Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Past climate change effects on human evolution

Abstract

The genus Homo evolved during the Pleistocene — an epoch of gradual cooling and amplification of glacial cycles. The changing climates influenced early human survival, adaptation and evolution in complex ways. In this Review, we present current knowledge about the effects of past climate changes on the evolutionary trajectory of human species. Humans emerged in dry grassland and shrubland when average climate conditions were warm. As global climate started cooling down, human species needed either to track their preferred habitats or to adapt to new local conditions, each of which is indicated in the archaeological record. Limited dispersal ability and narrow ecological preferences were predominant in early species, whereas cultural innovations and consequently wider ecological niches became commonplace in later species, allowing them to live in colder extratropical climates. Yet, despite their growing ecological versatility, all species but one eventually went extinct. Future research should explore cultural transmission between and within species, and the influence of climate change on human genetic diversification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Palaeoclimate and human evolution timeline.
Fig. 2: Climate response to astronomical forcings.
Fig. 3: Past shifts in vegetation.
Fig. 4: Climate impacts on human evolution.
Fig. 5: Human preferences for biomes.
Fig. 6: Dispersal of anatomically modern humans.
Fig. 7: Habitat preferences.

Similar content being viewed by others

References

  1. Margari, V. et al. Extreme glacial cooling likely led to hominin depopulation of Europe in the early Pleistocene. Science 381, 693–699 (2023).

    Article  CAS  Google Scholar 

  2. Maslin, M. A., Shultz, S. & Trauth, M. H. A synthesis of the theories and concepts of early human evolution. Phil. Trans. R. Soc. B 370, 20140064 (2015).

    Article  Google Scholar 

  3. Zeller, E., Timmermann, A., Yun, K., Raia, P. & Ruan, J. Human adaptation to diverse biomes over the past 3 million years. Science 380, 604–608 (2023).

    Article  CAS  Google Scholar 

  4. Beyer, R. M., Krapp, M., Eriksson, A. & Manica, A. Climatic windows for human migration out of Africa in the past 300,000 years. Nat. Commun. 12, 4889 (2021).

    Article  CAS  Google Scholar 

  5. Timmermann, A. & Friedrich, T. Late Pleistocene climate drivers of early human migration. Nature 538, 92–95 (2016).

    Article  CAS  Google Scholar 

  6. Degroot, D. et al. The history of climate and society: a review of the influence of climate change on the human past. Environ. Res. Lett. 17, 103001 (2022).

    Article  Google Scholar 

  7. Ludecke, T. et al. Persistent C-3 vegetation accompanied Plio-Pleistocene hominin evolution in the Malawi Rift (Chiwondo Beds, Malawi). J. Hum. Evol. 90, 163–175 (2016).

    Article  Google Scholar 

  8. Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).

    Article  CAS  Google Scholar 

  9. Cerling, T. E., Quade, J., Wang, Y. & Bowman, J. R. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature 341, 138–139 (1989).

    Article  CAS  Google Scholar 

  10. Lee-Thorp, J. A., Sponheimer, M., Passey, B. H., de Ruiter, D. J. & Cerling, T. E. Stable isotopes in fossil hominin tooth enamel suggest a fundamental dietary shift in the Pliocene. Phil. Trans. R. Soc. B 365, 3389–3396 (2010).

    Article  Google Scholar 

  11. Feakins, S. J. et al. Northeast African vegetation change over 12 m.y. Geology 41, 295–298 (2013).

    Article  Google Scholar 

  12. Tierney, J. E., deMenocal, P. B. & Zander, P. D. A climatic context for the out-of-Africa migration. Geology 45, 1023–1026 (2017).

    Article  Google Scholar 

  13. DeMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).

    Article  CAS  Google Scholar 

  14. Scott, L. & Neumann, F. H. Pollen-interpreted palaeoenvironments associated with the Middle and Late Pleistocene peopling of southern Africa. Quat. Int. 495, 169–184 (2018).

    Article  Google Scholar 

  15. Jaouen, K. et al. Exceptionally high δ15N values in collagen single amino acids confirm Neandertals as high-trophic level carnivores. Proc. Natl Acad. Sci. USA 116, 4928–4933 (2019).

    Article  CAS  Google Scholar 

  16. Behrensmeyer, A. K. Climate change and human evolution. Science 311, 476–478 (2006).

    Article  CAS  Google Scholar 

  17. Smith, R. & Gregory, J. The last glacial cycle: transient simulations with an AOGCM. Clim. Dynam. 38, 1545–1559 (2012).

    Article  Google Scholar 

  18. Yun, K.-S. et al. A transient CGCM simulation of the past 3 million years. Clim. Past. 19, 1951–1974 (2023).

    Article  Google Scholar 

  19. Timmermann, A. et al. Modeling obliquity and CO2 effects on Southern Hemisphere climate during the past 408 ka. J. Clim. 27, 1863–1875 (2014).

