Table 2 Regression estimates of the effect size of varied spatial characteristics on cumulative incidence proportions (CIP) and incidence rates (CIR).

From: Characterizing COVID-19 waves in urban and rural districts of India

Variable

Log(CIP) first wave

Log(CIP) second wave

Log(CIR) first wave

Log(CIR) second wave

Urbanization

0.012*** (0.002)

0.014*** (0.002)

0.012*** (0.002)

0.013*** (0.002)

Wealth

0.703*** (0.100)

0.460*** (0.095)

0.631*** (0.095)

0.436*** (0.096)

Log (population density)

−0.116** (0.055)

−0.151*** (0.039)

−0.134** (0.052)

−0.160*** (0.038)

Population age

0.056*** (0.019)

0.083*** (0.016)

0.045** (0.019)

0.081*** (0.016)

Log (no travel)

−0.198* (0.116)

−0.318*** (0.105)

−0.152 (0.117)

−0.274*** (0.106)

Log (distance)

−0.082 (0.106)

0.029 (0.087)

−0.101 (0.101)

0.019 (0.088)

Log (1+in-degree (1st wave))

0.023* (0.012)

 

0.019 (0.012)

 

Log (1+in-degree (2nd wave))

 

0.006 (0.010)

 

0.004 (0.009)

Constant

8.014*** (0.715)

7.012*** (0.627)

 

2.206*** (0.630)

λ

0.28***

0.25***

0.31***

0.29***

Observations

636

639

636

639

State fixed-effects

Yes

Yes

Yes

Yes

Log-likelihood

−420.830

−364.894

−405.872

−368.335

Akaike information Criterion

927.660

815.788

897.743

822.670

Pseudo-R2

0.784

0.797

0.784

0.790

  1. *P, **P, ***P < 0.01; standard errors are heteroskedasticity-corrected.