Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gaps and strategies for accurate simulation of waterlogging impacts on crop productivity

Abstract

With the changing climate, soil waterlogging is a growing threat to food security. Yet, contemporary approaches employed in crop models to simulate waterlogging are in their infancy. By analysing 21 crop models, we show that critical deficiencies persist in accurately simulating capillary rise, crop resistance to transient periods of waterlogging, crop recovery mechanisms, and the effects on soil nitrogen processes, phenology and yield components. This hinders the ability of such models to reliably simulate the impacts of excessive soil moisture. Advanced crop modelling analytics will enable scenario analysis and, with time, farming systems adaptation to climate change and increasing frequency of crop failure due to waterlogging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the processes and drivers leading to waterlogging and associated effects on soil and crop performance.
Fig. 2: Processes in CMs involved in simulating waterlogging conditions.
Fig. 3: Mechanisms required to initiate waterlogging stress in CMs.
Fig. 4: Effects of waterlogging on soil properties and solute transport processes in CMs.
Fig. 5: Processes relating to waterlogging that are captured in CMs.

Similar content being viewed by others

References

  1. de S. Nóia Júnior, R. et al. A call to action for global research on the implications of waterlogging for wheat growth and yield. Agric. Water Manage. 284, 108334 (2023).

    Article  Google Scholar 

  2. Liu, K. et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 14, 765 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuppel, S., Houspanossian, J., Nosetto, M. D. & Jobbágy, E. G. What does it take to flood the Pampas? Lessons from a decade of strong hydrological fluctuations. Water Resour. Res. 51, 2937–2950 (2015).

    Article  ADS  Google Scholar 

  4. Status of the World’s Soil Resources: Main Report (FAO, 2015).

  5. Alam, M. S., Sasaki, N. & Datta, A. Waterlogging, crop damage and adaptation interventions in the coastal region of Bangladesh: a perception analysis of local people. Environ. Dev. 23, 22–32 (2017).

    Article  Google Scholar 

  6. Houspanossian, J. et al. Agricultural expansion raises groundwater and increases flooding in the South American plains. Science 380, 1344–1348 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Pang, J., Zhou, M., Mendham, N. & Shabala, S. Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust. J. Agric. Res. 55, 895–906 (2004).

    Article  Google Scholar 

  8. Zampieri, M., Ceglar, A., Dentener, F. & Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 12, 064008 (2017).

    Article  ADS  Google Scholar 

  9. Lawal, A., Kerner, H., Becker-Reshef, I. & Meyer, S. Mapping the location and extent of 2019 prevent planting acres in South Dakota using remote sensing techniques. Remote Sens. 13, 2430 (2021).

    Article  ADS  Google Scholar 

  10. de S. Nóia Júnior, R. et al. The extreme 2016 wheat yield failure in France. Glob. Change Biol. 29, 3130–3146 (2023).

    Article  Google Scholar 

  11. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2023).

  12. Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).

    Article  ADS  Google Scholar 

  13. Singh, A. Soil salinization and waterlogging: a threat to environment and agricultural sustainability. Ecol. Indic. 57, 128–130 (2015).

    Article  Google Scholar 

  14. Guo, E., Zhang, J., Wang, Y., Si, H. & Zhang, F. Dynamic risk assessment of waterlogging disaster for maize based on CERES-Maize model in midwest of Jilin Province, China. Nat. Hazards 83, 1747–1761 (2016).

    Google Scholar 

  15. Zhang, J., Pan, B., Shi, W. & Zhang, Y. Monitoring waterlogging damage of winter wheat based on HYDRUS-1D and WOFOST coupled model and assimilated soil moisture data of remote sensing. Remote Sens. 15, 4133 (2023).

    Article  ADS  Google Scholar 

  16. Bassu, S., Asseng, S., Motzo, R. & Giunta, F. Optimising sowing date of durum wheat in a variable Mediterranean environment. Field Crops Res. 111, 109–118 (2009).

    Article  Google Scholar 

  17. Sprunger, C. D., Lindsey, A. & Lightcap, A. Above- and belowground linkages during extreme moisture excess: leveraging knowledge from natural ecosystems to better understand implications for row-crop agroecosystems. J. Exp. Bot. 74, 2845–2859 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Manik, S. M. N. et al. Soil and crop management practices to minimize the impact of waterlogging on crop productivity. Front. Plant Sci. 10, 140 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Langan, P. et al. Phenotyping for waterlogging tolerance in crops: current trends and future prospects. J. Exp. Bot. 73, 5149–5169 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaur, G. et al. Impacts and management strategies for crop production in waterlogged or flooded soils: a review. Agron. J. 112, 1475–1501 (2020).

    Article  Google Scholar 

  21. Tian, L.-X. et al. How does the waterlogging regime affect crop yield? A global meta-analysis. Front. Plant Sci. 12, 634898 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tong, C. et al. Opportunities for improving waterlogging tolerance in cereal crops—physiological traits and genetic mechanisms. Plants 10, 1560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boote, K. J., Jones, J. W., White, J. W., Asseng, S. & Lizaso, J. I. Putting mechanisms into crop production models. Plant Cell Environ. 36, 1658–1672 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Shaw, R. E. & Meyer, W. S. Improved empirical representation of plant responses to waterlogging for simulating crop yield. Agron. J. 107, 1711–1723 (2015).

    Article  CAS  Google Scholar 

  25. Liu, K. et al. Climate change shifts forward flowering and reduces crop waterlogging stress. Environ. Res. Lett. 16, 094017 (2021).

    Article  ADS  Google Scholar 

  26. Pasley, H. R., Huber, I., Castellano, M. J. & Archontoulis, S. V. Modeling flood-induced stress in soybeans. Front. Plant Sci. 11, 62 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Beegum, S. et al. Developing functional relationships between waterlogging and cotton growth and physiology—towards waterlogging modeling. Front. Plant Sci. 14, 1174682 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jin, X., Jin, Y., Zhai, J., Fu, D. & Mao, X. Identification and prediction of crop waterlogging risk areas under the impact of climate change. Water 14, 1956 (2022).

    Article  Google Scholar 

  29. Liu, K. et al. The state of the art in modeling waterlogging impacts on plants: what do we know and what do we need to know. Earths Future 8, e2020EF001801 (2020).

    Article  ADS  Google Scholar 

  30. Rosenzweig, C. et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 (2013).

    Article  ADS  Google Scholar 

  31. Githui, F. et al. Modelling waterlogging impacts on crop growth: a review of aeration stress definition in crop models and sensitivity analysis of APSIM. Int. J. Plant Biol. 13, 180–200 (2022).

    Article  Google Scholar 

  32. Shaw, R. E., Meyer, W. S., McNeill, A. & Tyerman, S. D. Waterlogging in Australian agricultural landscapes: a review of plant responses and crop models. Crop Pasture Sci. 64, 549–562 (2013).

    Article  Google Scholar 

  33. Kim, Y.-U. et al. Mechanisms and modelling approaches for excessive rainfall stress on cereals: waterlogging, submergence, lodging, pests and diseases. Agric. For. Meteorol. 344, 109819 (2024).

    Article  Google Scholar 

  34. Dang, Y., Menzies, N. & Dalal, R. Soil Constraints on Crop Production (Cambridge Scholars, 2022).

  35. Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Kersebaum, K. C. in Methods of Introducing System Models into Agricultural Research (eds Ahuja, L. R. & Ma, L.) 65–94 (American Society of Agronomy and Soil Science Society of America, 2015).

  37. Soltani, A., Maddah, V. & Sinclair, T. R. SSM-Wheat: a simulation model for wheat development, growth and yield. Int. J. Plant Prod. 7, 711–740 (2013).

    Google Scholar 

  38. Feng, L. Study on Simulation Model of Wheat Growth and Development (Nanjing Agricultural Univ., 1995).

  39. Yang, R. et al. Implications of soil waterlogging for crop quality: a meta-analysis. Eur. J. Agron. 161, 127395 (2024).

    Article  CAS  Google Scholar 

  40. Gebbers, R. & Adamchuk, V. I. Precision agriculture and food security. Science 327, 828–831 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. de Souza Nóia Júnior, R. Understanding Extreme Wheat Production Failures Through Modeling (Technische Univ. München, 2023).

  42. Ebrahimi-Mollabashi, E. et al. Enhancing APSIM to simulate excessive moisture effects on root growth. Field Crops Res. 236, 58–67 (2019).

    Article  Google Scholar 

  43. de Wit, A. et al. 25 years of the WOFOST cropping systems model. Agric. Syst. 168, 154–167 (2019).

    Article  Google Scholar 

  44. Qian, L. et al. An improved CROPR model for estimating cotton yield under soil aeration stress. Crop Pasture Sci. 68, 366–377 (2017).

    Article  Google Scholar 

  45. Pais, I. P. et al. Wheat crop under waterlogging: potential soil and plant effects. Plants 12, 149 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Z. & Furman, A. Soil redox dynamics under dynamic hydrologic regimes—a review. Sci. Total Environ. 763, 143026 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Nguyen, L. T. T. et al. Impacts of waterlogging on soil nitrification and ammonia-oxidizing communities in farming system. Plant Soil 426, 299–311 (2018).

    Article  CAS  Google Scholar 

  48. Haas, E. et al. LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale. Landsc. Ecol. 28, 615–636 (2013).

    Article  Google Scholar 

  49. Basso, B. & Ritchie, J. T. in The Ecology of Agricultural Landscapes: Long-Term Research on the Path to Sustainability (eds Hamilton, S. K. et al.) 252–274 (Oxford Univ. Press, 2015).

  50. Hoogenboom, G. et al. in Advances in Crop Modelling for a Sustainable Agriculture (ed. Boote, K.) 173–216 (Burleigh Dodds Science, 2019).

  51. Raes, D., Steduto, P., Hsiao, T. C. & Fereres, E. in AquaCrop Version 7.1: Reference Manual (eds Raes, D. et al.) 1–167 (FAO, 2023).

  52. Kroes, J. G. et al. SWAP Version 4 (Wageningen Environmental Research, 2017); https://doi.org/10.18174/416321

  53. Valkama, E. et al. Can conservation agriculture increase soil carbon sequestration? A modelling approach. Geoderma 369, 114298 (2020).

    Article  ADS  CAS  Google Scholar 

  54. Ramirez-Villegas, J. et al. CGIAR modeling approaches for resource‐constrained scenarios: I. Accelerating crop breeding for a changing climate. Crop Sci. 60, 547–567 (2020).

    Article  Google Scholar 

  55. Jarvis, N., Larsbo, M., Lewan, E. & Garré, S. Improved descriptions of soil hydrology in crop models: the elephant in the room? Agric. Syst. 202, 103477 (2022).

    Article  Google Scholar 

  56. Hartmann, M. & Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 4, 4–18 (2022).

    Article  ADS  Google Scholar 

  57. Velmurugan, A., Swarnam, T. P., Ambast, S. K. & Kumar, N. Managing waterlogging and soil salinity with a permanent raised bed and furrow system in coastal lowlands of humid tropics. Agric. Water Manage 168, 56–67 (2016).

    Article  Google Scholar 

  58. Nordblom, T. L., Hutchings, T. R., Godfrey, S. S. & Schefe, C. R. Precision variable rate nitrogen for dryland farming on waterlogging Riverine Plains of southeast Australia? Agric. Syst. 186, 102962 (2021).

    Article  Google Scholar 

  59. Maestrini, B. & Basso, B. Drivers of within-field spatial and temporal variability of crop yield across the US Midwest. Sci. Rep. 8, 14833 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  60. Ganot, Y. & Dahlke, H. E. A model for estimating Ag-MAR flooding duration based on crop tolerance, root depth, and soil texture data. Agric. Water Manage 255, 107031 (2021).

    Article  Google Scholar 

  61. Weber, T. K. D. et al. Hydro-pedotransfer functions: a roadmap for future development. Hydrol. Earth Syst. Sci. 28, 3391–3433 (2024).

    Article  CAS  Google Scholar 

  62. Naz, B. S., Sharples, W., Ma, Y., Goergen, K. & Kollet, S. Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe. Geosci. Model Dev. 16, 1617–1639 (2023).

    Article  ADS  Google Scholar 

  63. Siad, S. M. et al. A review of coupled hydrologic and crop growth models. Agric. Water Manage. 224, 105746 (2019).

    Article  Google Scholar 

  64. Shahhosseini, M., Hu, G., Huber, I. & Archontoulis, S. V. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Sci. Rep. 11, 1606 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, L. et al. Knowledge-guided machine learning for improving crop yield projections of waterlogging effects under climate change. Resour. Environ. Sustain. 19, 100185 (2025).

    Google Scholar 

  66. Brown, H. E. et al. Plant Modelling Framework: software for building and running crop models on the APSIM platform. Environ. Model. Softw. 62, 385–398 (2014).

    Article  Google Scholar 

  67. Williams, J. R. The Erosion-Productivity Impact Calculator (EPIC) model: a case history. Phil. Trans. R. Soc. B 329, 421–428 (1990).

    Article  ADS  Google Scholar 

  68. Izaurralde, R. C., Williams, J. R., McGill, W. B., Rosenberg, N. J. & Jakas, M. C. Q. Simulating soil C dynamics with EPIC: model description and testing against long-term data. Ecol. Model. 192, 362–384 (2006).

    Article  Google Scholar 

  69. Tao, F., Yokozawa, M. & Zhang, Z. Modelling the impacts of weather and climate variability on crop productivity over a large area: a new process-based model development, optimization, and uncertainties analysis. Agric. For. Meteorol. 149, 831–850 (2009).

    Article  ADS  Google Scholar 

  70. Tao, F., & Zhang, Z. Climate change, wheat productivity and water use in the North China Plain: a new super-ensemble-based probabilistic projection. Agric. For. Meteorol. 170, 146–165 (2013).

    Article  ADS  Google Scholar 

  71. Nendel, C. et al. The MONICA model: testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecol. Model. 222, 1614–1625 (2011).

    Article  CAS  Google Scholar 

  72. Enders, A. et al. SIMPLACE—a versatile modelling and simulation framework for sustainable crops and agroecosystems. In Silico Plants 5, diad006 (2023).

    Article  Google Scholar 

  73. STICS Soil–Crop Model—Conceptual Framework, Equations and Uses (Quae, 2023).

  74. Zhu, Y. et al. Research progress on the crop growth model CropGrow. Sci. Agric. Sin. 53, 3235–3256 (2020).

    Google Scholar 

  75. Chen, X. et al. WheatSM V5.0: a Python-based wheat growth and development simulation model with cloud services integration for enhancing agricultural applications. Agronomy 13, 2411 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.G.-V. acknowledges funding from Consejería de Universidad, Investigación e Innovación—Junta de Andalucia through the Qualifica Project (QUAL21_023 IAS), and from WheatNet (‘Conexión TRIGO’) of the Spanish National Research Council (CSIC). The contribution of T.K.D.W. was made possible by the joint project of Digitalization in Organic Agriculture (DigiPlus, grant number 28 DE 207A 21), funded by the German Federal Office of Agriculture and Food. M.T.H. and K.L. were in part supported by funding from the Australian Grains Research & Development Corporation (GRDC contract code UOT1906-002RTX). T.G. acknowledges partial funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2070 – 390732324 and under the Collaborative Research Centre DETECT (grant number SFB1502/1–2022 -450058266).

Author information

Authors and Affiliations

Authors

Contributions

M.G.-V., M.d.S.V., T.P., M.T.H., K.L., R.d.S.N.-J., T.K.D.W. and J.Z. conceived of the study. M.G.-V., M.d.S.V. and T.P. designed and coordinated the study. M.G.-V., M.d.S.V., M.T.H., K.L., R.d.S.N.-J., T.K.D.W., J.Z., M.A., S. Archontoulis, S. Asseng, P.A., J.B., B.B., X.C., Y.C., Q.d.J.v.L., M.D., A.d.W., B.D., R.F., C.F., M.G., T.G., A.G., G.H., K.C.K., Y.-U.K., D.K., B.L., L.M., K.M., C.N., G.P., A.P., D.M.S., C.S., V. Shelia, V. Stocca, F.T., E.W., H.W., Z.Z., Y.Z. and T.P. provided crop model information and discussed the results. M.G.-V. performed the formal analysis, produced the figures and wrote the initial paper. M.d.S.V., T.P., M.T.H., K.L., R.d.S.N.-J., T.K.D.W. and J.Z. contributed to the discussion, reviewed the paper and provided critical feedback. All authors contributed to editing the final paper.

Corresponding author

Correspondence to Margarita Garcia-Vila.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Bin Wang, Qiang Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Vila, M., dos Santos Vianna, M., Harrison, M.T. et al. Gaps and strategies for accurate simulation of waterlogging impacts on crop productivity. Nat Food 6, 553–562 (2025). https://doi.org/10.1038/s43016-025-01179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-025-01179-y

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene