Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neuron–astrocyte metabolic unit as a cornerstone of brain energy metabolism in health and disease

Abstract

Over the past years, substantial advances have deepened our understanding of the cellular and molecular drivers of brain energy metabolism. Enabled by transformative technologies offering cellular-level resolution, these insights have revealed a highly regulated and dynamic metabolic interplay among brain cell types, particularly between neurons and astrocytes. In this Review, we shed light on the intricate ways in which neurons and astrocytes operate as a metabolically coupled unit, optimized to sustain the energetic demands of neurotransmission while ensuring neuroprotection. We highlight intercellular cooperation as a key determinant of brain function and provide examples of how disruption of the neuron–astrocyte metabolic unit contributes to numerous diseases of the nervous system, underscoring the critical importance of continued fundamental research to dissect the regulatory principles and vulnerabilities of this intercellular metabolic axis and identify potential therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glutamatergic neurotransmission is coupled to glycolytic activation in astrocytes.
Fig. 2: Different abundances of PFKFB3 explain high glycolysis in astrocytes and low glycolysis in neurons.
Fig. 3: Glutamatergic neurotransmission is coupled to neuronal antioxidant protection.
Fig. 4: Functional and dysfunctional neuron–astrocyte metabolic unit.

Similar content being viewed by others

References

  1. Fox, P. T. & Raichle, M. E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl Acad. Sci. USA 83, 1140–1144 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fox, P. T., Raichle, M. E., Mintun, M. A. & Dence, C. Nonooxidative glucose consumption during focal physiologic neural activity. Science 241, 462–464 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Kety, S. S. Circulation and metabolism of the human brain in health and disease. Am. J. Med. 8, 205–217 (1950).

    Article  CAS  PubMed  Google Scholar 

  4. Cummins, C. J., Glover, R. A. & Sellinger, O. Z. Neuronal cues regulate uptake in cultured astrocytes. Brain Res. 170, 190–193 (1979).

    Article  CAS  PubMed  Google Scholar 

  5. Cummins, C. J., Lust, W. D. & Passonneau, J. V. Regulation of glycogen metabolism in primary and transformed astrocytes in vitro. J. Neurochem. 40, 128–136 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Magistretti, P. J., Morrison, J. H., Shoemaker, W. J., Sapin, V. & Bloom, F. E. Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc. Natl Acad. Sci. USA 78, 6535–6539 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kao-Jen, J. & Wilson, J. E. Localization of hexokinase in neural tissue: electron microscopic studies of rat cerebellar cortex. J. Neurochem. 35, 667–678 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Kadekaro, M., Crane, A. M. & Sokoloff, L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc. Natl Acad. Sci. USA 82, 6010–6013 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pellerin, L. & Magistretti, P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl Acad. Sci. USA 91, 10625–10629 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McIlwain, H. A transitory, rapid, production of lactate in electrically excited cerebral tissues. Biochem. J. 60, xxxi (1955).

    CAS  PubMed  Google Scholar 

  11. Schurr, A., West, C. A. & Rigor, B. M. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240, 1326–1328 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Voutsinos-Porche, B. et al. Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37, 275–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Cholet, N. et al. Local injection of antisense oligonucleotides targeted to the glial glutamate transporter GLAST decreases the metabolic response to somatosensory activation. J. Cereb. Blood Flow Metab. 21, 404–412 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Zimmer, E. R. et al. [18F]FDG PET signal is driven by astroglial glutamate transport. Nat. Neurosci. 20, 393–395 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Loaiza, A., Porras, O. H. & Barros, L. F. Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J. Neurosci. 23, 7337–7342 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bittner, C. X. et al. Fast and reversible stimulation of astrocytic glycolysis by K+ and a delayed and persistent effect of glutamate. J. Neurosci. 31, 4709–4713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barros, L. F., Ruminot, I., Sotelo-Hitschfeld, T., Lerchundi, R. & Fernandez-Moncada, I. Metabolic recruitment in brain tissue. Annu. Rev. Physiol. 85, 115–135 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Bonvento, G. & Bolaños, J. P. Astrocyte–neuron metabolic cooperation shapes brain activity. Cell Metab. 33, 1546–1564 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Almeida, A., Moncada, S. & Bolaños, J. P. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat. Cell Biol. 6, 45–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Herrero-Mendez, A. et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1. Nat. Cell Biol. 11, 747–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Jimenez-Blasco, D. et al. Weak neuronal glycolysis sustains cognition and organismal fitness. Nat. Metab. 7, 1253–1267 (2024).

    Article  Google Scholar 

  22. Lopez-Fabuel, I. et al. Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis. Nat. Commun. 13, 536 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Woo, M. S. et al. The immunoproteasome disturbs neuronal metabolism and drives neurodegeneration in multiple sclerosis. Cell 188, 4567–4585 (2025).

    Article  CAS  PubMed  Google Scholar 

  24. Belanger, M. et al. Role of the glyoxalase system in astrocyte-mediated neuroprotection. J. Neurosci. 31, 18338–18352 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cai, X. et al. Lactate activates the mitochondrial electron transport chain independently of its metabolism. Mol. Cell 83, 3904–3920 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bolaños, J. P., Peuchen, S., Heales, S. J., Land, J. M. & Clark, J. B. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem. 63, 910–916 (1994).

    Article  PubMed  Google Scholar 

  27. Bolaños, J. P., Heales, S. J. R., Land, J. M. & Clark, J. B. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary cultures. J. Neurochem. 64, 1965–1972 (1995).

    Article  PubMed  Google Scholar 

  28. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dembitskaya, Y. et al. Lactate supply overtakes glucose when neural computational and cognitive loads scale up. Proc. Natl Acad. Sci. USA 119, e2212004119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roumes, H. et al. Lactate transporters in the rat barrel cortex sustain whisker-dependent BOLD fMRI signal and behavioral performance. Proc. Natl Acad. Sci. USA 118, e2112466118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zuend, M. et al. Arousal-induced cortical activity triggers lactate release from astrocytes. Nat. Metab. 2, 179–191 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Machler, P. et al. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab. 23, 94–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki, A. et al. Astrocyte–neuron lactate transport is required for long-term memory formation. Cell 144, 810–823 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akter, M. et al. Astrocyte and L-lactate in the anterior cingulate cortex modulate schema memory and neuronal mitochondrial biogenesis. eLife 12, e85751 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Muraleedharan, R. et al. AMPK-regulated astrocytic lactate shuttle plays a non-cell-autonomous role in neuronal survival. Cell Rep. 32, 108092 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bhatti, M. S. & Frostig, R. D. Astrocyte–neuron lactate shuttle plays a pivotal role in sensory-based neuroprotection in a rat model of permanent middle cerebral artery occlusion. Sci. Rep. 13, 12799 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Petit, J. M. & Magistretti, P. J. Regulation of neuron–astrocyte metabolic coupling across the sleep–wake cycle. Neuroscience 323, 135–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Carrard, A. et al. Role of adult hippocampal neurogenesis in the antidepressant actions of lactate. Mol. Psychiatry 26, 6723–6735 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rabah, Y. et al. Glycolysis-derived alanine from glia fuels neuronal mitochondria for memory in Drosophila. Nat. Metab. 5, 2002–2019 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Volkenhoff, A. et al. Glial glycolysis is essential for neuronal survival in Drosophila. Cell Metab. 22, 437–447 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Gonzalez-Gutierrez, A., Ibacache, A., Esparza, A., Barros, L. F. & Sierralta, J. Neuronal lactate levels depend on glia-derived lactate during high brain activity in Drosophila. Glia 68, 1213–1227 (2020).

    Article  PubMed  Google Scholar 

  42. Li, H. et al. Neurons require glucose uptake and glycolysis in vivo. Cell Rep. 42, 112335 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cohen, J. & Torres, C. Astrocyte senescence: evidence and significance. Aging Cell 18, e12937 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Aron, L., Zullo, J. & Yankner, B. A. The adaptive aging brain. Curr. Opin. Neurobiol. 72, 91–100 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Amaral, D. G., Scharfman, H. E. & Lavenex, P. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog. Brain Res. 163, 3–22 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Diaz-Garcia, C. M. et al. Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab. 26, 361–374 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karsten, S. L. et al. Global analysis of gene expression in neural progenitors reveals specific cell-cycle, signaling, and metabolic networks. Dev. Biol. 261, 165–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Rafalski, V. A. & Brunet, A. Energy metabolism in adult neural stem cell fate. Prog. Neurobiol. 93, 182–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Baeza-Lehnert, F. et al. Non-canonical control of neuronal energy status by the Na+ pump. Cell Metab. 29, 668–680 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Santos, R. et al. Local glycolysis fuels actomyosin contraction during axonal retraction. J. Cell Biol. 222, e202206133 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ketschek, A., Sainath, R., Holland, S. & Gallo, G. The axonal glycolytic pathway contributes to sensory axon extension and growth cone dynamics. J. Neurosci. 41, 6637–6651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wei, Y. et al. Aerobic glycolysis is the predominant means of glucose metabolism in neuronal somata, which protects against oxidative damage. Nat. Neurosci. 26, 2081–2089 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Blazquez, C., Sanchez, C., Velasco, G. & Guzman, M. Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes. J. Neurochem. 71, 1597–1606 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Eraso-Pichot, A. et al. GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes. Glia 66, 1724–1735 (2018).

    Article  PubMed  Google Scholar 

  55. Fecher, C. et al. Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nat. Neurosci. 22, 1731–1742 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Morant-Ferrando, B. et al. Fatty acid oxidation organizes mitochondrial supercomplexes to sustain astrocytic ROS and cognition. Nat. Metab. 5, 1290–1302 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lopez-Fabuel, I. et al. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc. Natl Acad. Sci. USA 113, 13063–13068 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vicente-Gutierrez, C. et al. Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat. Metab. 1, 201–211 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Jimenez-Blasco, D. et al. Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature 583, 603–608 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Blazquez, C., Woods, A., de Ceballos, M. L., Carling, D. & Guzman, M. The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes. J. Neurochem. 73, 1674–1682 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Guzman, M. & Blazquez, C. Is there an astrocyte–neuron ketone body shuttle? Trends Endocrinol. Metab. 12, 169–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Silva, B. et al. Glia fuel neurons with locally synthesized ketone bodies to sustain memory under starvation. Nat. Metab. 4, 213–224 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McMullen, E. et al. Glycolytically impaired Drosophila glial cells fuel neural metabolism via β-oxidation. Nat. Commun. 14, 2996 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, L. et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160, 177–190 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, L., MacKenzie, K. R., Putluri, N., Maletic-Savatic, M. & Bellen, H. J. The glia–neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab. 26, 719–737 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kumar, M. et al. Triglycerides are an important fuel reserve for synapse function in the brain. Nat. Metab. 7, 1392–1403 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saber, S. H. et al. DDHD2 provides a flux of saturated fatty acids for neuronal energy and function. Nat. Metab. https://doi.org/10.1038/s42255-025-01367-x (2025).

  68. Greda, A. K. et al. Interaction of sortilin with apolipoprotein E3 enables neurons to use long-chain fatty acids as alternative metabolic fuel. Nat. Metab. https://doi.org/10.1038/s42255-025-01389-5 (2025).

  69. Yang, J. et al. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc. Natl Acad. Sci. USA 111, 12228–12233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Neame, S. et al. The NMDA receptor activation by d-serine and glycine is controlled by an astrocytic Phgdh-dependent serine shuttle. Proc. Natl Acad. Sci. USA 116, 20736–20742 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Le Douce, J. et al. Impairment of glycolysis-derived L-serine production in astrocytes contributes to cognitive deficits in Alzheimer’s disease. Cell Metab. 31, 503–517 (2020).

    Article  PubMed  Google Scholar 

  72. Magistretti, P. J. & Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19, 235–249 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Matsui, T. et al. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity. Proc. Natl Acad. Sci. USA 114, 6358–6363 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gao, V. et al. Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation. Proc. Natl Acad. Sci. USA 113, 8526–8531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fiumelli, H. et al. Lactate potentiates NMDA receptor currents via an intracellular redox mechanism targeting cysteines in the C-terminal domain of GluN2B subunits: implications for synaptic plasticity. Preprint at bioRxiv https://doi.org/10.1101/2024.11.21.624499 (2024).

  76. Bonvento, G., Oliet, S. H. R. & Panatier, A. Glycolysis-derived L-serine levels versus PHGDH expression in Alzheimer’s disease. Cell Metab. 34, 654–655 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Fernández-Moncada, I. et al. A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes. Nat. Commun. 15, 6842 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Brandebura, A. N., Paumier, A., Onur, T. S. & Allen, N. J. Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders. Nat. Rev. Neurosci. 24, 23–39 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goyal, M. S. et al. Loss of brain aerobic glycolysis in normal human aging. Cell Metab. 26, 353–360 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Goyal, M. S. et al. Brain aerobic glycolysis and resilience in Alzheimer disease. Proc. Natl Acad. Sci. USA 120, e2212256120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hipkiss, A. R. Aging, Alzheimer’s disease and dysfunctional glycolysis; similar effects of too much and too little. Aging Dis. 10, 1328–1331 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Boumezbeur, F. et al. Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J. Cereb. Blood Flow Metab. 30, 211–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Beard, E., Lengacher, S., Dias, S., Magistretti, P. J. & Finsterwald, C. Astrocytes as key regulators of brain energy metabolism: new therapeutic perspectives. Front. Physiol. 12, 825816 (2021).

    Article  PubMed  Google Scholar 

  85. Tefera, T. W., Steyn, F. J., Ngo, S. T. & Borges, K. CNS glucose metabolism in amyotrophic lateral sclerosis: a therapeutic target? Cell Biosci. 11, 14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maksimovic, K., Youssef, M., You, J., Sung, H. K. & Park, J. Evidence of metabolic dysfunction in amyotrophic lateral sclerosis (ALS) patients and animal models. Biomolecules 13, 863 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Weerasekera, A. et al. Non-invasive characterization of amyotrophic lateral sclerosis in a hTDP-43A315T mouse model: a PET–MR study. Neuroimage Clin. 27, 102327 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Browne, S. E. et al. Bioenergetic abnormalities in discrete cerebral motor pathways presage spinal cord pathology in the G93A SOD1 mouse model of ALS. Neurobiol. Dis. 22, 599–610 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443–448 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sonninen, T. M. et al. Metabolic alterations in Parkinson’s disease astrocytes. Sci. Rep. 10, 14474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rappold, P. M. & Tieu, K. Astrocytes and therapeutics for Parkinson’s disease. Neurotherapeutics 7, 413–423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Damier, P., Hirsch, E. C., Zhang, P., Agid, Y. & Javoy-Agid, F. Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52, 1–6 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Zeevalk, G. D., Razmpour, R. & Bernard, L. P. Glutathione and Parkinson’s disease: is this the elephant in the room?. Biomed. Pharmacother. 62, 236–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Proschel, C., Stripay, J. L., Shih, C. H., Munger, J. C. & Noble, M. D. Delayed transplantation of precursor cell-derived astrocytes provides multiple benefits in a rat model of Parkinsons. EMBO Mol. Med. 6, 504–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mosconi, L., Pupi, A. & De Leon, M. J. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1147, 180–195 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Minhas, P. S. et al. Restoring hippocampal glucose metabolism rescues cognition across Alzheimer’s disease pathologies. Science 385, eabm6131 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Williams, H. C. et al. APOE alters glucose flux through central carbon pathways in astrocytes. Neurobiol. Dis. 136, 104742 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pascual, J. M. et al. GLUT1 deficiency and other glucose transporter diseases. Eur. J. Endocrinol. 150, 627–633 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Xu, W. & Borges, K. Case for supporting astrocyte energetics in glucose transporter 1 deficiency syndrome. Epilepsia 65, 2213–2226 (2024).

    Article  CAS  PubMed  Google Scholar 

  101. Tsacopoulos, M. & Magistretti, P. J. Metabolic coupling between glia and neurons. J. Neurosci. 16, 877–885 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Welch, G. R. & Easterby, J. S. Metabolic channeling versus free diffusion: transition-time analysis. Trends Biochem. Sci. 19, 193–197 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Berridge, M. V., Schneider, R. T. & McConnell, M. J. Mitochondrial transfer from astrocytes to neurons following ischemic insult: guilt by association? Cell Metab. 24, 376–378 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Dong, L. F. et al. Mitochondria on the move: horizontal mitochondrial transfer in disease and health. J. Cell Biol. 222, e202211044 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Boudreau, L. H. et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 124, 2173–2183 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Makar, T. K. et al. Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurones: evidence that astrocytes play an important role in antioxidative processes in the brain. J. Neurochem. 62, 45–53 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Bolaños, J. P. et al. Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radic. Biol. Med. 21, 995–1001 (1996).

    Article  PubMed  Google Scholar 

  108. Dringen, R., Kussmaul, L., Gutterer, J. M., Hirrlinger, J. & Hamprecht, B. The glutathione system of peroxide detoxification is less efficient in neurons than in astrocytes. J. Neurochem. 72, 2523–2530 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Jimenez-Blasco, D., Santofimia-Castano, P., Gonzalez, A., Almeida, A. & Bolaños, J. P. Astrocyte NMDA receptors’ activity sustains neuronal survival through a Cdk5–Nrf2 pathway. Cell Death Differ. 22, 1877–1889 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bell, K. F. et al. Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat. Commun. 6, 7066 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Dringen, R., Pfeiffer, B. & Hamprecht, B. Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J. Neurosci. 19, 562–569 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Funfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Looser, Z. J. et al. Oligodendrocyte–axon metabolic coupling is mediated by extracellular K+ and maintains axonal health. Nat. Neurosci. 27, 433–448 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Spate, E. et al. Downregulated expression of lactate dehydrogenase in adult oligodendrocytes and its implication for the transfer of glycolysis products to axons. Glia 72, 1374–1391 (2024).

    Article  PubMed  Google Scholar 

  115. Asadollahi, E. et al. Oligodendroglial fatty acid metabolism as a central nervous system energy reserve. Nat. Neurosci. 27, 1934–1944 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ramos-Cabrer, P. et al. Reversible reduction in brain myelin content upon marathon running. Nat. Metab. 7, 697–703 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.P.B. is funded by MICIU/AEI (PID2022-138813OB-I00/10.13039/501100011033 and FEDER, UE), la Caixa Foundation (grant agreement LCF/PR/HR23/52430016), the European Union’s Horizon Europe research and innovation programme under the MSCA Doctoral Networks 2021 (101072759, fuel the brain in healthy ageing and age-related diseases (ETERNITY)) and the European Research Council Advanced Grant NeuroSTARS (reference 101199747). Research in P.J.M.’s laboratory is funded by King Abdullah University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

J.P.B. and P.J.M. conceived the idea and wrote, edited and approved the manuscript.

Corresponding authors

Correspondence to Juan P. Bolaños or Pierre J. Magistretti.

Ethics declarations

Competing interests

P.J.M. is the scientific founder of GliaPharm. J.P.B declares no competing interests.

Peer review

Peer review information

Nature Metabolism thanks L. Felipe Barros and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alfredo Gimenez-Cassina, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolaños, J.P., Magistretti, P.J. The neuron–astrocyte metabolic unit as a cornerstone of brain energy metabolism in health and disease. Nat Metab 7, 2414–2423 (2025). https://doi.org/10.1038/s42255-025-01404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42255-025-01404-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing