Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unsupervised learning of topological non-Abelian braiding in non-Hermitian bands

A preprint version of the article is available at arXiv.

Abstract

The topological classification of energy bands has laid the foundation for the discovery of various topological phases of matter in recent decades. While previous work focused on real-energy bands in Hermitian systems, recent studies have shifted attention to the intriguing topology of complex-energy, or non-Hermitian, bands, freeing them from the constraint of energy conservation. For example, the spectral winding of complex-energy bands can give rise to unique topological structures such as braids, holding substantial promise for advancing quantum computing. However, discussions of complex-energy braids have been predominantly limited to the Abelian braid group \({{\mathbb{B}}}_{2}\) owing to its relative simplicity. Identifying topological non-Abelian braiding remains challenging, as it lacks a universally applicable topological invariant for characterization. Here we present a machine learning algorithm for the unsupervised identification of non-Abelian braiding within multiple complex-energy bands. We demonstrate that the results are consistent with Artin’s well-known topological equivalence conditions in braiding. Inspired by these findings, we introduce a winding matrix as a topological invariant for characterizing braiding topology. The winding matrix also reveals the bulk-edge correspondence of non-Hermitian bands with non-Abelian braiding. Finally, we extend our approach to identify non-Abelian braiding topology in two-dimensional and three-dimensional exceptional semimetals and address the unknotting problem in an unsupervised manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Non-Abelian braiding topology in non-Hermitian bands.
Fig. 2: Unsupervised identification of topological non-Abelian braids.
Fig. 3: 2D exceptional topological semimetal with non-Abelian braiding topology.
Fig. 4: Solving the unknotted problem unsupervisedly.

Similar content being viewed by others

Data availability

All the data necessary for reproducing our results are publicly available via GitHub at https://github.com/longyangking/ml_topology_non_Abelian_braiding. An archived version is deposited in the Zenodo database at https://doi.org/10.5281/zenodo.11077148 (ref. 89).

Code availability

All the code necessary for reproducing our results is publicly available via GitHub at https://github.com/longyangking/ml_topology_non_Abelian_braiding. An archived version is deposited in the Zenodo database at https://doi.org/10.5281/zenodo.11077148 (ref. 89).

References

  1. Wu, Q., Soluyanov, A. A. & Bzdušek, T. Non-Abelian band topology in noninteracting metals. Science 365, 1273–1277 (2019).

    Article  MathSciNet  Google Scholar 

  2. Lian, B., Vafa, C., Vafa, F. & Zhang, S.-C. Chern–Simons theory and Wilson loops in the Brillouin zone. Phys. Rev. B 95, 094512 (2017).

    Article  Google Scholar 

  3. Sun, X.-Q., Lian, B. & Zhang, S.-C. Double helix nodal line superconductor. Phys. Rev. Lett. 119, 147001 (2017).

    Article  Google Scholar 

  4. Wu, Y., Jiang, H., Liu, J., Liu, H. & Xie, X. Non-Abelian braiding of dirac fermionic modes using topological corner states in higher-order topological insulator. Phys. Rev. Lett. 125, 036801 (2020).

    Article  MathSciNet  Google Scholar 

  5. Lee, C. H. et al. Imaging nodal knots in momentum space through topolectrical circuits. Nat. Commun. 11, 4385 (2020).

    Article  Google Scholar 

  6. Peng, B., Bouhon, A., Monserrat, B. & Slager, R.-J. Phonons as a platform for non-Abelian braiding and its manifestation in layered silicates. Nat. Commun. 13, 423 (2022).

    Article  Google Scholar 

  7. Guo, Q. et al. Experimental observation of non-Abelian topological charges and edge states. Nature 594, 195–200 (2021).

    Article  Google Scholar 

  8. Bouhon, A. et al. Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe. Nat. Phys. 16, 1137–1143 (2020).

    Article  Google Scholar 

  9. Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).

    Article  Google Scholar 

  10. Ren, J. & Sinitsyn, N. A. Braid group and topological phase transitions in nonequilibrium stochastic dynamics. Phys. Rev. E 87, 050101 (2013).

    Article  Google Scholar 

  11. Ünal, F. N., Bouhon, A. & Slager, R.-J. Topological Euler class as a dynamical observable in optical lattices. Phys. Rev. Lett. 125, 053601 (2020).

    Article  MathSciNet  Google Scholar 

  12. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

    Article  MathSciNet  Google Scholar 

  13. Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article  Google Scholar 

  14. Andersen, T. I. et al. Non-Abelian braiding of graph vertices in a superconducting processor. Nature 618, 264–269 (2023).

    Google Scholar 

  15. Stern, A. Non-Abelian states of matter. Nature 464, 187–193 (2010).

    Article  Google Scholar 

  16. Abdumalikov Jr, A. A. et al. Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482–485 (2013).

    Article  Google Scholar 

  17. Stern, A. & Lindner, N. H. Topological quantum computation—from basic concepts to first experiments. Science 339, 1179–1184 (2013).

    Article  Google Scholar 

  18. Leach, J., Dennis, M. R., Courtial, J. & Padgett, M. J. Knotted threads of darkness. Nature 432, 165 (2004).

    Article  Google Scholar 

  19. Kedia, H., Bialynicki-Birula, I., Peralta-Salas, D. & Irvine, W. T. M. Tying knots in light fields. Phys. Rev. Lett. 111, 150404 (2013).

    Article  Google Scholar 

  20. Pisanty, E. et al. Knotting fractional-order knots with the polarization state of light. Nat. Photonics 13, 569–574 (2019).

    Article  Google Scholar 

  21. Pisanty, E. et al. Conservation of torus-knot angular momentum in high-order harmonic generation. Phys. Rev. Lett. 122, 203201 (2019).

    Article  Google Scholar 

  22. Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).

    Article  Google Scholar 

  23. Zhang, X.-L. et al. Non-Abelian braiding on photonic chips. Nat. Photonics. 16, 390–395 (2022).

    Article  Google Scholar 

  24. Yang, Y. et al. Synthesis and observation of non-Abelian gauge fields in real space. Science 365, 1021–1025 (2019).

    Article  MathSciNet  Google Scholar 

  25. Sun, Y.-K. et al. Non-Abelian Thouless pumping in photonic waveguides. Nat. Phys. 18, 1080–1085 (2022).

    Article  Google Scholar 

  26. Chen, Z.-G., Zhang, R.-Y., Chan, C. T. & Ma, G. Classical non-Abelian braiding of acoustic modes. Nat. Phys. 18, 179–184 (2021).

    Google Scholar 

  27. Jiang, B. et al. Experimental observation of non-Abelian topological acoustic semimetals and their phase transitions. Nat. Phys. 17, 1239–1246 (2021).

    Article  Google Scholar 

  28. Zhang, L. et al. Acoustic non-Hermitian skin effect from twisted winding topology. Nat. Commun. 12, 6297 (2021).

    Article  Google Scholar 

  29. You, O. et al. Observation of non-Abelian Thouless pump. Phys. Rev. Lett. 128, 244302 (2022).

    Article  Google Scholar 

  30. Zhang, Q. et al. Observation of acoustic non-Hermitian Bloch braids and associated topological phase transitions. Phys. Rev. Lett. 130, 017201 (2023).

    Article  Google Scholar 

  31. Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

    Article  Google Scholar 

  32. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article  MathSciNet  Google Scholar 

  33. Hu, H. & Zhao, E. Knots and non-Hermitian Bloch bands. Phys. Rev. Lett. 126, 010401 (2021).

    Article  MathSciNet  Google Scholar 

  34. Atiyah, M. The Geometry and Physics of Knots (Cambridge Univ. Press, 1990).

  35. Guo, C.-X., Chen, S., Ding, K. & Hu, H. Exceptional non-Abelian topology in multiband non-Hermitian systems. Phys. Rev. Lett. 130, 157201 (2023).

    Article  MathSciNet  Google Scholar 

  36. Li, Z., Ding, K. & Ma, G. Eigenvalue knots and their isotopic equivalence in three-state non-Hermitian systems. Phys. Rev. Res. 5, 023038 (2023).

    Article  Google Scholar 

  37. Alexander, J. W. Topological invariants of knots and links. Trans. Am. Math. Soc. 30, 275–306 (1928).

    Article  MathSciNet  Google Scholar 

  38. Jones, V. F. R. A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc. 12, 103–111 (1985).

    Article  MathSciNet  Google Scholar 

  39. Murasugi, K. Knot Theory & Its Applications (Birkhäuser, 2008)

  40. Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019).

    Article  Google Scholar 

  41. Dunjko, V. & Briegel, H. J. Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys. 81, 074001 (2018).

    Article  MathSciNet  Google Scholar 

  42. Mehta, P. et al. A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep. 810, 1–124 (2019).

    Article  MathSciNet  Google Scholar 

  43. Rodriguez-Nieva, J. F. & Scheurer, M. S. Identifying topological order through unsupervised machine learning. Nat. Phys. 15, 790–795 (2019).

    Article  Google Scholar 

  44. Scheurer, M. S. & Slager, R.-J. Unsupervised machine learning and band topology. Phys. Rev. Lett. 124, 226401 (2020).

    Article  Google Scholar 

  45. Long, Y., Ren, J. & Chen, H. Unsupervised manifold clustering of topological phononics. Phys. Rev. Lett. 124, 185501 (2020).

    Article  Google Scholar 

  46. Yu, L.-W. & Deng, D.-L. Unsupervised learning of non-Hermitian topological phases. Phys. Rev. Lett. 126, 240402 (2021).

    Article  MathSciNet  Google Scholar 

  47. Long, Y. & Zhang, B. Unsupervised data-driven classification of topological gapped systems with symmetries. Phys. Rev. Lett. 130, 036601 (2023).

    Article  Google Scholar 

  48. Vandans, O., Yang, K., Wu, Z. & Dai, L. Identifying knot types of polymer conformations by machine learning. Phys. Rev. E 101, 022502 (2020).

    Article  Google Scholar 

  49. Davies, A. et al. Advancing mathematics by guiding human intuition with AI. Nature 600, 70–74 (2021).

    Article  Google Scholar 

  50. Yu, Y. et al. Experimental unsupervised learning of non-Hermitian knotted phases with solid-state spins. npj Quantum Inf. 8, 116 (2022).

    Article  Google Scholar 

  51. Artin, E. Theory of braids. Ann. Math. 48, 101–126 (1947).

    Article  MathSciNet  Google Scholar 

  52. Eliahou, S., Kauffman, L. H. & Thistlethwaite, M. B. Infinite families of links with trivial Jones polynomial. Topology 42, 155–169 (2003).

    Article  MathSciNet  Google Scholar 

  53. Kauffman, L. H. & Lopes, P. Infinitely many prime knots with the same Alexander invariants. J. Knot Theory Ramif. 26, 1743009 (2017).

    Article  MathSciNet  Google Scholar 

  54. Kanenobu, T. Infinitely many knots with the same polynomial invariant. Proc. Am. Math. Soc. 97, 158–162 (1986).

    Article  MathSciNet  Google Scholar 

  55. Yang, Y. et al. Non-Abelian physics in light and sound. Science 383, eadf9621 (2024).

    Article  MathSciNet  Google Scholar 

  56. Ding, K., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).

    Article  Google Scholar 

  57. Zhong, Q., Khajavikhan, M., Christodoulides, D. N. & El-Ganainy, R. Winding around non-Hermitian singularities. Nat. Commun. 9, 4808 (2018).

    Article  Google Scholar 

  58. Greiter, M. & Wilczek, F. Fractional statistics. Annu. Rev. Condens. Matter Phys. 15, 131–157 (2024).

    Article  Google Scholar 

  59. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

    Google Scholar 

  60. Shen, H., Zhen, B. & Fu, L. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).

    Article  MathSciNet  Google Scholar 

  61. Zhang, R.-Y., Cui, X., Chen, W.-J., Zhang, Z.-Q. & Chan, C. T. Symmetry-protected topological exceptional chains in non-Hermitian crystals. Commun. Phys. 6, 169 (2023).

    Article  Google Scholar 

  62. Zhang, Q. et al. Experimental characterization of three-band braid relations in non-Hermitian acoustic lattices. Phys. Rev. Res. 5, L022050 (2023).

    Article  Google Scholar 

  63. Wojcik, C. C., Sun, X.-Q., Bzdušek, T. & Fan, S. Homotopy characterization of non-Hermitian Hamiltonians. Phys. Rev. B 101, 205417 (2020).

    Article  Google Scholar 

  64. Yang, Z., Schnyder, A., Hu, J. & Chiu, C.-K. Fermion doubling theorems in two-dimensional non-Hermitian systems for Fermi points and exceptional points. Phys. Rev. Lett. 126, 086401 (2021).

    Article  MathSciNet  Google Scholar 

  65. Song, F., Yao, S. & Wang, Z. Non-Hermitian topological invariants in real space. Phys. Rev. Lett. 123, 246801 (2019).

    Article  MathSciNet  Google Scholar 

  66. Borgnia, D. S., Kruchkov, A. J. & Slager, R.-J. Non-Hermitian boundary modes and topology. Phys. Rev. Lett. 124, 056802 (2020).

    Article  MathSciNet  Google Scholar 

  67. Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

    Article  MathSciNet  Google Scholar 

  68. Wojcik, C. C., Wang, K., Dutt, A., Zhong, J. & Fan, S. Eigenvalue topology of non-Hermitian band structures in two and three dimensions. Phys. Rev. B 106, L161401 (2022).

    Article  Google Scholar 

  69. König, J. L. K., Yang, K., Budich, J. C. & Bergholtz, E. J. Braid-protected topological band structures with unpaired exceptional points. Phys. Rev. Res. 5, L042010 (2023).

    Article  Google Scholar 

  70. Hu, H., Sun, S. & Chen, S. Knot topology of exceptional point and non-Hermitian no-go theorem. Phys. Rev. Res. 4, L022064 (2022).

    Article  Google Scholar 

  71. Kawabata, K., Bessho, T. & Sato, M. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett. 123, 066405 (2019).

    Article  MathSciNet  Google Scholar 

  72. Carlström, J., Stålhammar, M., Budich, J. C. & Bergholtz, E. J. Knotted non-Hermitian metals. Phys. Rev. B 99, 161115 (2019).

    Article  Google Scholar 

  73. Bi, R., Yan, Z., Lu, L. & Wang, Z. Nodal-knot semimetals. Phys. Rev. B 96, 201305 (2017).

    Article  Google Scholar 

  74. Haken, W. Theorie der Normalflächen: ein isotopiekriterium für den Hreisknoten. Acta Math. 105, 245–375 (1961).

    Article  MathSciNet  Google Scholar 

  75. Kronheimer, P. B. & Mrowka, T. S. Khovanov homology is an unknot-detector. Publ. Math. l’IHÉS 113, 97–208 (2011).

    Article  MathSciNet  Google Scholar 

  76. Gukov, S., Halverson, J., Ruehle, F. & Sułkowski, P. Learning to unknot. Mach. Learn. Sci. Technol. 2, 025035 (2021).

    Article  Google Scholar 

  77. Craven, J., Hughes, M., Jejjala, V. & Kar, A. Learning knot invariants across dimensions. SciPost Physics 14, 021 (2023).

    Article  MathSciNet  Google Scholar 

  78. Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).

    Article  Google Scholar 

  79. Chen, W., Özdemir, Ş. K., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).

    Article  Google Scholar 

  80. Li, A. et al. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).

    Article  Google Scholar 

  81. Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).

    Article  Google Scholar 

  82. Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).

    Article  Google Scholar 

  83. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Article  Google Scholar 

  84. Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).

    Article  Google Scholar 

  85. Zhu, B. et al. Anomalous single-mode lasing induced by nonlinearity and the non-Hermitian skin effect. Phys. Rev. Lett. 129, 013903 (2022).

    Article  Google Scholar 

  86. Fruchart, M., Hanai, R., Littlewood, P. B. & Vitelli, V. Non-reciprocal phase transitions. Nature 592, 363–369 (2021).

    Article  Google Scholar 

  87. Matsumoto, N., Kawabata, K., Ashida, Y., Furukawa, S. & Ueda, M. Continuous phase transition without gap closing in non-Hermitian quantum many-body systems. Phys. Rev. Lett. 125, 260601 (2020).

    Article  MathSciNet  Google Scholar 

  88. Rudolph, L. Braided surfaces and Seifert ribbons for closed braids. Comment. Math. Helv. 58, 1–37 (1983).

    Article  MathSciNet  Google Scholar 

  89. Long, Y., Xue, H. & Zhang, B. Code for ‘Unsupervised learning of topological non-Abelian braiding in non-Hermitian bands’. Zenodo https://doi.org/10.5281/zenodo.11077148 (2024).

Download references

Acknowledgements

This research is supported by Singapore National Research Foundation Competitive Research Program under grant no. NRF-CRP23-2019-0007 and Singapore Ministry of Education Academic Research Fund Tier 2 under grant no. MOE-T2EP50123-0007. H.X. acknowledges the support of the start-up fund and the direct grant (grant no. 4053675) from the Chinese University of Hong Kong. Y.L. gratefully acknowledges the support of the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship, a Schmidt Futures programme. We thank Y. Chong for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. conceived the idea. Y.L. did the theoretical analysis and performed the calculations. Y.L. and B.Z. supervised the project. All authors participated in discussions and wrote the paper.

Corresponding authors

Correspondence to Yang Long or Baile Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Machine Intelligence thanks Dong-Ling Deng, Kun Ding and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Xue, H. & Zhang, B. Unsupervised learning of topological non-Abelian braiding in non-Hermitian bands. Nat Mach Intell 6, 904–910 (2024). https://doi.org/10.1038/s42256-024-00871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42256-024-00871-1

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics