that are distinct from the hepatic Nudt7 isoform. J. Biol. Chem. 293, 4134–4148 (2018).
Kerr, E. W., Shumar, S. A. & Leonardi, R. Nudt8 is a novel CoA diphosphohydrolase that resides in the mitochondria. FEBS Lett. 593, 1133–1143 (2019).
Gasmi, L. & McLennan, A. G. The mouse Nudt7 gene encodes a peroxisomal nudix hydrolase specific for coenzyme A and its derivatives. Biochem. J. 357, 33–38 (2001).
Bond, L. M. et al. Fitm2 is required for ER homeostasis and normal function of murine liver. J. Biol. Chem. 299, 103022 (2023).
Hunt, M. C., Tillander, V. & Alexson, S. E. H. Regulation of peroxisomal lipid metabolism: the role of acyl-CoA and coenzyme A metabolizing enzymes. Biochimie 98, 45–55 (2014).
Srinivasan, B. et al. Extracellular 4′-phosphopantetheine is a source for intracellular coenzyme A synthesis. Nat. Chem. Biol. 11, 784–792 (2015).
Bartucci, R., Salvati, A., Olinga, P. & Boersma, Y. L. Vanin 1: its physiological function and role in diseases. Int. J. Mol. Sci. 20, 3891 (2019).
Giessner, C. et al. Vnn1 pantetheinase limits the Warburg effect and sarcoma growth by rescuing mitochondrial activity. Life Sci. Alliance 1, e201800073 (2018).
Millet, V. et al. Harnessing the Vnn1 pantetheinase pathway boosts short chain fatty acids production and mucosal protection in colitis. Gut 72, 1115–1128 (2023).
Shurubor, Y. I. et al. Determination of coenzyme A and acetyl-coenzyme A in biological samples using HPLC with UV detection. Molecules 22, 1388 (2017).
Yu, Y. et al. Coenzyme A precursors flow from mother to zygote and from microbiome to host. Mol. Cell https://doi.org/10.1016/j.molcel.2022.05.006 (2022).
Jackowski, S. Proposed therapies for pantothenate-kinase-associated neurodegeneration. J. Exp. Neurosci. 13, 1179069519851118 (2019).
Williamson, J. R. & Corkey, B. E. Assay of citric acid cycle intermediates and related compounds—update with tissue metabolite levels and intracellular distribution. Methods Enzymol. 55, 200–222 (1979).
Idell-Wenger, J. A., Grotyohann, L. W. & Neely, J. R. Coenzyme A and carnitine distribution in normal and ischemic hearts. J. Biol. Chem. 253, 4310–4318 (1978).
Broekhoven, A. V., Peeters, M. -C., Debeer, L. J. & Mannaerts, G. P. Subcellular distribution of coenzyme A: evidence for a separate coenzyme a pool in peroxisomes. Biochem. Biophys. Res. Commun. 100, 305–312 (1981).
Horie, S., Isobe, M. & Suga, T. Changes in CoA pools in hepatic peroxisomes of the rat, under various conditions. J. Biochem. 99, 1345–1352 (1986).
Chen, W. W., Freinkman, E., Wang, T., Birsoy, K. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337 (2016).
Alfonso-Pecchio, A., Garcia, M., Leonardi, R. & Jackowski, S. Compartmentalization of mammalian pantothenate kinases. PLoS ONE 7, e49509 (2012).
Ramaswamy, G., Karim, M. A., Murti, K. G. & Jackowski, S. PPARalpha controls the intracellular coenzyme A concentration via regulation of PANK1alpha gene expression. J. Lipid Res. 45, 17–31 (2004).
Hörtnagel, K., Prokisch, H. & Meitinger, T. An isoform of hPANK2, deficient in pantothenate kinase-associated neurodegeneration, localizes to mitochondria. Hum. Mol. Genet. 12, 321–327 (2003).
Johnson, M. A. et al. Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase‐associated neurodegeneration. Ann. N. Y. Acad. Sci. 1012, 282–298 (2004).
Zhang, Y. -M., Rock, C. O. & Jackowski, S. Biochemical properties of human pantothenate kinase 2 isoforms and mutations linked to pantothenate kinase-associated neurodegeneration. J. Biol. Chem. 281, 107–114 (2006).
Leonardi, R., Zhang, Y. -M., Lykidis, A., Rock, C. O. & Jackowski, S. Localization and regulation of mouse pantothenate kinase 2. FEBS Lett. 581, 4639–4644 (2007).