    Article  Google Scholar 

  20. Vahdati, A. R., Weissmann, J. D., Timmermann, A., de Leon, M. P. & Zollikofer, C. P. E. Exploring Late Pleistocene hominin dispersals, coexistence and extinction with agent-based multi-factor models. Quat. Sci. Rev. 279, 107391 (2022).

    Article  Google Scholar 

  21. Timmermann, A. et al. Climate effects on archaic human habitats and species successions. Nature 604, 495–501 (2022).

    Article  CAS  Google Scholar 

  22. Ruan, J. et al. Climate shifts orchestrated hominin interbreeding events across Eurasia. Science 381, 699–703 (2023).

    Article  CAS  Google Scholar 

  23. Eriksson, A. et al. Late Pleistocene climate change and the global expansion of anatomically modern humans. Proc. Natl Acad. Sci. USA 109, 16089–16094 (2012).

    Article  CAS  Google Scholar 

  24. Raia, P. et al. Past extinctions of Homo Species coincided with increased vulnerability to climatic change. One Earth 3, 480–490 (2020).

    Article  Google Scholar 

  25. Timmermann, A. Quantifying the potential causes of Neanderthal extinction: abrupt climate change versus competition and interbreeding. Quat. Sci. Rev. 238, 106331 (2020).

    Article  Google Scholar 

  26. Willeit, M., Ganopolski, A., Calov, R. & Brovkin, V. Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci. Adv. 5, eaav7337 (2019).

    Article  CAS  Google Scholar 

  27. Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling–Allerød warming. Science 325, 310–314 (2009).

    Article  CAS  Google Scholar 

  28. Menviel, L., Timmermann, A., Timm, O. & Mouchet, E. A. Deconstructing the last glacial termination: the role of millennial and orbital-scale forcings. Quat. Sci. Rev. 30, 1155–1172 (2011).

    Article  Google Scholar 

  29. Menviel, L., Timmermann, A., Friedrich, T. & England, M. H. Hindcasting the continuum of Dansgaard–Oeschger variability: mechanisms, patterns and timing. Clim. Past. 10, 63–77 (2014).

    Article  Google Scholar 

  30. Friedrich, T., Timmermann, A., Tigchelaar, M., Timm, O. E. & Ganopolski, A. Nonlinear climate sensitivity and its implications for future greenhouse warming. Sci. Adv. 2, e1501923 (2016).

    Article  Google Scholar 

  31. Singarayer, J. S. & Valdes, P. J. High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr. Quat. Sci. Rev. 29, 43–55 (2010).

    Article  Google Scholar 

  32. Kapsch, M. L., Mikolajewicz, U., Ziemen, F. & Schannwell, C. Ocean response in transient simulations of the last deglaciation dominated by underlying ice-sheet reconstruction and method of meltwater distribution. Geophys. Res. Lett. 49, e2021GL096767 (2022).

    Article  Google Scholar 

  33. Ganopolski, A., Brovkin, V. & Calov, R. Simulation of glacial–interglacial atmospheric CO2 variations using a comprehensive Earth system model of intermediate complexity. Goechim. Cosmochim. Acta 73, A411–A411 (2009).

    Google Scholar 

  34. Krapp, M., Beyer, R. M., Edmundson, S. L., Valdes, P. J. A. & Manica, A. A statistics-based reconstruction of high-resolution global terrestrial climate for the last 800,000 years. Sci. Data 8, 228 (2021).

    Article  Google Scholar 

  35. Leonardi, M., Hallett, E. Y., Beyer, R., Krapp, M. & Manica, A. pastclim 1.2: an R package to easily access and use paleoclimatic reconstructions. Ecography 2023, e06481 (2023).

    Article  Google Scholar 

  36. Barreto, E., Holden, P. B., Edwards, N. R. & Rangel, T. F. PALEO-PGEM-Series: a spatial time series of the global climate over the last 5 million years (Plio-Pleistocene). Glob. Ecol. Biogeog. 32, 1034–1045 (2023).

    Article  Google Scholar 

  37. Gibert, C. et al. Climate-inferred distribution estimates of mid-to-late Pliocene hominins. Glob. Planet. Change 210, 103756 (2022).

    Article  Google Scholar 

  38. Burke, A. et al. Risky business: the impact of climate and climate variability on human population dynamics in Western Europe during the Last Glacial Maximum. Quat. Sci. Rev. 164, 217–229 (2017).

    Article  Google Scholar 

  39. Klein, K. et al. Human existence potential in Europe during the Last Glacial Maximum. Quat. Int. 581–582, 7–27 (2021).

    Article  Google Scholar 

  40. Banks, W. E. et al. An ecological niche shift for Neanderthal populations in Western Europe 70,000 years ago. Sci. Rep. 11, 5346 (2021).

    Article  CAS  Google Scholar 

  41. Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).

    Article  Google Scholar 

  42. Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Div. Distrib. 17, 43–57 (2011).

    Article  Google Scholar 

  43. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  44. Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83, 2027–2036 (2002).

    Article  Google Scholar 

  45. Prentice, I. C. et al. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 19, 117–134 (1992).

    Article  Google Scholar 

  46. Carotenuto, F. et al. MInOSSE: a new method to reconstruct geographic ranges of fossil species. Methods Ecol. Evol. 11, 1121–1132 (2020).

    Article  Google Scholar 

  47. Mondanaro, A. et al. ENphylo: a new method to model the distribution of extremely rare species. Methods Ecol. Evol. 14, 911–922 (2023).

    Article  Google Scholar 

  48. Tikhonov, G. et al. Joint species distribution modelling with the r-package Hmsc. Methods Ecol. Evol. 11, 442–447 (2020).

    Article  Google Scholar 

  49. Midgley, G. F. & Thuiller, W. Global environmental change and the uncertain fate of biodiversity. N. Phytol. 167, 638–641 (2005).

    Article  Google Scholar 

  50. Hengl, T., Sierdsema, H., Radovic, A. & Dilo, A. Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging. Ecol. Model. 220, 3499–3511 (2009).

    Article  Google Scholar 

  51. Santini, L., Benitez-Lopez, A., Maiorano, L., Cengic, M. & Huijbregts, M. A. J. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 27, 1035–1050 (2021).

    Article  Google Scholar 

  52. Jimenez-Valverde, A. Sample size for the evaluation of presence–absence models. Ecol. Indic. 114, 106289 (2020).

    Article  Google Scholar 

  53. Qiao, H. et al. An evaluation of transferability of ecological niche models. Ecography 42, 521–534 (2019).

    Article  Google Scholar 

  54. Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl Acad. Sci. USA 106, 19644–19650 (2009).

    Article  Google Scholar 

  55. Mondanaro, A. et al. The role of habitat fragmentation in Pleistocene megafauna extinction in Eurasia. Ecography 44, 1619–1630 (2021).

    Article  Google Scholar 

  56. Mondanaro, A. et al. A major change in rate of climate niche envelope evolution during hominid history. iScience 23, 101693 (2020).

    Article  CAS  Google Scholar 

  57. Steele, J. Human dispersals: mathematical models and the archaeological record. Hum. Biol. 81, 121–140 (2009).

    Article  Google Scholar 

  58. Liu, P. P. An analysis of a predator-prey model with both diffusion and migration. Math. Comput. Model. 51, 1064–1070 (2010).

    Article  Google Scholar 

  59. Vlad, M. O., Cavalli-Sforza, L. L. & Ross, J. Enhanced (hydrodynamic) transport induced by population growth in reaction-diffusion systems with application to population genetics. Proc. Natl Acad. Sci. USA 101, 10249–10253 (2004).

    Article  CAS  Google Scholar 

  60. Verhulst, P. F. Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 10, 113–121 (1838).

    Google Scholar 

  61. Fort, J., Pujol, T. & Cavalli-Sforza, L. L. Palaeolithic populations and waves of advance (human range expansions). Camb. Archaeol. J. 14, 53–61 (2004).

    Article  Google Scholar 

  62. Young, D. A. & Bettinger, R. L. Simulating the global human expansion in the Late Pleistocene. J. Archaeol. Sci. 22, 89–92 (1995).

    Article  Google Scholar 

  63. Steele, J., Adams, J. & Sluckin, T. Modelling Paleoindian dispersals (paleoecology and human populations). World Archaeol. 30, 286–305 (1998).

    Article  Google Scholar 

  64. Pinhasi, R., Fort, J. & Ammerman, A. J. Tracing the origin and spread of agriculture in Europe. PLoS Biol. 3, 2220–2228 (2005).

    Article  CAS  Google Scholar 

  65. Ammerman, A. J. & Cavalli-Sforza, L. L. Measuring the rate of spread of early farming in Europe. Man 6, 674–688 (1971).

    Article  Google Scholar 

  66. Szabo, C. & Teo, Y. M. Formalization of weak emergence in multiagent systems. ACM Trans. Model. Comp. Simul. 26, 1–25 (2015).

    Article  Google Scholar 

  67. Bedau, M. A. Weak emergence. Noûs 31, 375–399 (1997).

    Google Scholar 

  68. Axtell, R. L. et al. Population growth and collapse in a multiagent model of the Kayenta Anasazi in Long House Valley. Proc. Natl Acad. Sci. USA 99, 7275–7279 (2002).

    Article  CAS  Google Scholar 

  69. Janssen, M. A. & Ostrom, E. Empirically based, agent-based models. Ecol. Soc. 11, 37 (2006).

    Article  Google Scholar 

  70. Helbing, D. & Yu, W. J. The outbreak of cooperation among success-driven individuals under noisy conditions. Proc. Natl Acad. Sci. USA 106, 3680–3685 (2009).

    Article  CAS  Google Scholar 

  71. Vahdati, A. R., Weissmann, J. D., Timmermann, A., de Leon, M. S. P. & Zollikofer, C. P. E. Drivers of Late Pleistocene human survival and dispersal: an agent-based modeling and machine learning approach. Quat. Sci. Rev. 221, 105867 (2019).

