Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Food loss and waste valorization offers a sustainable source of biopolymers in bioinks for 3D printing

Abstract

Food loss and waste (FLW) valorization remains challenging due to mixed properties and composition arising from seasonal and regional variations in food production. Here we examine the capacities of 3D printing for valorizing FLW streams, with a focus on FLW-based bioinks. We consider how waste management practices, 3D printing technology and emerging FLW valorization techniques could address challenges concerning raw material sourcing, improved material printability and suitable mechanical properties. Bioink ingredients incorporating biologically active compounds derived from FLW streams could offer tailored functionalities, supporting food preservation and economic, health and environmental sustainability benefits in line with the Sustainable Development Goals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The landscape of FLW.
Fig. 2: The content versus recovery of cellulose fibres, cellulose nanocrystals, pectin, collagen and gelatin in different food wastes.

Similar content being viewed by others

References

  1. Desa, U. The Sustainable Development Goals Report 2018 (United Nations, 2018).

  2. Ingram, J. Nutrition security is more than food security. Nat. Food 1, 2 (2020).

    Article  Google Scholar 

  3. Zhu, J. et al. Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems. Nat. Food 4, 247–256 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Gatto, A. & Chepeliev, M. Global food loss and waste estimates show increasing nutritional and environmental pressures. Nat. Food 5, 136–147 (2024).

    Article  PubMed  Google Scholar 

  6. Guo, Y. et al. Global food loss and waste embodies unrecognized harms to air quality and biodiversity hotspots. Nat. Food 4, 686–698 (2023).

    Article  PubMed  Google Scholar 

  7. Aragie, E., Balié, J. & MoralesOpazo, C. Does reducing food losses and wastes in sub-Saharan Africa make economic sense? Waste Manag. Res. 36, 483–494 (2018).

    Article  PubMed  Google Scholar 

  8. Gheewala, S. H. Life cycle assessment for sustainability assessment of biofuels and bioproducts. Biofuel Res. J. 10, 1810–1815 (2023).

    Article  CAS  Google Scholar 

  9. Xue, L. et al. Missing food, missing data? A critical review of global food losses and food waste data. Environ. Sci. Technol. 51, 6618–6633 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Li, Z. et al. Seasonal changes in bulk density-based waste identification and its dominant controlling subcomponents in food waste. Resour. Conserv. Recycl. 168, 105244 (2021).

    Article  Google Scholar 

  11. Chan, H. K. et al. The impact of 3D printing technology on the supply chain: manufacturing and legal perspectives. Int. J. Prod. Econ. 205, 156–162 (2018).

    Article  Google Scholar 

  12. Huang, J. et al. Conformal geometry and multimaterial additive manufacturing through freeform transformation of building layers. Adv. Mater. 33, 2005672 (2021).

    Article  CAS  Google Scholar 

  13. Martin, J. H. et al. 3D printing of high-strength aluminium alloys. Nature 549, 365–369 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Yu, I. K. M. & Wong, K.-H. Food waste-derived 3D printable materials: a carbon neutral solution to global foodloss. Trends Food Sci. Technol. 137, 156–166 (2023).

    Article  CAS  Google Scholar 

  15. Clarkson, C. M. et al. Recent developments in cellulose nanomaterial composites. Adv. Mater. 33, 2000718 (2021).

    Article  CAS  Google Scholar 

  16. Siqueira, G. et al. Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv. Funct. Mater. 27, 1604619 (2017).

    Article  MathSciNet  Google Scholar 

  17. Moosabeiki, V. et al. Curvature tuning through defect-based 4D printing. Commun. Mater. 5, 10 (2024).

    Article  Google Scholar 

  18. Liu, G., Zhang, X. & Wang, D. Tailoring crystallization: towards high-performance poly(lactic acid). Adv. Mater. 26, 6905–6911 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Rosenboom, J.-G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Tyler, B. et al. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 107, 163–175 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Ferreira, R. T. L. et al. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Composites B 124, 88–100 (2017).

    Article  CAS  Google Scholar 

  22. Chizari, K. et al. 3D printing of highly conductive nanocomposites for the functional optimization of liquid sensors. Small 12, 6076–6082 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, Q. et al. 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl. Mater. Interfaces 9, 4015–4023 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Kwan, T. H., Hu, Y. & Lin, C. S. K. Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly (lactic acid) production. J. Clean. Prod. 181, 72–87 (2018).

    Article  CAS  Google Scholar 

  25. Kim, J. R. & Netravali, A. N. Self‐healing properties of protein resin with soy protein isolate‐loaded poly (d,l‐lactide‐co‐glycolide) microcapsules. Adv. Funct. Mater. 26, 4786–4796 (2016).

    Article  CAS  Google Scholar 

  26. Widsten, P. et al. Tannins and extracts of fruit byproducts: antibacterial activity against foodborne bacteria and antioxidant capacity. J. Agric. Food Chem. 62, 11146–11156 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Medema, M. H., de Rond, T. & Moore, B. S. Mining genomes to illuminate the specialized chemistry of life. Nat. Rev. Genet. 22, 553–571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kersten, R. D. & Weng, J.-K. Gene-guided discovery and engineering of branched cyclic peptides in plants. Proc. Natl Acad. Sci. USA 115, E10961–E10969 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rivero-Pino, F. et al. Antimicrobial plant-derived peptides obtained by enzymatic hydrolysis and fermentation as components to improve current food systems. Trends Food Sci. Technol. 135, 32–42 (2023).

    Article  CAS  Google Scholar 

  30. Liu, X.-y, Ou, H. & Gregersen, H. Ultrasound-assisted supercritical CO2 extraction of cucurbitacin E from Iberis amara seeds. Ind. Crops Prod. 145, 112093 (2020).

    Article  CAS  Google Scholar 

  31. Shang, Y. et al. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346, 1084–1088 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Cheng, W.-X. et al. PLGA/β-TCP composite scaffold incorporating cucurbitacin B promotes bone regeneration by inducing angiogenesis. J. Orthop. Translat. 31, 41–51 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Velasco‐Hogan, A., Xu, J. & Meyers, M. A. Additive manufacturing as a method to design and optimize bioinspired structures. Adv. Mater. 30, 1800940 (2018).

    Article  Google Scholar 

  34. Weaver, J. C. et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science 336, 1275–1280 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Chen, S.-M. et al. Biomimetic twisted plywood structural materials. Natl Sci. Rev. 5, 703–714 (2018).

    Article  CAS  Google Scholar 

  36. Cera, L. et al. A bioinspired and hierarchically structured shape-memory material. Nat. Mater. 20, 242–249 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Perez, L. et al. Plant extract compositions and methods of preparation thereof. US patent US9743679B2 (2017).

  38. Li, Z. et al. A novel bulk density-based recognition method for kitchen and dry waste: a case study in Beijing, China. Waste Manag. 114, 89–95 (2020).

    Article  PubMed  Google Scholar 

  39. Kargupta, W. et al. Sustainable production of nanocellulose: technoeconomic assessment, energy savings and scalability. J. Clean. Prod. 425, 138748 (2023).

    Article  CAS  Google Scholar 

  40. Kim, D. et al. A microneedle technology for sampling and sensing bacteria in the food supply chain. Adv. Funct. Mater. 31, 2005370 (2021).

    Article  CAS  Google Scholar 

  41. Afnas, V. M. et al. PVA/gelatin/chitin ternary blend as a humidity sensing material. J. Mater. Sci. Mater. Electron. 33, 2031–2043 (2022).

    Article  CAS  Google Scholar 

  42. Jia, X. et al. Development of a novel colorimetric sensor array based on oxidized chitin nanocrystals and deep learning for monitoring beef freshness. Sens. Actuators B 390, 133931 (2023).

    Article  CAS  Google Scholar 

  43. Essawy, A. A. et al. Basic fuchsin dye as the first fluorophore for optical sensing of morpholine in fruits crust and urine samples. Anal. Chem. 96, 373–380 (2024).

    Article  PubMed  Google Scholar 

  44. Martin-Rios, C. et al. Food waste management innovations in the foodservice industry. Waste Manage. 79, 196–206 (2018).

    Article  Google Scholar 

  45. Mohanty, A. K. et al. Sustainable polymers. Nat. Rev. Methods Primers 2, 46 (2022).

    Article  CAS  Google Scholar 

  46. Our sustainability impact achieved in 2023. Apeel https://www.apeel.com/impact (2023).

  47. Nguyen, N. A. et al. A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability. Sci. Adv. 4, eaat4967 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jagadiswaran, B. et al. Valorization of food industry waste and by-products using 3D printing: a study on the development of value-added functional cookies. Future Foods 4, 100036 (2021).

    Article  CAS  Google Scholar 

  49. Muthurajan, M. et al. Valorization of food industry waste streams using 3D food printing: a study on noodles prepared from potato peel waste. Food Bioproc. Technol. 14, 1817–1834 (2021).

    Article  CAS  Google Scholar 

  50. Pant, A. et al. Valorisation of vegetable food waste utilising three-dimensional food printing. Virtual Phys. Prototyp. 18, e2146593 (2023).

    Article  Google Scholar 

  51. Schimpf, V. et al. Low-viscosity limonene dimethacrylate as a bio-based alternative to bisphenol A-based acrylic monomers for photocurable thermosets and 3D printing. Macromol. Mater. Eng. 305, 2000210 (2020).

    Article  CAS  Google Scholar 

  52. Statistics. FAO https://www.fao.org/statistics (2023).

  53. de Souza Coelho, C. C. et al. Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. Int. J. Biol. Macromol. 159, 1048–1061 (2020).

    Article  Google Scholar 

  54. Balakrishnan, P. et al. Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydr. Polym. 169, 176–188 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Dai, H. et al. Utilization of pineapple peel for production of nanocellulose and film application. Cellulose 25, 1743–1756 (2018).

    Article  CAS  Google Scholar 

  56. Pacheco, C. M., Bustos A, C. & Reyes, G. Cellulose nanocrystals from blueberry pruning residues isolated by ionic liquids and TEMPO-oxidation combined with mechanical disintegration. J. Dispers. Sci. Technol. 41, 1731–1741 (2020).

    Article  CAS  Google Scholar 

  57. De Melo, E. M., Clark, J. H. & Matharu, A. S. The Hy-MASS concept: hydrothermal microwave assisted selective scissoring of cellulose for in situ production of (meso) porous nanocellulose fibrils and crystals. Green Chem. 19, 3408–3417 (2017).

    Article  Google Scholar 

  58. Tibolla, H. et al. Cellulose nanofibers produced from banana peel by enzymatic treatment: study of process conditions. Ind. Crops Prod. 95, 664–674 (2017).

    Article  CAS  Google Scholar 

  59. Cypriano, D. Z., da Silva, L. L. & Tasic, L. High value-added products from the orange juice industry waste. Waste Manag. 79, 71–78 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Corrales-Ureña, Y. R. et al. Biogenic silica-based microparticles obtained as a sub-product of the nanocellulose extraction process from pineapple peels. Sci. Rep. 8, 10417 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  61. Marett, J., Aning, A. & Foster, E. J. The isolation of cellulose nanocrystals from pistachio shells via acid hydrolysis. Ind. Crops Prod. 109, 869–874 (2017).

    Article  CAS  Google Scholar 

  62. Longaresi, R. et al. The maize stem as a potential source of cellulose nanocrystal: cellulose characterization from its phenological growth stage dependence. Ind. Crops Prod. 133, 232–240 (2019).

    Article  CAS  Google Scholar 

  63. Harini, K., Ramya, K. & Sukumar, M. Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose. Carbohydr. Polym. 201, 329–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Costa, A. L. R. et al. Cellulose nanofibers from banana peels as a Pickering emulsifier: high-energy emulsification processes. Carbohydr. Polym. 194, 122–131 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, Y. W. et al. Pyrus pyrifolia fruit peel as sustainable source for spherical and porous network based nanocellulose synthesis via one-pot hydrolysis system. Int. J. Biol. Macromol. 123, 1305–1319 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Gao, H. et al. Fabrication of cellulose nanofibers from waste brown algae and their potential application as milk thickeners. Food Hydrocoll. 79, 473–481 (2018).

    Article  CAS  Google Scholar 

  67. Jongaroontaprangsee, S., Chiewchan, N. & Devahastin, S. Production of nanofibrillated cellulose with superior water redispersibility from lime residues via a chemical-free process. Carbohydr. Polym. 193, 249–258 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Jiang, F. & Hsieh, Y.-L. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr. Polym. 122, 60–68 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Sá, N. M. et al. From cashew byproducts to biodegradable active materials: bacterial cellulose–lignin–cellulose nanocrystal nanocomposite films. Int. J. Biol. Macromol. 161, 1337–1345 (2020).

    Article  PubMed  Google Scholar 

  70. Hemmati, F. et al. Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues. Int. J. Biol. Macromol. 120, 1216–1224 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Hafemann, E. et al. Enhancing chlorine-free purification routes of rice husk biomass waste to obtain cellulose nanocrystals. Waste Biomass Valorization 11, 6595–6611 (2020).

    Article  CAS  Google Scholar 

  72. Kallel, F. et al. Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind. Crops Prod. 87, 287–296 (2016).

    Article  CAS  Google Scholar 

  73. Liu, Z. et al. Extraction, isolation and characterization of nanocrystalline cellulose from industrial kelp (Laminaria japonica) waste. Carbohydr. Polym. 173, 353–359 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Rhim, J.-W., Reddy, J. P. & Luo, X. Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose 22, 407–420 (2015).

    Article  CAS  Google Scholar 

  75. Müller-Maatsch, J. et al. Pectin content and composition from different food waste streams. Food Chem. 201, 37–45 (2016).

    Article  PubMed  Google Scholar 

  76. Prakash Maran, J., Sivakumar, V., Thirugnanasambandham, K. & Sridhar, R. Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydr. Polym. 101, 786–791 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Acharya, P. P. et al. A comparative assessment of collagen type 1 from silver carp (fresh water) and milk shark (marine) fish waste. 3 Biotech 12, 82 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lai, C.-S. et al. Type II collagen from cartilage of Acipenser baerii promotes wound healing in human dermal fibroblasts and in mouse skin. Mar. Drugs 18, 511 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Veeruraj, A., Arumugam, M. & Balasubramanian, T. Isolation and characterization of thermostable collagen from the marine eel-fish (Evenchelys macrura). Process Biochem. 48, 1592–1602 (2013).

    Article  CAS  Google Scholar 

  80. Zhong, M. et al. Isolation and characterization of collagen from the body wall of sea cucumber Stichopus monotuberculatus. J. Food Sci. 80, C671–C679 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Woo, J.-W. et al. Extraction optimization and properties of collagen from yellowfin tuna (Thunnus albacares) dorsal skin. Food Hydrocoll. 22, 879–887 (2008).

    Article  CAS  Google Scholar 

  82. Duan, R. et al. Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food Chem. 112, 702–706 (2009).

    Article  CAS  Google Scholar 

  83. Chakka, A. K. et al. Poultry processing waste as an alternative source for mammalian gelatin: extraction and characterization of gelatin from chicken feet using food grade acids. Waste Biomass Valorization 8, 2583–2593 (2017).

    Article  CAS  Google Scholar 

  84. Rivera, M. L., Bae, S. S. & Hudson, S. E. Designing a sustainable material for 3D printing with spent coffee grounds. In Proc. 2023 ACM Designing Interactive Systems Conference 294–311 (Association for Computing Machinery, 2023).

Download references

Acknowledgements

D.L. acknowledges support from the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (ASTIP-TRIC01). M.T. acknowledges support from the Ministry of Higher Education, Malaysia, under the Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries programme.

Author information

Authors and Affiliations

Authors

Contributions

M.M. and H.A. are co-first authors. M.M. and H.A. were responsible for data collection, analysis and drafting the original manuscript. J.P. handled data visualization. G.S. ensured data accuracy and relevance. D.L. conceptualized the study and secured funding. V.K.G. contributed to the study’s conceptualization and design. M.A. and M.T. jointly contributed to the conceptualization, supervised the research process and provided guidance throughout. All authors critically reviewed and approved the final paper.

Corresponding authors

Correspondence to Dan Liu, Vijai Kumar Gupta, Mortaza Aghbashlo or Meisam Tabatabaei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Wei-Hsin Chen, Prakash Kumar Nayak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madadi, M., Amiri, H., Pan, J. et al. Food loss and waste valorization offers a sustainable source of biopolymers in bioinks for 3D printing. Nat Food 6, 323–330 (2025). https://doi.org/10.1038/s43016-025-01146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-025-01146-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research