Brunetti, D. et al. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model. Hum. Mol. Genet. 21, 5294–5305 (2012).
Werning, M. et al. PKAN neurodegeneration and residual PANK2 activities in patient erythrocytes. Ann. Clin. Transl. Neurol. 7, 1340–1351 (2020).
Zhyvoloup, A. et al. Subcellular localization and regulation of coenzyme A synthase. J. Biol. Chem. 278, 50316–50321 (2003).
Skrede, S. & Halvorsen, O. Mitochondrial pantetheinephosphate adenylyltransferase and dephospho‐CoA kinase. Eur. J. Biochem. 131, 57–63 (1983).
Tahiliani, A. G. & Neely, J. R. Mitochondrial synthesis of coenzyme a is on the external surface. J. Mol. Cell. Cardiol. 19, 1161–1167 (1987).
Skrede, S. & Halvorsen, O. Mitochondrial biosynthesis of coenzyme A. Biochem. Biophys. Res. Commun. 91, 1536–1542 (1979).
Rhee, H. -W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).
Fiermonte, G., Paradies, E., Todisco, S., Marobbio, C. M. T. & Palmieri, F. A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3′5′-diphosphate in human mitochondria. J. Biol. Chem. 284, 18152–18159 (2009).
Prohl, C. et al. The yeast mitochondrial carrier Leu5p and its human homologue Graves’ disease protein are required for accumulation of coenzyme A in the matrix. Mol. Cell. Biol. 21, 1089–1097 (2001).
Vozza, A. et al. Biochemical characterization of a new mitochondrial transporter of dephosphocoenzyme A in Drosophila melanogaster. Biochim. Biophys. Acta Bioenerg. 1858, 137–146 (2017).
Agrimi, G., Russo, A., Scarcia, P. & Palmieri, F. The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD+. Biochem. J. 443, 241–247 (2012).
VanVeldhoven, P. P. et al. Slc25a17 gene trapped mice: PMP34 plays a role in the peroxisomal degradation of phytanic and pristanic acid. Front. Cell Dev. Biol. 8, 144 (2020).
Abiko, Y., Ashida, S. -I. & Shimizu, M. Purification and properties of d-pantothenate kinase from rat liver. Biochim. Biophys. Acta 268, 364–372 (1972).
Karasawa, T., Yoshida, K., Furukawa, K. & Hosoki, K. Feedback inhibition of pantothenate kinase by coenzyme A and possible role of the enzyme for the regulation of cellular coenzyme A level. J. Biochem. 71, 1065–1067 (1972).
Shimizu, S., Kubo, K., Morioka, H., Tani, Y. & Ogata, K. Some aspects of the enzyme activities involved in coenzyme A biosynthesis in various microorganisms. Agric. Biol. Chem. 38, 1015–1021 (1974).
Robishaw, J. D., Berkich, D. & Neely, J. R. Rate-limiting step and control of coenzyme A synthesis in cardiac muscle. J. Biol. Chem. 257, 10967–10972 (1982).
Voltti, H., Savolainen, M. J., Jauhonen, V. P. & Hassinen, I. E. Clofibrate-induced increase in coenzyme A concentration in rat tissues. Biochem. J. 182, 95–102 (1979).
Smith, C. M. The effect of metabolic state on incorporation of [14C]pantothenate into CoA in rat liver and heart. J. Nutr. 5, 863–873 (1978).
Smith, C. M. & Savage, C. R. Regulation of coenzyme A biosynthesis by glucagon and glucocorticoid in adult rat liver parenchymal cells. Biochem. J. 188, 175–184 (1980).
Rock, C. O., Park, H. -W. & Jackowski, S. Role of feedback regulation of pantothenate kinase (CoaA) in control of coenzyme A levels in Escherichia coli. J. Bacteriol. 185, 3410–3415 (2003).
Fisher, M. N., Robishaw, J. D. & Neely, J. R. The properties and regulation of pantothenate kinase from rat heart. J. Biol. Chem. 260, 15745–15751 (1985).
Vallari, D. S., Jackowski, S. & Rock, C. O. Regulation of pantothenate kinase by coenzyme A and its thioesters. J. Biol. Chem. 262, 2468–2471 (1987).
Halvorsen, O. & Skrede, S. Regulation of the biosynthesis of CoA at the level of pantothenate kinase. Eur. J. Biochem. 124, 211–215 (1982).
Subramanian, C. et al. Allosteric regulation of mammalian pantothenate kinase. J. Biol. Chem. 291, 22302–22314 (2016).
Leonardi, R., Rock, C. O., Jackowski, S. & Zhang, Y. -M. Activation of human mitochondrial pantothenate kinase 2 by palmitoylcarnitine. Proc. Natl Acad. Sci. USA 104, 1494–1499 (2007).
Robishaw, J. D. & Neely, J. R. Pantothenate kinase and control of CoA synthesis in heart. Am. J. Physiol. 246, H532–H541 (1984).
Levy, M. J. et al. A systems chemoproteomic analysis of Acyl-CoA/protein interaction networks. Cell Chem. Biol. 27, 322–333 (2020).
Dansie, L. E. et al. Physiological roles of the pantothenate kinases. Biochem. Soc. Trans. 42, 1033–1036 (2014).
Tubbs, P. & Garland, P. Variations in tissue contents of coenzyme A thio esters and possible metabolic implications. Biochem. J. 93, 550–557 (1964).
Williamson, J. R., Herczeg, B., Coles, H. & Danish, R. Studies on the ketogenic effect of glucagon in intact rat liver. Biochem Biophys. Res Commun. 24, 437–442 (1966).
Reibel, D. K., Wyse, B. W., Berkich, D. A. & Neely, J. R. Regulation of coenzyme A synthesis in heart muscle: effects of diabetes and fasting. Am. J. Physiol. 240, H606–H611 (1981).
Smith, C. M., Cano, M. L. & Potyraj, J. The relationship between metabolic state and total CoA content of rat liver and heart. J. Nutr. 108, 854–862 (1978).
Lund, H., Stakkestad, J. A. & Skrede, S. Effects of thyroid state and fasting on the concentrations of CoA and malonyl-CoA in rat liver. Biochim. Biophys. Acta 876, 685–687 (1986).
Beinlich, C. J., Robishaw, J. D. & Neely, J. R. Metabolism of pantothenic acid in hearts of diabetic rats. J. Mol. Cell. Cardiol. 21, 641–649 (1989).
Kreuzaler, P. et al. Vitamin B5 supports MYC oncogenic metabolism and tumor progression in breast cancer. Nat. Metab. https://doi.org/10.1038/s42255-023-00915-7 (2023).
Humpton, T. J. & Vousden, K. H. Regulation of cellular metabolism and hypoxia by p53. Cold Spring Harb. Perspect. Med. 6, a026146 (2016).
Wang, S. -J. et al. p53-Dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene. Cell Cycle 12, 753–761 (2013).
Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).
Yang, L. et al. P53/PANK1/miR‐107 signalling pathway spans the gap between metabolic reprogramming and insulin resistance induced by high‐fat diet. J. Cell. Mol. Med. 24, 3611–3624 (2020).
Leu, J. I. -J., Murphy, M. E. & George, D. L. Mechanistic basis for impaired ferroptosis in cells expressing the African-centric S47 variant of p53. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1821277116 (2019).
Chang, G. S. et al. A comprehensive and high-resolution genome-wide response of p53 to stress. Cell Rep. 8, 514–527 (2014).
Böhlig, L., Friedrich, M. & Engeland, K. p53 activates the PANK1/miRNA-107 gene leading to downregulation of CDK6 and p130 cell cycle proteins. Nucleic Acids Res. 39, 440–453 (2011).
Savolainen, M. J., Jauhonen, V. P. & Hassinen, I. E. Effects of clofibrate on ethanol-induced modifications in liver and adipose tissue metabolism: role of hepatic redox state and hormonal mechanisms. Biochem. Pharmacol. 26, 425–431 (1977).
Halvorsen, O. Effects of hypolipidemic drugs on hepatic CoA. Biochem. Pharmacol. 32, 1126–1128 (1983).
Skrede, S. & Halvorsen, O. Increased biosynthesis of CoA in the liver of rats treated with clofibrate. Eur. J. Biochem. 98, 223–229 (1979).
Miyazawa, S., Sakurai, T., Imura, M. & Hashimoto, T. Effects of ethyl p-chlorophenoxyisobutyrate on carbohydrate and fatty acid metabolism in rat liver. J. Biochem. 78, 1171–1176 (1975).
Polster, B. J., Yoon, M. Y. & Hayflick, S. J. Characterization of the human PANK2 promoter. Gene 465, 53–60 (2010).
Huang, Y. et al. Pantothenate kinase 2 interacts with PINK1 to regulate mitochondrial quality control via acetyl-CoA metabolism. Nat. Commun. 13, 2412 (2022).
Hoxhaj, G. & Manning, B. D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2019).
Lambrechts, R. A. et al. CoA‐dependent activation of mitochondrial acyl carrier protein links four neurodegenerative diseases. EMBO Mol. Med. 11, e10488 (2019).
Leonardi, R., Rock, C. O. & Jackowski, S. Pank1 deletion in leptin-deficient mice reduces hyperglycaemia and hyperinsulinaemia and modifies global metabolism without affecting insulin resistance. Diabetologia 57, 1466–1475 (2014).
Breus, O., Panasyuk, G., Gout, I. T., Filonenko, V. & Nemazanyy, I. CoA synthase is in complex with p85alphaPI3K and affects PI3K signaling pathway. Biochem Biophys. Res. Commun. 385, 581–585 (2009).
Ferrandon, S. et al. CoA synthase (COASY) mediates radiation resistance via PI3K signaling in rectal cancer. Cancer Res. 80, 334–346 (2020).
Nemazanyy, I. et al. Specific interaction between S6K1 and CoA synthase: a potential link between the mTOR/S6K pathway, CoA biosynthesis and energy metabolism. FEBS Lett. 578, 357–362 (2004).
Arif, A., Jia, J., Willard, B., Li, X. & Fox, P. L. Multisite phosphorylation of S6K1 directs a kinase phospho-code that determines substrate selection. Mol. Cell 73, 446–457 (2019).
Breus, O., Panasyuk, G., Gout, I. T., Filonenko, V. & Nemazanyy, I. CoA synthase is phosphorylated on tyrosines in mammalian cells, interacts with and is dephosphorylated by Shp2PTP. Mol. Cell. Biochem. 335, 195–202 (2010).
Gudkova, D. et al. EDC4 interacts with and regulates the dephospho-CoA kinase activity of CoA synthase. FEBS Lett. 586, 3590–3595 (2012).
Baković, J. et al. Regulation of the CoA biosynthetic complex assembly in mammalian cells. Int. J. Mol. Sci. 22, 1131 (2021).
Bishop, T. R. et al. Acetyl-CoA biosynthesis drives resistance to histone acetyltransferase inhibition. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01320-7 (2023).
Crawford, M. C. et al. Comparative analysis of drug-like EP300/CREBBP acetyltransferase inhibitors. ACS Chem. Biol. https://doi.org/10.1101/2023.05.15.540887 (2023).
Vella, V. et al. Kinome‐wide synthetic lethal screen identifies PANK4 as a modulator of temozolomide resistance in Glioblastoma. Adv. Sci. https://doi.org/10.1002/advs.202306027 (2024).
Thakur, N. et al. Rational design of novel therapies for pantothenate kinase–associated neurodegeneration. Mov. Disord. 36, 2005–2016 (2021).
Sharma, L. K. et al. A therapeutic approach to pantothenate kinase associated neurodegeneration. Nat. Commun. 9, 4399 (2018).
Subramanian, C., Yao, J., Frank, M. W., Rock, C. O. & Jackowski, S. A pantothenate kinase-deficient mouse model reveals a gene expression program associated with brain coenzyme A reduction. Biochim. Biophys. Acta Mol. Basis Dis. https://doi.org/10.1016/j.bbadis.2020.165663. (2020).
van Dijk, T. et al. Biallelic loss of function variants in COASY cause prenatal onset pontocerebellar hypoplasia, microcephaly, and arthrogryposis. Eur. J. Hum. Genet. 26, 1752–1758 (2018).
Mian, S. A. et al. Vitamin B5 and succinyl-CoA improve ineffective erythropoiesis in SF3B1-mutated myelodysplasia. Sci. Transl. Med. 15, eabn5135 (2023).
Zheng, Y. et al. COASY variant as a new genetic cause of riboflavin-responsive lipid storage myopathy. Cell Discov. 10, 25 (2024).
Tsuchiya, Y., Pham, U. & Gout, I. Methods for measuring CoA and CoA derivatives in biological samples. Biochem Soc. Trans. 42, 1107–1111 (2014).
Frank, M. W., Subramanian, C., Rock, C. O. & Jackowski, S. Quantification of coenzyme A in cells and tissues. J. Vis. Exp. https://doi.org/10.3791/60182 (2019).
Goosen, R. & Strauss, E. Simultaneous quantification of coenzyme A and its salvage pathway intermediates in in vitro and whole cell-sourced samples. RSC Adv. 7, 19717–19724 (2017).
Basu, S. S., Mesaros, C., Gelhaus, S. L. & Blair, I. A. Stable isotope labeling by essential nutrients in cell culture for preparation of labeled coenzyme A and its thioesters. Anal. Chem. 83, 1363–1369 (2011).
Snyder, N. W., Basu, S. S., Zhou, Z., Worth, A. J. & Blair, I. A. Stable isotope dilution liquid chromatography/mass spectrometry analysis of cellular and tissue medium- and long-chain acyl-coenzyme A thioesters. Rapid Commun. Mass Spectrom. 28, 1840–1848 (2014).
Yuan, M. et al. Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC–MS/MS. Nat. Protoc. 14, 313–330 (2019).
Magnes, C., Sinner, F. M., Regittnig, W. & Pieber, T. R. LC/MS/MS method for quantitative determination of long-chain fatty acyl-CoAs. Anal. Chem. 77, 2889–2894 (2005).
Jones, A. E. et al. A single LC–MS/MS analysis to quantify CoA biosynthetic intermediates and short-chain acyl CoAs. Metabolites 11, 468 (2021).
Williamson, J. R. & Corkey, B. E. Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods. Methods Enzymol. 13, 434–513 (1969).
Sharma, L. K. et al. A high-throughput screen reveals new small-molecule activators and inhibitors of pantothenate kinases. J. Med. Chem. 58, 1563–1568 (2015).
Moolman, W. J. A., Villiers, Mde & Strauss, E. Recent advances in targeting coenzyme A biosynthesis and utilization for antimicrobial drug development. Biochem. Soc. Trans. 42, 1080–1086 (2014).
Schalkwijk, J. et al. Antimalarial pantothenamide metabolites target acetyl–coenzyme A biosynthesis in Plasmodium falciparum. Sci. Transl. Med. 11, eaas9917 (2019).
Gihaz, S. et al. High-resolution crystal structure and chemical screening reveal pantothenate kinase as a new target for antifungal development. Structure 30, 1494–1507 (2022).
Subramanian, C. et al. Pantothenate kinase activation restores brain coenzyme A in a mouse model of pantothenate kinase associated neurodegeneration. J. Pharmacol. Exp. Ther. https://doi.org/10.1124/jpet.123.001919 (2023).
Acknowledgements
This work was supported by the following grants: V Foundation V Scholar Grant V2019-009 (to C.C.D.), NIH/NCI F31-CA254169 (to S.A.B.) and NIH/NIGMS R35-GM149229 (to P.A. Cole in support of S.E.D.-C.). We thank K.E. Wellen and N.W. Snyder for the helpful discussion of their data, our peer reviewers for their expert feedback, and our primary editor for his guidance and patience. We express our appreciation and respect for Charles O. Rock, a pioneer in the fields of CoA and lipid metabolism who passed away in 2023.
Author information
Authors and Affiliations
Contributions
Conceptualization: S.A.B. and C.C.D. Writing, figure construction and editing: S.A.B., S.E.D.-C. and C.C.D.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Metabolism thanks Charles Rock and Ivan Gout for their contribution to the peer review of this work. Primary Handling Editor: Alfredo Gimenez-Cassina, in collaboration with the Nature Metabolism team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Barritt, S.A., DuBois-Coyne, S.E. & Dibble, C.C. Coenzyme A biosynthesis: mechanisms of regulation, function and disease. Nat Metab 6, 1008–1023 (2024). https://doi.org/10.1038/s42255-024-01059-y
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s42255-024-01059-y
This article is cited by
-
Ferroptosis in cancer toward molecular insights and clinical translation in pancreatic cancer
Molecular Cancer (2026)
-
The impact of rumen and hindgut microbiomes on the persistent productivity of long-lived dairy cows
Microbiome (2026)
-
Gut microbiota and blood biomarkers in IBD-Related arthritis: insights from mendelian randomization
Scientific Reports (2025)
-
SLC25A42 promotes gastric cancer growth by conferring ferroptosis resistance through enhancing CPT2-mediated fatty acid oxidation
Cell Death & Disease (2025)
-
Cellular pan-chain acyl-CoA profiling reveals SLC25A42/SLC25A16 in mitochondrial CoA import and metabolism
Nature Metabolism (2025)


