Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NAD+ precursor supplementation in human ageing: clinical evidence and challenges

Abstract

Nicotinamide adenine dinucleotide (NAD+) is an essential molecule involved in cellular metabolism, and its decline has been implicated in ageing and age-related disorders. However, evidence for an age-related decline in NAD+ levels in humans has been consistently observed only in a limited number of studies. Similarly, although preclinical studies support the idea that supplementation with NAD+ precursors is a promising therapeutic strategy to promote healthy ageing, human clinical trials have shown limited efficacy. Therefore, an increasing understanding of how NAD+ metabolism is affected in different tissues during disease and following NAD+ precursor supplementation is crucial to defining the therapeutic value of NAD+-targeted therapies. In this Review, we evaluate the clinical evidence supporting the notion that NAD+ levels decline with age, as well as the tissue-specific effects of NAD+ precursor supplementation. Viewed in perspective, the published body of data on NAD+ dynamics in human tissues remains sparse, and the extrapolation of rodent-based data is not straightforward, underscoring the need for more clinical studies to gain deeper insights into systemic and tissue-specific NAD+ metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alterations in NAD+ levels across human tissues during ageing and in response to precursor supplementation.
Fig. 2: Central metabolic pathways related to NAD+.
Fig. 3: Metabolic fate of orally administered NAD+ precursors.
Fig. 4: Age-driven tissue-specific changes in NAD+ abundance.

Similar content being viewed by others

References

  1. Johnson, S. & Imai, S. NAD+ biosynthesis, aging, and disease. F1000Res. 7, 132 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Houtkooper, R. H., Cantó, C., Wanders, R. J. & Auwerx, J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31, 194–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Covarrubias, A. J., Perrone, R., Grozio, A. & Verdin, E. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 22, 119–141 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Zapata-Pérez, R., Wanders, R. J. A., van Karnebeek, C. D. M. & Houtkooper, R. H. NAD+ homeostasis in human health and disease. EMBO Mol. Med. 13, e13943 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sauve, A. A. et al. Triple-isotope tracing for pathway discernment of NMN-induced NAD+ biosynthesis in whole mice. Int. J. Mol. Sci. 24, 11114 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Canto, C. NAD+ precursors: a questionable redundancy. Metabolites 12, 630 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garten, A. et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol. 11, 535–546 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Revollo, J. R., Grimm, A. A. & Imai, S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 279, 50754–50763 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Bieganowski, P. & Brenner, C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss–Handler independent route to NAD+ in fungi and humans. Cell 117, 495–502 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Real, A. M., Hong, S. & Pissios, P. Nicotinamide N-oxidation by CYP2E1 in human liver microsomes. Drug Metab. Dispos. 41, 550–553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lenglet, A. et al. N-methyl-2-pyridone-5-carboxamide (2PY)—major metabolite of nicotinamide: an update on an old uremic toxin. Toxins 8, 339 (2016).

  12. Terao, M., Garattini, E., Romão, M. J. & Leimkühler, S. Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes. J. Biol. Chem. 295, 5377–5389 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kücükgöze, G. & Leimkühler, S. Direct comparison of the four aldehyde oxidase enzymes present in mouse gives insight into their substrate specificities. PLoS ONE 13, e0191819 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mrochek, J. E., Jolley, R. L., Young, D. S. & Turner, W. J. Metabolic response of humans to ingestion of nicotinic acid and nicotinamide. Clin. Chem. 22, 1821–1827 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Shibata, K. Fate of excess nicotinamide and nicotinic acid differs in rats. J. Nutr. 119, 892–895 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Berger, F., Lau, C., Dahlmann, M. & Ziegler, M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 280, 36334–36341 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Cambronne, X. A. et al. Biosensor reveals multiple sources for mitochondrial NAD+. Science 352, 1474–1477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Di Lisa, F. & Ziegler, M. Pathophysiological relevance of mitochondria in NAD+ metabolism. FEBS Lett. 492, 4–8 (2001).

    Article  PubMed  Google Scholar 

  19. Luongo, T. S. et al. SLC25A51 is a mammalian mitochondrial NAD+ transporter. Nature 588, 174–179 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Girardi, E. et al. Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import. Nat. Commun. 11, 6145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kory, N. et al. MCART1/SLC25A51 is required for mitochondrial NAD transport. Sci. Adv. 6, eabe5310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Høyland, L. E. et al. Subcellular NAD+ pools are interconnected and buffered by mitochondrial NAD+. Nat. Metab. 6, 2319–2337 (2024).

    Article  PubMed  Google Scholar 

  23. Nikiforov, A., Dölle, C., Niere, M. & Ziegler, M. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J. Biol. Chem. 286, 21767–21778 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, H. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095–1107 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pittelli, M. et al. Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J. Biol. Chem. 285, 34106–34114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, T. et al. Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters. J. Biol. Chem. 284, 20408–20417 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ryu, K. W. et al. Metabolic regulation of transcription through compartmentalized NAD+ biosynthesis. Science 360, eaan5780 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Felici, R., Lapucci, A., Ramazzotti, M. & Chiarugi, A. Insight into molecular and functional properties of NMNAT3 reveals new hints of NAD homeostasis within human mitochondria. PLoS ONE 8, e76938 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hikosaka, K. et al. Deficiency of nicotinamide mononucleotide adenylyltransferase 3 (Nmnat3) causes hemolytic anemia by altering the glycolytic flow in mature erythrocytes. J. Biol. Chem. 289, 14796–14811 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Davila, A. et al. Nicotinamide adenine dinucleotide is transported into mammalian mitochondria. eLife 7, e33246 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Katsyuba, E., Romani, M., Hofer, D. & Auwerx, J. NAD+ homeostasis in health and disease. Nat. Metab. 2, 9–31 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Mori, V. et al. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues. PLoS ONE 9, e113939 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shibata, K., Hayakawa, T. & Iwai, K. Tissue distribution of the enzymes concerned with the biosynthesis of NAD in rats. Agric. Biol. Chem. 50, 3037–3041 (1986).

    CAS  Google Scholar 

  34. Bruzzone, S., Guida, L., Zocchi, E., Franco, L. & De Flora, A. Connexin 43 hemichannels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB J. 15, 10–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Billington, R. A. et al. Characterization of NAD uptake in mammalian cells. J. Biol. Chem. 283, 6367–6374 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Grant, R. et al. A pilot study investigating changes in the human plasma and urine NAD+ metabolome during a 6 hour intravenous infusion of NAD+. Front. Aging Neurosci. 11, 257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karthikeyan, K. & Thappa, D. M. Pellagra and skin. Int. J. Dermatol. 41, 476–481 (2002).

    Article  PubMed  Google Scholar 

  38. Klaessens, S., Stroobant, V., De Plaen, E. & Van den Eynde, B. J. Systemic tryptophan homeostasis. Front. Mol. Biosci. 9, 897929 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Palzer, L. et al. Alpha-amino-beta-carboxy-muconate-semialdehyde decarboxylase controls dietary niacin requirements for NAD+ synthesis. Cell Rep. 25, 1359–1370 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knopp, R. H. Drug treatment of lipid disorders. N. Engl. J. Med. 341, 498–511 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Wu, B. J. et al. Evidence that niacin inhibits acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids. Arterioscler. Thromb. Vasc. Biol. 30, 968–975 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Frederick, D. W. et al. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab. 24, 269–282 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tunaru, S. et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat. Med. 9, 352–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Lauring, B. et al. Niacin lipid efficacy is independent of both the niacin receptor GPR109A and free fatty acid suppression. Sci. Transl. Med. 4, 148ra115 (2012).

    Article  PubMed  Google Scholar 

  45. Burgos, E. S. & Schramm, V. L. Weak coupling of ATP hydrolysis to the chemical equilibrium of human nicotinamide phosphoribosyltransferase. Biochemistry 47, 11086–11096 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Jacobson, T. A. A “hot” topic in dyslipidemia management—“how to beat a flush”: optimizing niacin tolerability to promote long-term treatment adherence and coronary disease prevention. Mayo Clin. Proc. 85, 365–379 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ashihara, H. Metabolism of alkaloids in coffee plants. Braz. J. Plant Physiol. 18, 1–8 (2006).

    Article  CAS  Google Scholar 

  48. Membrez, M. et al. Trigonelline is an NAD+ precursor that improves muscle function during ageing and is reduced in human sarcopenia. Nat. Metab. 6, 433–447 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zapata-Pérez, R. et al. Reduced nicotinamide mononucleotide is a new and potent NAD+ precursor in mammalian cells and mice. FASEB J. 35, e21456 (2021).

    Article  PubMed  Google Scholar 

  50. Giroud-Gerbetant, J. et al. A reduced form of nicotinamide riboside defines a new path for NAD+ biosynthesis and acts as an orally bioavailable NAD+ precursor. Mol. Metab. 30, 192–202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chini, C. C. S. et al. Dihydronicotinamide riboside is a potent NAD+ precursor promoting a pro-inflammatory phenotype in macrophages. Front. Immunol. 13, 840246 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, Y. et al. Reduced nicotinamide mononucleotide (NMNH) potently enhances NAD+ and suppresses glycolysis, the TCA cycle, and cell growth. J. Proteome Res. 20, 2596–2606 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Shats, I. et al. Bacteria boost mammalian host NAD metabolism by engaging the deamidated biosynthesis pathway. Cell Metab. 31, 564–579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yaku, K. et al. BST1 regulates nicotinamide riboside metabolism via its glycohydrolase and base-exchange activities. Nat. Commun. 12, 6767 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chellappa, K. et al. NAD precursors cycle between host tissues and the gut microbiome. Cell Metab. 34, 1947–1959 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Belenky, P., Christensen, K. C., Gazzaniga, F., Pletnev, A. A. & Brenner, C. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals: quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism. J. Biol. Chem. 284, 158–164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kropotov, A. et al. Purine nucleoside phosphorylase controls nicotinamide riboside metabolism in mammalian cells. J. Biol. Chem. 298, 102615 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, L. et al. Quantitative analysis of NAD synthesis–breakdown fluxes. Cell Metab. 27, 1067–1080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ratajczak, J. et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat. Commun. 7, 13103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mukherjee, S. et al. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration. Hepatology 65, 616–630 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Dall, M. et al. Hepatocyte-specific perturbation of NAD+ biosynthetic pathways in mice induces reversible nonalcoholic steatohepatitis-like phenotypes. J. Biol. Chem. 297, 101388 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, L.-J. et al. Host–microbiome interactions in nicotinamide mononucleotide (NMN) deamidation. FEBS Lett. 597, 2196–2220 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Grozio, A. et al. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. J. Biol. Chem. 288, 25938–25949 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yaku, K. et al. Nicotinamide riboside and nicotinamide mononucleotide facilitate NAD+ synthesis via enterohepatic circulation. Sci. Adv. 11, eadr1538 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schmidt, M. S. & Brenner, C. Absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter. Nat. Metab. 1, 660–661 (2019).

    Article  PubMed  Google Scholar 

  66. Camacho-Pereira, J. et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127–1139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Madawala, R. et al. CD38 mediates nicotinamide mononucleotide base exchange to yield nicotinic acid mononucleotide. J. Biol. Chem. 301, 108248 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yoshida, M. et al. Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell Metab. 30, 329–342 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hara, N., Yamada, K., Shibata, T., Osago, H. & Tsuchiya, M. Nicotinamide phosphoribosyltransferase/visfatin does not catalyze nicotinamide mononucleotide formation in blood plasma. PLoS ONE 6, e22781 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zapata-Pérez, R. et al. Biotechnological production of reduced and oxidized NAD+ precursors. Food Res. Int. 165, 112560 (2023).

    Article  PubMed  Google Scholar 

  71. Berven, H. et al. NR-SAFE: a randomized, double-blind safety trial of high dose nicotinamide riboside in Parkinson’s disease. Nat. Commun. 14, 7793 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pencina, K. M. et al. MIB-626, an oral formulation of a microcrystalline unique polymorph of β-nicotinamide mononucleotide, increases circulating nicotinamide adenine dinucleotide and its metabolome in middle-aged and older adults. J. Gerontol. A Biol. Sci. Med. Sci. 78, 90–96 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, P. et al. Fingerstick blood assay maps real-world NAD+ disparity across gender and age. Aging Cell 22, e13965 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chaleckis, R., Murakami, I., Takada, J., Kondoh, H. & Yanagida, M. Individual variability in human blood metabolites identifies age-related differences. Proc. Natl Acad. Sci. USA 113, 4252–4259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Breton, M. et al. Blood NAD levels are reduced in very old patients hospitalized for heart failure. Exp. Gerontol. 139, 111051 (2020).

    Article  PubMed  Google Scholar 

  76. Euro, L. et al. Dynamics of blood NAD and glutathione in health, disease, aging and under NAD-booster treatment. Preprint at bioRxiv https://doi.org/10.1101/2025.02.24.639825 (2025).

  77. Yang, F. et al. Association of human whole blood NAD+ contents with aging. Front. Endocrinol. 13, 829658 (2022).

  78. Trammell, S. A. J. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun. 7, 12948 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Song, E.-K. et al. Connexin-43 hemichannels mediate cyclic ADP-ribose generation and its Ca2+-mobilizing activity by NAD+/cyclic ADP-ribose transport. J. Biol. Chem. 286, 44480–44490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Expression of connexin 43 (Cx43) is critical for normal hematopoiesis. Blood 96, 917–924 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Clement, J., Wong, M., Poljak, A., Sachdev, P. & Braidy, N. The plasma NAD+ metabolome is dysregulated in “normal” aging. Rejuvenation Res. 22, 121–130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schwarzmann, L., Pliquett, R. U., Simm, A. & Bartling, B. Sex-related differences in human plasma NAD+/NADH levels depend on age. Biosci. Rep. 41, BSR20200340 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Minhas, P. S. et al. Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nat. Immunol. 20, 50–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Covarrubias, A. J. et al. Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nat. Metab. 2, 1265–1283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wagner, S., Manickam, R., Brotto, M. & Tipparaju, S. M. NAD+ centric mechanisms and molecular determinants of skeletal muscle disease and aging. Mol. Cell. Biochem. 477, 1829–1848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sincennes, M.-C. et al. Acetylation of PAX7 controls muscle stem cell self-renewal and differentiation potential in mice. Nat. Commun. 12, 3253 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu, Y. & Xiao, W. NAD+: an old but promising therapeutic agent for skeletal muscle ageing. Ageing Res. Rev. 92, 102106 (2023).

    Article  CAS  Google Scholar 

  88. Janssens, G. E. et al. Healthy aging and muscle function are positively associated with NAD+ abundance in humans. Nat. Aging 2, 254–263 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Strømland, Ø, Diab, J., Ferrario, E., Sverkeli, L. J. & Ziegler, M. The balance between NAD+ biosynthesis and consumption in ageing. Mech. Ageing Dev. 199, 111569 (2021).

    Article  PubMed  Google Scholar 

  90. de Guia, R. M. et al. Aerobic and resistance exercise training reverses age-dependent decline in NAD+ salvage capacity in human skeletal muscle. Physiol. Rep. 7, e14139 (2019).

    PubMed  PubMed Central  Google Scholar 

  91. Costford, S. R. et al. Skeletal muscle NAMPT is induced by exercise in humans. Am. J. Physiol. Endocrinol. Metab. 298, E117–E126 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Zhu, X.-H., Lu, M., Lee, B.-Y., Ugurbil, K. & Chen, W. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc. Natl Acad. Sci. USA 112, 2876–2881 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cuenoud, B. et al. Brain NAD is associated with ATP energy production and membrane phospholipid turnover in humans. Front. Aging Neurosci. 12, 609517 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bagga, P. et al. Single-voxel 1H MR spectroscopy of cerebral nicotinamide adenine dinucleotide (NAD+) in humans at 7T using a 32-channel volume coil. Magn. Reson. Med. 83, 806–814 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Lautrup, S., Sinclair, D. A., Mattson, M. P. & Fang, E. F. NAD+ in brain aging and neurodegenerative disorders. Cell Metab. 30, 630–655 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhou, C.-C. et al. Hepatic NAD+ deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing. Br. J. Pharmacol. 173, 2352–2368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Franczyk, M. P. et al. Importance of adipose tissue NAD+ biology in regulating metabolic flexibility. Endocrinology 162, bqab006 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Massudi, H. et al. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE 7, e42357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yalcintepe, L. et al. Changes in NAD/ADP-ribose metabolism in rectal cancer. Braz. J. Med. Biol. Res. 38, 361–365 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Smits, M. A. J. et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction. Hum. Reprod. 38, 2208–2220 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bai, X. & Wang, P. Relationship between sperm NAD + concentration and reproductive aging in normozoospermia men: a cohort study. BMC Urol. 22, 159 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Demarest, T. G. et al. Assessment of NAD+ metabolism in human cell cultures, erythrocytes, cerebrospinal fluid and primate skeletal muscle. Anal. Biochem. 572, 1–8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Giner, M. P. et al. A method to monitor the NAD+ metabolome—from mechanistic to clinical applications. Int. J. Mol. Sci. 22, 10598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cantó, C. et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838–847 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Uddin, G. M., Youngson, N. A., Sinclair, D. A. & Morris, M. J. Head to head comparison of short-term treatment with the NAD+ precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice. Front. Pharmacol. 7, 258 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gong, B. et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging 34, 1581–1588 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ramanathan, C. et al. Oral administration of nicotinamide mononucleotide increases nicotinamide adenine dinucleotide level in an animal brain. Nutrients 14, 300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. de Picciotto, N. E. et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522–530 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hou, Y. et al. NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl Acad. Sci. USA 115, E1876–E1885 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kiss, T. et al. Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. Geroscience 41, 419–439 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mills, K. F. et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 24, 795–806 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sharma, A., Chabloz, S., Lapides, R. A., Roider, E. & Ewald, C. Y. Potential synergistic supplementation of NAD+ promoting compounds as a strategy for increasing healthspan. Nutrients 15, 445 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Damgaard, M. V. & Treebak, J. T. What is really known about the effects of nicotinamide riboside supplementation in humans. Sci. Adv. 9, eadi4862 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Brakedal, B. et al. The NADPARK study: a randomized phase I trial of nicotinamide riboside supplementation in Parkinson’s disease. Cell Metab. 34, 396–407 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Elhassan, Y. S. et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 28, 1717–1728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dollerup, O. L. et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am. J. Clin. Nutr. 108, 343–353 (2018).

    Article  PubMed  Google Scholar 

  117. Lapatto, H. A. K. et al. Nicotinamide riboside improves muscle mitochondrial biogenesis, satellite cell differentiation, and gut microbiota in a twin study. Sci. Adv. 9, eadd5163 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wu, J. et al. Boosting NAD+ blunts TLR4-induced type I IFN in control and systemic lupus erythematosus monocytes. J. Clin. Invest. 132, e139828 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Martens, C. R. et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat. Commun. 9, 1286 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Remie, C. M. E. et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am. J. Clin. Nutr. 112, 413–426 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Dollerup, O. L. et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J. Physiol. 598, 731–754 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Stocks, B. et al. Nicotinamide riboside supplementation does not alter whole-body or skeletal muscle metabolic responses to a single bout of endurance exercise. J. Physiol. 599, 1513–1531 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Aksoy, S., Szumlanski, C. L. & Weinshilboum, R. M. Human liver nicotinamide N-methyltransferase: cDNA cloning, expression, and biochemical characterization. J. Biol. Chem. 269, 14835–14840 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. Yoshino, M. et al. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science 372, 1224–1229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. McReynolds, M. R. et al. NAD+ flux is maintained in aged mice despite lower tissue concentrations. Cell Syst. 12, 1160–1172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Terpstra, A. H. M. Differences between humans and mice in efficacy of the body fat lowering effect of conjugated linoleic acid: role of metabolic rate. J. Nutr. 131, 2067–2068 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Wang, H.-L. et al. A luminescent-based protocol for NAD+/NADH detection in C. elegans, mice, and human whole blood. STAR Protoc. 5, 103428 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liang, X. et al. Measuring NAD+ levels in mouse blood and tissue samples via a surrogate matrix approach using LC–MS/MS. Bioanalysis 6, 1445–1457 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Mevenkamp, J. et al. Development of a 31P magnetic resonance spectroscopy technique to quantify NADH and NAD+ at 3 T. Nat. Commun. 15, 9159 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hove-Jensen, B. et al. Phosphoribosyl diphosphate (PRPP): biosynthesis, enzymology, utilization, and metabolic significance. Microbiol. Mol. Biol. Rev. 81, e00040-16 (2017).

    Article  PubMed  Google Scholar 

  132. Pirinen, E. et al. Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 31, 1078–1090 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Dolopikou, C. F. et al. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study. Eur. J. Nutr. 59, 505–515 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Igarashi, M. et al. Chronic nicotinamide mononucleotide supplementation elevates blood nicotinamide adenine dinucleotide levels and alters muscle function in healthy older men. NPJ Aging 8, 5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kim, M. et al. Effect of 12-week intake of nicotinamide mononucleotide on sleep quality, fatigue, and physical performance in older Japanese adults: a randomized, double-blind placebo-controlled study. Nutrients 14, 755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bhullar, K. S. et al. Tripeptide IRW upregulates NAMPT protein levels in cells and obese C57BL/6J mice. J. Agric. Food Chem. 69, 1555–1566 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Rodríguez-Hernandez, M., Hirano, M., Naini, A. & Santiestéban, R. Biochemical studies of patients with Cuban epidemic neuropathy. Ophthalmic Res. 33, 310–313 (2001).

    Article  PubMed  Google Scholar 

  138. Katz, A. & Sahlin, K. Effect of decreased oxygen availability on NADH and lactate contents in human skeletal muscle during exercise. Acta Physiol. Scand. 131, 119–127 (1987).

    Article  CAS  PubMed  Google Scholar 

  139. Sahlin, K. NADH and NADPH in human skeletal muscle at rest and during ischaemia. Clin. Physiol. 3, 477–485 (1983).

    Article  CAS  PubMed  Google Scholar 

  140. Balashova, N. V. et al. Efficient assay and marker significance of NAD+ in human blood. Front. Med. 9, 886485 (2022).

  141. Dellinger, R. W. et al. Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases NAD+ levels in humans safely and sustainably: a randomized, double-blind, placebo-controlled study. NPJ Aging Mech. Dis. 3, 17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Mierzejewska, P. et al. Nicotinamide metabolism alterations in bladder cancer: preliminary studies. Nucleosides Nucleotides Nucleic Acids 37, 687–695 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Nagana Gowda, G. A. & Raftery, D. Whole blood metabolomics by 1H NMR spectroscopy provides a new opportunity to evaluate coenzymes and antioxidants. Anal. Chem. 89, 4620–4627 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Airhart, S. E. et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS ONE 12, e0186459 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Creeke, P. I. et al. Whole blood NAD and NADP concentrations are not depressed in subjects with clinical pellagra. J. Nutr. 137, 2013–2017 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Formato, M., Masala, B. & De Luca, G. The levels of adenine nucleotides and pyridine coenzymes in red blood cells from the newborn, determined simultaneously by HPLC. Clin. Chim. Acta 189, 131–137 (1990).

    Article  CAS  PubMed  Google Scholar 

  147. Stocchi, V., Cucchiarini, L., Canestrari, F., Piacentini, M. P. & Fornaini, G. A very fast ion-pair reversed-phase HPLC method for the separation of the most significant nucleotides and their degradation products in human red blood cells. Anal. Biochem. 167, 181–190 (1987).

    Article  CAS  PubMed  Google Scholar 

  148. Stocchi, V. et al. Adenine and pyridine nucleotides in the red blood cells of subjects with solid tumors. Tumori 73, 25–28 (1987).

    Article  CAS  PubMed  Google Scholar 

  149. Zerez, C. R., Lee, S. J. & Tanaka, K. R. Spectrophotometric determination of oxidized and reduced pyridine nucleotides in erythrocytes using a single extraction procedure. Anal. Biochem. 164, 367–373 (1987).

    Article  CAS  PubMed  Google Scholar 

  150. Rijksen, G. et al. A new case of purine nucleoside phosphorylase deficiency: enzymologic, clinical, and immunologic characteristics. Pediatr. Res. 21, 137–141 (1987).

    Article  CAS  PubMed  Google Scholar 

  151. Crescentini, G. & Stocchi, V. Fast reversed-phase high-performance liquid chromatographic determination of nucleotides in red blood cells. J. Chromatogr. 290, 393–399 (1984).

    Article  CAS  PubMed  Google Scholar 

  152. Sander, B. J., Oelshlegel, F. J. Jr. & Brewer, G. J. Quantitative analysis of pyridine nucleotides in red blood cells: a single-step extraction procedure. Anal. Biochem. 71, 29–36 (1976).

    Article  CAS  PubMed  Google Scholar 

  153. Aljaser, F. S. et al. Glutathione and oxidized nicotinamide adenine dinucleotide (NAD+) redox status in plasma and placental tissue of Saudi patients with intrauterine growth restriction. Saudi Med. J. 42, 491–498 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Liu, H. et al. An integrated LC–MS/MS strategy for quantifying the oxidative–redox metabolome in multiple biological samples. Anal. Chem. 92, 8810–8818 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Shi, H. et al. NAD deficiency, congenital malformations, and niacin supplementation. N. Engl. J. Med. 377, 544–552 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Braidy, N., Lim, C. K., Grant, R., Brew, B. J. & Guillemin, G. J. Serum nicotinamide adenine dinucleotide levels through disease course in multiple sclerosis. Brain Res. 1537, 267–272 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Castro-Marrero, J. et al. Does oral coenzyme Q10 plus NADH supplementation improve fatigue and biochemical parameters in chronic fatigue syndrome? Antioxid. Redox Signal. 22, 679–685 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Weidele, K., Kunzmann, A., Schmitz, M., Beneke, S. & Bürkle, A. Ex vivo supplementation with nicotinic acid enhances cellular poly(ADP-ribosyl)ation and improves cell viability in human peripheral blood mononuclear cells. Biochem. Pharmacol. 80, 1103–1112 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Liebes, L. F., Krigel, R. L., Conklyn, M., Nevrla, D. R. & Silber, R. Ribonucleotide content of mononuclear cells from normal subjects and patients with chronic lymphocytic leukemia: increased nicotinamide adenine dinucleotide concentration in chronic lymphocytic leukemia lymphocytes. Cancer Res. 43, 5608–5617 (1983).

    CAS  PubMed  Google Scholar 

  160. Parker, R., Schmidt, M. S., Cain, O., Gunson, B. & Brenner, C. Nicotinamide adenine dinucleotide metabolome is functionally depressed in patients undergoing liver transplantation for alcohol-related liver disease. Hepatol. Commun. 4, 1183–1192 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Azouaoui, D. et al. Meta-analysis of NAD(P)(H) quantification results exhibits variability across mammalian tissues. Sci. Rep. 13, 2464 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. McDermott, M. M. et al. Nicotinamide riboside for peripheral artery disease: the NICE randomized clinical trial. Nat. Commun. 15, 5046 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Norheim, K. L. et al. Effect of nicotinamide riboside on airway inflammation in COPD: a randomized, placebo-controlled trial. Nat. Aging 4, 1772–1781 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Orr, M. E. et al. A randomized placebo-controlled trial of nicotinamide riboside in older adults with mild cognitive impairment. Geroscience 46, 665–682 (2024).

    Article  CAS  PubMed  Google Scholar 

  165. Presterud, R. et al. Long-term nicotinamide riboside use improves coordination and eye movements in ataxia telangiectasia. Mov. Disord. 39, 360–369 (2024).

    Article  CAS  PubMed  Google Scholar 

  166. Wang, D. D. et al. Safety and tolerability of nicotinamide riboside in heart failure with reduced ejection fraction. JACC Basic Transl. Sci. 7, 1183–1196 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Zhou, B. et al. Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure. J. Clin. Invest. 130, 6054–6063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Conze, D., Brenner, C. & Kruger, C. L. Safety and metabolism of long-term administration of NIAGEN (nicotinamide riboside chloride) in a randomized, double-blind, placebo-controlled clinical trial of healthy overweight adults. Sci. Rep. 9, 9772 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kimura, S. et al. Nicotinamide mononucleotide is safely metabolized and significantly reduces blood triglyceride levels in healthy individuals. Cureus 14, e28812 (2022).

    PubMed  PubMed Central  Google Scholar 

  170. Okabe, K. et al. Oral administration of nicotinamide mononucleotide is safe and efficiently increases blood nicotinamide adenine dinucleotide levels in healthy subjects. Front. Nutr. 9, 868640 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Shoji, M. et al. Nicotinamide riboside supplementation benefits in patients with Werner syndrome: a double-blind randomized crossover placebo-controlled trial. Aging Cell 24, e70093 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Veenhuis, S. J. G. et al. Nicotinamide riboside improves ataxia scores and immunoglobulin levels in ataxia telangiectasia. Mov. Disord. 36, 2951–2957 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yamane, T., Imai, M., Bamba, T. & Uchiyama, S. Nicotinamide mononucleotide (NMN) intake increases plasma NMN and insulin levels in healthy subjects. Clin. Nutr. ESPEN 56, 83–86 (2023).

    Article  PubMed  Google Scholar 

  174. Irie, J. et al. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr. J. 67, 153–160 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Katayoshi, T. et al. Nicotinamide adenine dinucleotide metabolism and arterial stiffness after long-term nicotinamide mononucleotide supplementation: a randomized, double-blind, placebo-controlled trial. Sci. Rep. 13, 2786 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yi, L. et al. The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: a randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial. Geroscience 45, 29–43 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Morita, Y. et al. Clinical evaluation of changes in biomarkers by oral intake of NMN. Glycative Stress Res. 9, 33–41 (2022).

    Google Scholar 

  178. Yamaguchi, S. et al. Safety and efficacy of long-term nicotinamide mononucleotide supplementation on metabolism, sleep, and nicotinamide adenine dinucleotide biosynthesis in healthy, middle-aged Japanese men. Endocr. J. 71, 153–169 (2024).

    Article  CAS  PubMed  Google Scholar 

  179. Qiu, Y. et al. NAD+ exhaustion by CD38 upregulation contributes to blood pressure elevation and vascular damage in hypertension. Signal Transduct. Target. Ther. 8, 353 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Vreones, M. et al. Oral nicotinamide riboside raises NAD+ and lowers biomarkers of neurodegenerative pathology in plasma extracellular vesicles enriched for neuronal origin. Aging Cell 22, e13754 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. Migaud, M. E., Ziegler, M. & Baur, J. A. Regulation of and challenges in targeting NAD+ metabolism. Nat. Rev. Mol. Cell Biol. 25, 822–840 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contributions of the NADIS consortium members: F.L. Bertoli (Institut Imagine Paris, France), R.P. Mato (Università degli Studi di Genova, Italy), T. Brochard (University of Oulu, Finland), J. Frank (University of Oslo, Norway), F. Matiyevskaya (University of Copenhagen, Denmark), M.E. Ermert (Khondrion BV, Nijmegen; Amsterdam UMC, Netherlands), Q. Zhang (University of Copenhagen, Denmark), L. Van Gijn (École Polytechnique Fédérale de Lausanne, Switzerland), S. Bruzzone (Università degli Studi di Genova, Italy), M. Deleidi (Institut Imagine Paris, France), M. Scheibye-Knudsen (University of Copenhagen, Denmark), E.F. Fang (University of Oslo, Norway), E. Pirinen (University of Oulu, Finland), H. Renkema (Khondrion BV, Nijmegen, Netherlands) and J. Smeitink (Khondrion BV, Nijmegen, Netherlands). K.T.V., M.M.T., C.C., G.E.J. and R.H.H. received funding from the European Union’s Horizon Europe research and innovation programme through the NADIS project (#101073251). R.Z.-P. is supported by a project (PID2023-147560OA-I00) from the Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación and by the Fondo Europeo de Desarrollo Regional (FEDER, EU).

Author information

Authors and Affiliations

Authors

Contributions

K.T.V., M.M.T., C.C., R.Z.-P., G.E.J. and R.H.H. conceptualized the article. K.T.V. and M.M.T. wrote the manuscript, with contributions from all coauthors. K.T.V., M.M.T. and E.C. researched data and created the tables. M.v.W. provided substantial input on technical and methodological aspects. All authors reviewed, edited and approved the final version of the manuscript.

Corresponding author

Correspondence to Riekelt H. Houtkooper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Marie Migaud and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinten, K.T., Trętowicz, M.M., Coskun, E. et al. NAD+ precursor supplementation in human ageing: clinical evidence and challenges. Nat Metab 7, 1974–1990 (2025). https://doi.org/10.1038/s42255-025-01387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42255-025-01387-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing