Abstract
The topological classification of energy bands has laid the foundation for the discovery of various topological phases of matter in recent decades. While previous work focused on real-energy bands in Hermitian systems, recent studies have shifted attention to the intriguing topology of complex-energy, or non-Hermitian, bands, freeing them from the constraint of energy conservation. For example, the spectral winding of complex-energy bands can give rise to unique topological structures such as braids, holding substantial promise for advancing quantum computing. However, discussions of complex-energy braids have been predominantly limited to the Abelian braid group \({{\mathbb{B}}}_{2}\) owing to its relative simplicity. Identifying topological non-Abelian braiding remains challenging, as it lacks a universally applicable topological invariant for characterization. Here we present a machine learning algorithm for the unsupervised identification of non-Abelian braiding within multiple complex-energy bands. We demonstrate that the results are consistent with Artin’s well-known topological equivalence conditions in braiding. Inspired by these findings, we introduce a winding matrix as a topological invariant for characterizing braiding topology. The winding matrix also reveals the bulk-edge correspondence of non-Hermitian bands with non-Abelian braiding. Finally, we extend our approach to identify non-Abelian braiding topology in two-dimensional and three-dimensional exceptional semimetals and address the unknotting problem in an unsupervised manner.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
All the data necessary for reproducing our results are publicly available via GitHub at https://github.com/longyangking/ml_topology_non_Abelian_braiding. An archived version is deposited in the Zenodo database at https://doi.org/10.5281/zenodo.11077148 (ref. 89).
Code availability
All the code necessary for reproducing our results is publicly available via GitHub at https://github.com/longyangking/ml_topology_non_Abelian_braiding. An archived version is deposited in the Zenodo database at https://doi.org/10.5281/zenodo.11077148 (ref. 89).
References
Wu, Q., Soluyanov, A. A. & Bzdušek, T. Non-Abelian band topology in noninteracting metals. Science 365, 1273–1277 (2019).
Lian, B., Vafa, C., Vafa, F. & Zhang, S.-C. Chern–Simons theory and Wilson loops in the Brillouin zone. Phys. Rev. B 95, 094512 (2017).
Sun, X.-Q., Lian, B. & Zhang, S.-C. Double helix nodal line superconductor. Phys. Rev. Lett. 119, 147001 (2017).
Wu, Y., Jiang, H., Liu, J., Liu, H. & Xie, X. Non-Abelian braiding of dirac fermionic modes using topological corner states in higher-order topological insulator. Phys. Rev. Lett. 125, 036801 (2020).
Lee, C. H. et al. Imaging nodal knots in momentum space through topolectrical circuits. Nat. Commun. 11, 4385 (2020).
Peng, B., Bouhon, A., Monserrat, B. & Slager, R.-J. Phonons as a platform for non-Abelian braiding and its manifestation in layered silicates. Nat. Commun. 13, 423 (2022).
Guo, Q. et al. Experimental observation of non-Abelian topological charges and edge states. Nature 594, 195–200 (2021).
Bouhon, A. et al. Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe. Nat. Phys. 16, 1137–1143 (2020).
Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).
Ren, J. & Sinitsyn, N. A. Braid group and topological phase transitions in nonequilibrium stochastic dynamics. Phys. Rev. E 87, 050101 (2013).
Ünal, F. N., Bouhon, A. & Slager, R.-J. Topological Euler class as a dynamical observable in optical lattices. Phys. Rev. Lett. 125, 053601 (2020).
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).
Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).
Andersen, T. I. et al. Non-Abelian braiding of graph vertices in a superconducting processor. Nature 618, 264–269 (2023).
Stern, A. Non-Abelian states of matter. Nature 464, 187–193 (2010).
Abdumalikov Jr, A. A. et al. Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482–485 (2013).
Stern, A. & Lindner, N. H. Topological quantum computation—from basic concepts to first experiments. Science 339, 1179–1184 (2013).
Leach, J., Dennis, M. R., Courtial, J. & Padgett, M. J. Knotted threads of darkness. Nature 432, 165 (2004).
Kedia, H., Bialynicki-Birula, I., Peralta-Salas, D. & Irvine, W. T. M. Tying knots in light fields. Phys. Rev. Lett. 111, 150404 (2013).
Pisanty, E. et al. Knotting fractional-order knots with the polarization state of light. Nat. Photonics 13, 569–574 (2019).
Pisanty, E. et al. Conservation of torus-knot angular momentum in high-order harmonic generation. Phys. Rev. Lett. 122, 203201 (2019).
Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).
Zhang, X.-L. et al. Non-Abelian braiding on photonic chips. Nat. Photonics. 16, 390–395 (2022).
Yang, Y. et al. Synthesis and observation of non-Abelian gauge fields in real space. Science 365, 1021–1025 (2019).
Sun, Y.-K. et al. Non-Abelian Thouless pumping in photonic waveguides. Nat. Phys. 18, 1080–1085 (2022).
Chen, Z.-G., Zhang, R.-Y., Chan, C. T. & Ma, G. Classical non-Abelian braiding of acoustic modes. Nat. Phys. 18, 179–184 (2021).
Jiang, B. et al. Experimental observation of non-Abelian topological acoustic semimetals and their phase transitions. Nat. Phys. 17, 1239–1246 (2021).
Zhang, L. et al. Acoustic non-Hermitian skin effect from twisted winding topology. Nat. Commun. 12, 6297 (2021).
You, O. et al. Observation of non-Abelian Thouless pump. Phys. Rev. Lett. 128, 244302 (2022).
Zhang, Q. et al. Observation of acoustic non-Hermitian Bloch braids and associated topological phase transitions. Phys. Rev. Lett. 130, 017201 (2023).
Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).
Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).
Hu, H. & Zhao, E. Knots and non-Hermitian Bloch bands. Phys. Rev. Lett. 126, 010401 (2021).
Atiyah, M. The Geometry and Physics of Knots (Cambridge Univ. Press, 1990).
Guo, C.-X., Chen, S., Ding, K. & Hu, H. Exceptional non-Abelian topology in multiband non-Hermitian systems. Phys. Rev. Lett. 130, 157201 (2023).
Li, Z., Ding, K. & Ma, G. Eigenvalue knots and their isotopic equivalence in three-state non-Hermitian systems. Phys. Rev. Res. 5, 023038 (2023).
Alexander, J. W. Topological invariants of knots and links. Trans. Am. Math. Soc. 30, 275–306 (1928).
Jones, V. F. R. A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc. 12, 103–111 (1985).
Murasugi, K. Knot Theory & Its Applications (Birkhäuser, 2008)
Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019).
Dunjko, V. & Briegel, H. J. Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys. 81, 074001 (2018).
Mehta, P. et al. A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep. 810, 1–124 (2019).
Rodriguez-Nieva, J. F. & Scheurer, M. S. Identifying topological order through unsupervised machine learning. Nat. Phys. 15, 790–795 (2019).
Scheurer, M. S. & Slager, R.-J. Unsupervised machine learning and band topology. Phys. Rev. Lett. 124, 226401 (2020).
Long, Y., Ren, J. & Chen, H. Unsupervised manifold clustering of topological phononics. Phys. Rev. Lett. 124, 185501 (2020).
Yu, L.-W. & Deng, D.-L. Unsupervised learning of non-Hermitian topological phases. Phys. Rev. Lett. 126, 240402 (2021).
Long, Y. & Zhang, B. Unsupervised data-driven classification of topological gapped systems with symmetries. Phys. Rev. Lett. 130, 036601 (2023).
Vandans, O., Yang, K., Wu, Z. & Dai, L. Identifying knot types of polymer conformations by machine learning. Phys. Rev. E 101, 022502 (2020).
Davies, A. et al. Advancing mathematics by guiding human intuition with AI. Nature 600, 70–74 (2021).
Yu, Y. et al. Experimental unsupervised learning of non-Hermitian knotted phases with solid-state spins. npj Quantum Inf. 8, 116 (2022).
Artin, E. Theory of braids. Ann. Math. 48, 101–126 (1947).
Eliahou, S., Kauffman, L. H. & Thistlethwaite, M. B. Infinite families of links with trivial Jones polynomial. Topology 42, 155–169 (2003).
Kauffman, L. H. & Lopes, P. Infinitely many prime knots with the same Alexander invariants. J. Knot Theory Ramif. 26, 1743009 (2017).
Kanenobu, T. Infinitely many knots with the same polynomial invariant. Proc. Am. Math. Soc. 97, 158–162 (1986).
Yang, Y. et al. Non-Abelian physics in light and sound. Science 383, eadf9621 (2024).
Ding, K., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).
Zhong, Q., Khajavikhan, M., Christodoulides, D. N. & El-Ganainy, R. Winding around non-Hermitian singularities. Nat. Commun. 9, 4808 (2018).
Greiter, M. & Wilczek, F. Fractional statistics. Annu. Rev. Condens. Matter Phys. 15, 131–157 (2024).
Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).
Shen, H., Zhen, B. & Fu, L. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).
Zhang, R.-Y., Cui, X., Chen, W.-J., Zhang, Z.-Q. & Chan, C. T. Symmetry-protected topological exceptional chains in non-Hermitian crystals. Commun. Phys. 6, 169 (2023).
Zhang, Q. et al. Experimental characterization of three-band braid relations in non-Hermitian acoustic lattices. Phys. Rev. Res. 5, L022050 (2023).
Wojcik, C. C., Sun, X.-Q., Bzdušek, T. & Fan, S. Homotopy characterization of non-Hermitian Hamiltonians. Phys. Rev. B 101, 205417 (2020).
Yang, Z., Schnyder, A., Hu, J. & Chiu, C.-K. Fermion doubling theorems in two-dimensional non-Hermitian systems for Fermi points and exceptional points. Phys. Rev. Lett. 126, 086401 (2021).
Song, F., Yao, S. & Wang, Z. Non-Hermitian topological invariants in real space. Phys. Rev. Lett. 123, 246801 (2019).
Borgnia, D. S., Kruchkov, A. J. & Slager, R.-J. Non-Hermitian boundary modes and topology. Phys. Rev. Lett. 124, 056802 (2020).
Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).
Wojcik, C. C., Wang, K., Dutt, A., Zhong, J. & Fan, S. Eigenvalue topology of non-Hermitian band structures in two and three dimensions. Phys. Rev. B 106, L161401 (2022).
König, J. L. K., Yang, K., Budich, J. C. & Bergholtz, E. J. Braid-protected topological band structures with unpaired exceptional points. Phys. Rev. Res. 5, L042010 (2023).
Hu, H., Sun, S. & Chen, S. Knot topology of exceptional point and non-Hermitian no-go theorem. Phys. Rev. Res. 4, L022064 (2022).
Kawabata, K., Bessho, T. & Sato, M. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett. 123, 066405 (2019).
Carlström, J., Stålhammar, M., Budich, J. C. & Bergholtz, E. J. Knotted non-Hermitian metals. Phys. Rev. B 99, 161115 (2019).
Bi, R., Yan, Z., Lu, L. & Wang, Z. Nodal-knot semimetals. Phys. Rev. B 96, 201305 (2017).
Haken, W. Theorie der Normalflächen: ein isotopiekriterium für den Hreisknoten. Acta Math. 105, 245–375 (1961).
Kronheimer, P. B. & Mrowka, T. S. Khovanov homology is an unknot-detector. Publ. Math. l’IHÉS 113, 97–208 (2011).
Gukov, S., Halverson, J., Ruehle, F. & Sułkowski, P. Learning to unknot. Mach. Learn. Sci. Technol. 2, 025035 (2021).
Craven, J., Hughes, M., Jejjala, V. & Kar, A. Learning knot invariants across dimensions. SciPost Physics 14, 021 (2023).
Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).
Chen, W., Özdemir, Ş. K., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).
Li, A. et al. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).
Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).
Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).
Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).
Zhu, B. et al. Anomalous single-mode lasing induced by nonlinearity and the non-Hermitian skin effect. Phys. Rev. Lett. 129, 013903 (2022).
Fruchart, M., Hanai, R., Littlewood, P. B. & Vitelli, V. Non-reciprocal phase transitions. Nature 592, 363–369 (2021).
Matsumoto, N., Kawabata, K., Ashida, Y., Furukawa, S. & Ueda, M. Continuous phase transition without gap closing in non-Hermitian quantum many-body systems. Phys. Rev. Lett. 125, 260601 (2020).
Rudolph, L. Braided surfaces and Seifert ribbons for closed braids. Comment. Math. Helv. 58, 1–37 (1983).
Long, Y., Xue, H. & Zhang, B. Code for ‘Unsupervised learning of topological non-Abelian braiding in non-Hermitian bands’. Zenodo https://doi.org/10.5281/zenodo.11077148 (2024).
Acknowledgements
This research is supported by Singapore National Research Foundation Competitive Research Program under grant no. NRF-CRP23-2019-0007 and Singapore Ministry of Education Academic Research Fund Tier 2 under grant no. MOE-T2EP50123-0007. H.X. acknowledges the support of the start-up fund and the direct grant (grant no. 4053675) from the Chinese University of Hong Kong. Y.L. gratefully acknowledges the support of the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship, a Schmidt Futures programme. We thank Y. Chong for helpful discussions.
Author information
Authors and Affiliations
Contributions
Y.L. conceived the idea. Y.L. did the theoretical analysis and performed the calculations. Y.L. and B.Z. supervised the project. All authors participated in discussions and wrote the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Machine Intelligence thanks Dong-Ling Deng, Kun Ding and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Notes 1–7.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Long, Y., Xue, H. & Zhang, B. Unsupervised learning of topological non-Abelian braiding in non-Hermitian bands. Nat Mach Intell 6, 904–910 (2024). https://doi.org/10.1038/s42256-024-00871-1
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s42256-024-00871-1
This article is cited by
-
Observing non-Bloch braids and phase transitions by precise manipulation of the non-Hermitian boundary and size
Communications Physics (2025)
-
Topological fractal braiding of non-Hermitian bands
Communications Physics (2025)