    Article  Google Scholar 

  72. Barton, C. M. & Riel-Salvatore, J. Agents of change: modeling biocultural evolution in Upper Pleistocene western Eurasia. Adv. Comp. Syst 15, 1150003 (2012).

    Article  Google Scholar 

  73. Wren, C. D. & Burke, A. Habitat suitability and the genetic structure of human populations during the Last Glacial Maximum (LGM) in Western Europe. PLoS ONE 14, e0217996 (2019).

    Article  CAS  Google Scholar 

  74. Berger, A. Long-term variations of caloric insolation resulting from the Earth’s orbital elements. Quat. Res. 9, 139–167 (1978).

    Article  Google Scholar 

  75. Cheng, H. et al. Milankovitch theory and monsoon. Innovation 3, 100338 (2022).

    Google Scholar 

  76. Tigchelaar, M. & Timmermann, A. Mechanisms rectifying the annual mean response of tropical Atlantic rainfall to precessional forcing. Clim. Dyn. 47, 271–293 (2016).

    Article  Google Scholar 

  77. Braconnot, P., Marzin, C., Grégoire, L., Mosquet, E. & Marti, O. Monsoon response to changes in Earth’s orbital parameters: comparisons between simulations of the Eemian and of the Holocene. Clim. Past. 4, 281–294 (2008).

    Article  Google Scholar 

  78. Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).

    Article  CAS  Google Scholar 

  79. Claussen, M., Fohlmeister, J., Ganopolski, A. & Brovkin, V. Vegetation dynamics amplifies precessional forcing. Geophy. Res. Lett. 33, L09709 (2006).

    Article  Google Scholar 

  80. Scholz, C. A. et al. East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins. Proc. Natl Acad. Sci. USA 104, 16416–16421 (2007).

    Article  CAS  Google Scholar 

  81. Tachikawa, K. et al. The precession phase of hydrological variability in the Western Pacific Warm Pool during the past 400 ka. Quat. Sci. Rev. 30, 3716–3727 (2011).

    Article  Google Scholar 

  82. Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45–53 (2014).

    Article  CAS  Google Scholar 

  83. Ai, H. et al. Concurrent Asian monsoon strengthening and early modern human dispersal to East Asia during the last interglacial. Proc. Natl Acad. Sci. USA 121, e2308994121 (2024).

    Article  Google Scholar 

  84. Armitage, S. J. et al. The southern route ‘Out of Africa’: evidence for an early expansion of modern humans into Arabia. Science 331, 453–456 (2011).

    Article  CAS  Google Scholar 

  85. Castaneda, I. S. et al. Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. Proc. Natl Acad. Sci. USA 106, 20159–20163 (2009).

    Article  CAS  Google Scholar 

  86. Clark, P. U. et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25, 3150–3184 (2006).

    Article  Google Scholar 

  87. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).

    Article  Google Scholar 

  88. Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 6, 213–217 (2013).

    Article  CAS  Google Scholar 

  89. Litt, T., Pickarski, N., Heumann, G., Stockhecke, M. & Tzedakis, P. A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quat. Sci. Rev. 104, 30–41 (2014).

    Article  Google Scholar 

  90. Stockhecke, M. et al. Millennial to orbital-scale variations of drought intensity in the Eastern Mediterranean. Quat. Sci. Rev. 150, 312–314 (2016).

    Article  Google Scholar 

  91. Schulz, M., Berger, W. H., Sarnthein, M. & Grootes, P. M. Amplitude variations of 1470-year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass. Geophy. Res. Lett. 26, 3385–3388 (1999).

    Article  CAS  Google Scholar 

  92. Menviel, L. C., Skinner, L. C., Tarasov, L. & Tzedakis, P. C. An ice-climate oscillatory framework for Dansgaard–Oeschger cycles. Nat Rev. Earth. Environ. 1, 677–693 (2020).

    Article  Google Scholar 

  93. Stocker, T. & Johnsen, S. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, 1087 (2003).

    Article  Google Scholar 

  94. Timmermann, A., Gildor, H., Schulz, M. & Tziperman, E. Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses. J. Clim. 16, 2569–2585 (2003).

    Article  Google Scholar 

  95. Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001).

    Article  CAS  Google Scholar 

  96. Armstrong, E., Izumi, K. & Valdes, P. Identifying the mechanisms of DO-scale oscillations in a GCM: a salt oscillator triggered by the Laurentide ice sheet. Clim. Dyn. 60, 3983–4001 (2022).

    Article  Google Scholar 

  97. Izumi, K., Armstrong, E. & Valdes, P. Global footprints of Dansgaard–Oeschger oscillations in a GCM. Quat. Sci. Rev. 305, 108016 (2023).

    Article  Google Scholar 

  98. Kuniyoshi, Y., Abe-Ouchi, A., Sherriff-Tadano, S., Chan, W. L. & Saito, F. Effect of climatic precession on Dansgaard–Oeschger-like oscillations. Geophys. Res. Lett. 49, e2021GL095695 (2022).

    Article  Google Scholar 

  99. Vettoretti, G. & Peltier, W. R. Fast physics and slow physics in the nonlinear Dansgaard–Oeschger relaxation oscillation. J. Clim. 31, 3423–3449 (2018).

    Article  Google Scholar 

  100. Schulz, M., Paul, A. & Timmermann, A. Relaxation oscillators in concert: a framework for climate change at millennial timescales during the late Pleistocene. Geophys. Res. Lett. 29, 46-1–46-4 (2002).

    Article  Google Scholar 

  101. Abshagen, J. & Timmermann, A. An organizing center for thermohaline excitability. J. Phys. Ocean. 34, 2756–2760 (2004).

    Article  Google Scholar 

  102. van Kreveld, S. et al. Potential links between surging ice sheets, circulation changes, and the Dansgaard–Oeschger cycles in the Irminger Sea, 60–18 Kyr. Paleoceanography 15, 425–442 (2000).

    Article  Google Scholar 

  103. Bond, G. et al. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147 (1993).

    Article  Google Scholar 

  104. Harrison, S. P. & Prentice, A. I. Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Glob. Change Biol. 9, 983–1004 (2003).

    Article  Google Scholar 

  105. Jennings, R. P. et al. The greening of Arabia: multiple opportunities for human occupation of the Arabian Peninsula during the Late Pleistocene inferred from an ensemble of climate model simulations. Quat. Int. 382, 181–199 (2015).

    Article  Google Scholar 

  106. Potts, R. et al. Increased ecological resource variability during a critical transition in hominin evolution. Sci. Adv. 6, eabc8975 (2020).

    Article  CAS  Google Scholar 

  107. Melchionna, M. et al. Fragmentation of Neanderthals’ pre-extinction distribution by climate change. Palaeog. Palaeoclim. Palaeoecol. 496, 146–154 (2018).

    Article  Google Scholar 

  108. Miller, J. M. & Wang, Y. M. V. Ostrich eggshell beads reveal 50,000-year-old social network in Africa. Nature 601, 234–239 (2022).

    Article  CAS  Google Scholar 

  109. Graham, C. H., VanDerWal, J., Phillips, S. J., Moritz, C. & Williams, S. E. Dynamic refugia and species persistence: tracking spatial shifts in habitat through time. Ecography 33, 1062–1069 (2010).

    Article  Google Scholar 

  110. Eldredge, N. et al. The dynamics of evolutionary stasis. Paleobiology 31, 133–145 (2005).

    Article  Google Scholar 

  111. Raia, P., Passaro, F., Fulgione, D. & Carotenuto, F. Habitat tracking, stasis and survival in Neogene large mammals. Biol. Lett. 8, 64–66 (2012).

    Article  CAS  Google Scholar 

  112. Dart, R. A. Australopithecus africanus: the man-ape of South Africa. Nature 115, 195–199 (1925).

    Article  Google Scholar 

  113. Dominguez-Rodrigo, M. Is the ‘Savanna Hypothesis’ a dead concept for explaining the emergence of the earliest hominins? Curr. Anthropol. 55, 59–81 (2014).

    Article  Google Scholar 

  114. Reed, K. E. Early hominid evolution and ecological change through the African Plio-Pleistocene. J. Hum. Evol. 32, 289–322 (1997).

    Article  CAS  Google Scholar 

  115. White, T. D. et al. Ardipithecus ramidus and the paleobiology of early hominids. Science 326, 75–86 (2009).

    Article  CAS  Google Scholar 

  116. Haywood, A. M. & Valdes, P. J. Vegetation cover in a warmer world simulated using a dynamic global vegetation model for the Mid-Pliocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 237, 412–427 (2006).

    Article  Google Scholar 

  117. Grove, M. Speciation, diversity, and Mode 1 technologies: the impact of variability selection. J. Hum. Evol. 61, 306–319 (2011).

    Article  Google Scholar 

  118. Potts, R. & Faith, J. T. Alternating high and low climate variability: the context of natural selection and speciation in Plio-Pleistocene hominin evolution. J. Hum. Evol. 87, 5–20 (2015).

    Article  Google Scholar 

  119. Grove, M. et al. Climatic variability, plasticity, and dispersal: a case study from Lake Tana, Ethiopia. J. Hum. Evol. 87, 32–47 (2015).

    Article  Google Scholar 

  120. Grove, M. Evolution and dispersal under climatic instability: a simple evolutionary algorithm. Adapt. Behav. 22, 235–254 (2014).

    Article  Google Scholar 

  121. Martin, J. M., Leece, A. B., Baker, S. E., Herries, A. I. R. & Strait, D. S. A lineage perspective on hominin taxonomy and evolution. Evol. Anthropol. 33, e22018 (2024).

    Article  Google Scholar 

  122. Gabunia, L. et al. Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: taxonomy, geological setting, and age. Science 288, 1019–1025 (2000).

    Article  CAS  Google Scholar 

  123. Scardia, G. et al. Chronologic constraints on hominin dispersal outside Africa since 2.48 Ma from the Zarqa Valley, Jordan. Quat. Sci. Rev. 219, 1–19 (2019).

    Article  Google Scholar 

  124. Hilgen, S. L. et al. Revised age and stratigraphy of the classic Homo erectus-bearing succession at Trinil (Java, Indonesia). Quat. Sci. Rev. 301, 107908 (2023).

    Article  Google Scholar 

  125. Parfitt, S. A. et al. Early Pleistocene human occupation at the edge of the boreal zone in northwest Europe. Nature 466, 229–233 (2010).

    Article  CAS  Google Scholar 

  126. Liu, W. et al. The earliest unequivocally modern humans in southern China. Nature 526, 696–699 (2015).

    Article  CAS  Google Scholar 

  127. Brumm, A. et al. Oldest cave art found in Sulawesi. Sci. Adv. 7, eabd4648 (2021).

    Article  Google Scholar 

  128. Harvati, K. et al. Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia. Nature 571, 500–504 (2019).

    Article  CAS  Google Scholar 

  129. Hershkovitz, I. et al. The earliest modern humans outside Africa. Science 359, 456–459 (2018).

    Article  CAS  Google Scholar 

  130. Pigati, J. S. et al. Independent age estimates resolve the controversy of ancient human footprints at White Sands. Science 382, 73–75 (2023).

    Article  CAS  Google Scholar 

  131. Leroy, S. A. G., Arpe, K. & Mikolajewicz, U. Vegetation context and climatic limits of the Early Pleistocene hominin dispersal in Europe. Quat. Sci. Rev. 30, 1448–1463 (2011).

    Article  Google Scholar 

  132. Anton, S. C., Leonard, W. R. & Robertson, M. L. An ecomorphological model of the initial hominid dispersal from Africa. J. Hum. Evol. 43, 773–785 (2002).

    Article  CAS  Google Scholar 

  133. Staubwasser, M. et al. Impact of climate change on the transition of Neanderthals to modern humans in Europe. Proc. Natl Acad. Sci. USA 115, 9116–9121 (2018).

    Article  CAS  Google Scholar 

  134. Greenbaum, G. et al. Disease transmission and introgression can explain the long-lasting contact zone of modern humans and Neanderthals. Nat. Commun. 10, 5003 (2019).

    Article  Google Scholar 

  135. Goni, M. F. S. Regional impacts of climate change and its relevance to human evolution. Evol. Hum. Sci. 2, e55 (2020).

    Article  Google Scholar 

  136. d’Errico, F. & Banks, W. E. Identifying mechanisms behind Middle Paleolithic and Middle Stone Age cultural trajectories. Curr. Anthropol. 54, S371–S387 (2013).

    Article  Google Scholar 

  137. Yang, S. X. et al. Technological innovations at the onset of the Mid-Pleistocene climate transition in high-latitude East Asia. Natl Sci. Rev. 8, nwaa053 (2021).

    Article  Google Scholar 

  138. Guan, Y. et al. Microblade remains from the Xishahe site, North China and their implications for the origin of microblade technology in Northeast Asia. Quat. Int. 535, 38–47 (2020).

    Article  Google Scholar 

  139. Gosling, W. D., Scerri, E. M. L. & Kaboth-Bahr, S. The climate and vegetation backdrop to hominin evolution in Africa. Phil. Trans. R. Soc. B 377, 20200483 (2022).

    Article  Google Scholar 

  140. d’Errico, F. et al. Identifying early modern human ecological niche expansions and associated cultural dynamics in the South African Middle Stone Age. Proc. Natl Acad. Sci. USA 114, 7869–7876 (2017).

    Article  Google Scholar 

  141. Ziegler, M. et al. Development of Middle Stone Age innovation linked to rapid climate change. Nat. Commun. 4, 1905 (2013).

    Article  Google Scholar 

  142. Moncel, M. H. et al. The origin of early Acheulean expansion in Europe 700 ka ago: new findings at Notarchirico (Italy). Sci. Rep. 10, 13802 (2020).

    Article  CAS  Google Scholar 

  143. Banks, W. E. et al. An application of hierarchical Bayesian modeling to better constrain the chronologies of Upper Paleolithic archaeological cultures in France between ca. 32,000–21,000 calibrated years before present. Quat. Sci. Rev. 220, 188–214 (2019).

    Article  Google Scholar 

  144. Gowlett, J. A. J., Harris, J. W. K., Walton, D. & Wood, B. A. Early archaeological sites, hominid remains and traces of fire from Chesowanja, Kenya. Nature 294, 125–129 (1981).

    Article  CAS  Google Scholar 

  145. Barbetti, M. Traces of fire in the archaeological record, before one million years ago? J. Hum. Evol. 15, 771–781 (1986).

    Article  Google Scholar 

  146. Zohar, I. et al. Evidence for the cooking of fish 780,000 years ago at Gesher Benot Ya’aqov, Israel. Nat. Ecol. Evol. 6, 2016–2028 (2022).

    Article  Google Scholar 

  147. Gowlett, J. A. J. The discovery of fire by humans: a long and convoluted process. Philos. Trans. R. Soc. B 371, 20150164 (2016).

    Article  Google Scholar 

  148. Wrangham, R. Control of fire in the Paleolithic: evaluating the cooking hypothesis. Curr. Anthropol. 58, S303–S313 (2017).

    Article  Google Scholar 

  149. Hoare, S. Assessing the function of Palaeolithic hearths: experiments on intensity of luminosity and radiative heat outputs from different fuel sources. J. Paleol. Archaeol. 3, 537–565 (2020).

    Article  Google Scholar 

  150. Roebroeks, W. & Villa, P. On the earliest evidence for habitual use of fire in Europe. Proc. Natl Acad. Sci. USA 108, 5209–5214 (2011).

    Article  CAS  Google Scholar 

  151. Hosfield, R. Walking in a Winter Wonderland? Strategies for early and middle Pleistocene survival in midlatitude Europe. Curr. Anthropol. 57, 653–682 (2016).

    Article  Google Scholar 

  152. Collard, M., Tarle, L., Sandgathe, D. & Allan, A. Faunal evidence for a difference in clothing use between Neanderthals and early modern humans in Europe. J. Anthropol. Archaeol. 44, 235–246 (2016).

    Article  Google Scholar 

  153. Carbonell, E. et al. The TD6 level lithic industry from Gran Dolina, Atapuerca (Burgos, Spain): production and use. J. Hum. Evol. 37, 653–693 (1999).

    Article  CAS  Google Scholar 

  154. Henshilwood, C. S., d’Errico, F., Marean, C. W., Milo, R. G. & Yates, R. An early bone tool industry from the Middle Stone Age at Blombos Cave, South Africa: implications for the origins of modern human behaviour, symbolism and language. J. Hum. Evol. 41, 631–678 (2001).

    Article  CAS  Google Scholar 

  155. d’Errico, F. The invisible frontier. A multiple species model for the origin of behavioral modernity. Evol. Anthropol. 12, 188–202 (2003).

    Article  Google Scholar 

  156. Gilligan, I. The prehistoric development of clothing: archaeological implications of a thermal model. J. Archaeol. Method Theory. 17, 15–80 (2010).

    Article  Google Scholar 

  157. Barham, L. et al. Evidence for the earliest structural use of wood at least 476,000 years ago. Nature 622, 107–111 (2023).

    Article  CAS  Google Scholar 

  158. Rodríguez, J. & Willmes Mateos, C. A. Shivering in the Pleistocene. Human adaptations to cold exposure in Western Europe from MIS 14 to MIS 11. J. Hum. Evol. 153, 102966I (2021).

    Article  Google Scholar 

  159. Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).

    Article  Google Scholar 

  160. Banks, W. E., d’Errico, F. & Zilhao, J. Human-climate interaction during the Early Upper Paleolithic: testing the hypothesis of an adaptive shift between the Proto-Aurignacian and the early Aurignacian. J. Hum. Evol. 64, 39–55 (2013).

    Article  Google Scholar 

  161. Esteban, I., Albert, R. M., Eixea, A., Zilhao, J. & Villaverde, V. Neanderthal use of plants and past vegetation reconstruction at the Middle Paleolithic site of Abrigo de la Quebrada (Chelva, Valencia, Spain). Archaeol. Anthropol. Sci. 9, 265–278 (2017).

    Article  Google Scholar 

  162. Oppenheimer, S. The great arc of dispersal of modern humans: Africa to Australia. Quat. Int. 202, 2–13 (2009).

    Article  Google Scholar 

  163. Rasheed, S. M. & Billingham, J. A. Reaction diffusion model for inter-species competition and intra-species cooperation. Math. Model. Nat. Phenom. 8, 154–181 (2013).

    Article  Google Scholar 

  164. Alroy, J. A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).

    Article  CAS  Google Scholar 

  165. Wakano, J. Y., Gilpin, W., Kadowaki, S., Feldman, M. W. & Aoki, K. Ecocultural range-expansion scenarios for the replacement or assimilation of Neanderthals by modern humans. Theor. Pop. Biol. 119, 3–14 (2018).

    Article  Google Scholar 

  166. Flores, J. C. A mathematical model for Neanderthal extinction. J. Theor. Biol. 191, 295–298 (1998).

    Article  CAS  Google Scholar 

  167. Gilpin, W., Feldman & Aoki, K. An ecocultural model predicts Neanderthal extinction through competition with modern humans. Proc. Natl Acad. Sci. USA 113, 2134–2139 (2016).

    Article  CAS  Google Scholar 

  168. Manna, K., Volpert, V. & Banerjee, M. Pattern formation in a three-species cyclic competition model. Bull. Math. Biol. 83, 52 (2021).

    Article  Google Scholar 

  169. Neuhauser, C. & Pacala, S. W. An explicitly spatial version of the Lotka-Volterra model with interspecific competition. Ann. Appl. Probab. 9, 1226–1259 (1999).

    Article  Google Scholar 

  170. Okubo, A., Maini, P. K., Williamson, M. H. & Murray, J. D. On the spatial spread of the grey squirrel in Britain. Proc. R. Soc. B 238, 113–125 (1989).

    CAS  Google Scholar 

  171. Young, D. A. & Bettinger, R. L. The numic spread: a computer simulation. Am. Antiq. 57, 85–99 (1992).

    Article  Google Scholar 

  172. Timmermann, A., Wasay, A. & Raia, P. Phase synchronization between culture and climate forcing. Proc. R. Soc. B 291, 20240320 (2024).

    Article  Google Scholar 

  173. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322, 549–560 (1905).

    Article  Google Scholar 

  174. Hasselmann, K. Stochastic climate models. 1. Theory. Tellus 28, 473–485 (1976).

    Google Scholar 

  175. Powell, A., Shennan, S. & Thomas, M. G. Late Pleistocene demography and the appearance of modern human behavior. Science 324, 1298–1301 (2009).

    Article  CAS  Google Scholar 

  176. Henrich, J. Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses — the Tasmanian case. Am. Antiq. 69, 197–214 (2004).

    Article  Google Scholar 

  177. Aoki, K. Gene-culture waves of advance. J. Math. Biol. 25, 453–464 (1987).

    Article  CAS  Google Scholar 

  178. Bergström, A., Stringer, C., Hajdinjak, M., Scerri, E. M. L. & Skoglund, P. Origins of modern human ancestry. Nature 590, 229–237 (2021).

    Article  Google Scholar 

  179. Petr, M., Paabo, S., Kelso, J. & Vernot, B. Limits of long-term selection against Neandertal introgression. Proc. Natl Acad. Sci. USA 116, 1639–1644 (2019).

    Article  CAS  Google Scholar 

  180. Zhang, X. J. et al. The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans. Proc. Natl Acad. Sci. USA 118, e2020803118 (2021).

    Article  CAS  Google Scholar 

  181. Huerta-Sanchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).

    Article  CAS  Google Scholar 

  182. Vespasiani, D. M. et al. Denisovan introgression has shaped the immune system of present-day Papuans. PLoS Genet. 18, e1010470 (2022).

    Article  CAS  Google Scholar 

  183. Currat, M., Ray, N. & Excoffier, L. SPLATCHE: a program to simulate genetic diversity taking into account environmental heterogeneity. Mol. Ecol. Notes 4, 139–142 (2004).

    Article  Google Scholar 

  184. Douka, K. et al. Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave. Nature 565, 640–644 (2019).

    Article  CAS  Google Scholar 

  185. Jacobs, G. S. et al. Multiple deeply divergent Denisovan ancestries in Papuans. Cell 177, 1010–1021 (2019).

    Article  CAS  Google Scholar 

  186. Larena, M. et al. Philippine Ayta possess the highest level of Denisovan ancestry in the world. Curr. Biol. 31, 4219–4230 (2021).

    Article  CAS  Google Scholar 

  187. Liu, H., Prugnolle, F., Manica, A. & Balloux, F. A geographically explicit genetic model of worldwide human-settlement history. Am. J. Hum. Gen. 79, 230–237 (2006).

    Article  CAS  Google Scholar 

  188. Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Phil. Trans. R. Soc. A 365, 2053–2075 (2007).

    Article  Google Scholar 

  189. Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Article  CAS  Google Scholar 

  190. Thornley, J. H. M. & France, J. An open-ended logistic-based growth function. Ecol. Model. 184, 257–261 (2005).

    Article  Google Scholar 

  191. Rockström, J. et al. Safe and just Earth system boundaries. Nature 619, 102–111 (2023).

    Article  Google Scholar 

  192. Andersen, K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    Article  CAS  Google Scholar 

  193. Kaplan, J. O. M. New, Arctic climate change with a 2 °C global warming: timing, climate patterns and vegetation change. Clim. Change 79, 213–241 (2006).

    Article  CAS  Google Scholar 

  194. Chan, E. K. F. et al. Human origins in a southern African palaeo-wetland and first migrations. Nature 575, 185–189 (2019).

    Article  CAS  Google Scholar 

  195. Schlebusch, C. M. et al. Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago. Science 358, 652–655 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.T., K.-S.Y. and E.Z. received funding from the Institute for Basic Science (IBS) under IBS-R028-D1.

Author information

Authors and Affiliations

Authors

Contributions

A.T. and P.R. conceived and organized the text and led the writing. M.P.deL. and C.Z. provided key contributions to the ABM and cultural evolution sections. A.M. provided key contribution to the SDM section. K.-S.Y. and E.Z. provided key contributions to the description of palaeoclimate and vegetation modelling. All authors critically reviewed the text and participated in writing.

Corresponding authors

Correspondence to Axel Timmermann or Pasquale Raia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Ariane Burke, William Banks and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timmermann, A., Raia, P., Mondanaro, A. et al. Past climate change effects on human evolution. Nat Rev Earth Environ 5, 701–716 (2024). https://doi.org/10.1038/s43017-024-00584-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-024-00584-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing