Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lake ice quality in a warming world

An Author Correction to this article was published on 30 September 2024

This article has been updated

Abstract

Ice phenology has shifted with anthropogenic warming such that many lakes are experiencing a shorter ice season. However, changes to ice quality — the ratio of black and white ice layers — remain little explored, despite relevance to lake physics, ecological function, human recreation and transportation. In this Review, we outline how ice quality is changing and discuss knock-on ecosystem service impacts. Although direct evidence is sparse, there are suggestions that ice quality is diminishing across the Northern Hemisphere, encompassing declining ice thickness, decreasing black ice and increasing white ice. These changes are projected to continue in the future, scaling with global temperature increases, and driving considerable impacts to related ecosystem services. Rising proportions of white ice will markedly reduce bearing strength, implying more dangerous conditions for transportation (limiting operational use of many winter roads) and recreation (increasing the risk of fatal spring-time drownings). Shifts from black to white ice conditions will further reduce the amount of light reaching the water column, minimizing primary production, and altering community composition to favour motile and mixotrophic species; these changes will affect higher trophic levels, including diminished food quantity for zooplankton and fish, with potential developmental consequences. Reliable and translatable in situ sampling methods to assess and predict spatiotemporal variations in ice quality are urgently needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impacts on ice quality in a warming climate.
Fig. 2: Ice quality observations and trends.
Fig. 3: Projected changes to ice thickness as a proxy for ice quality.
Fig. 4: Evolving allowable load.
Fig. 5: Drownings through lake ice collapse.
Fig. 6: Snow cover impacts on lake primary production.

Similar content being viewed by others

Change history

References

  1. The Status of the Global Climate Observing System 2021: The GCOS Status Report (UNFCC, 2021).

  2. Magnuson, J. J. & Lathrop, R. Lake ice: winter, beauty, value, changes, and a threatened future. LakeLine 43, 18–27 (2014).

    Google Scholar 

  3. Hori, Y., Cheng, V. Y. S., Gough, W. A., Jien, J. Y. & Tsuji, L. J. S. Implications of projected climate change on winter road systems in Ontario’s Far North, Canada. Clim. Change 148, 109–122 (2018).

    Article  Google Scholar 

  4. Orru, K., Kangur, K., Kangur, P., Ginter, K. & Kangur, A. Recreational ice fishing on the large Lake Peipsi: socioeconomic importance, variability of ice-cover period, and possible implications for fish stocks. Estonian J. Ecol. 63, 282 (2014).

    Article  Google Scholar 

  5. Knoll, L. B. et al. Consequences of lake and river ice loss on cultural ecosystem services. Limnol. Oceanogr. Lett. 4, 119–131 (2019).

    Article  Google Scholar 

  6. Sharma, S. & et al. An introduction to the community lake ice collaboration: a long-term lake ice phenology community science project spanning 1000 lakes and over 30 years.Limnol. Oceanogr. Bull. https://doi.org/10.1002/lob.10560 (2023).

    Article  Google Scholar 

  7. Mullan, D. J. et al. Examining the viability of the world’s busiest winter road to climate change using a process-based lake model. Bull. Am. Meteorol. Soc. 102, E1464–E1480 (2021).

    Article  Google Scholar 

  8. O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. https://doi.org/10.1002/2015GL066235 (2015).

  9. Austin, J. A. & Colman, S. M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophys. Res. Lett. https://doi.org/10.1029/2006GL029021 (2007).

    Article  Google Scholar 

  10. Woolway, R. I. et al. Phenological shifts in lake stratification under climate change. Nat. Commun. 12, 2318 (2021).

    Article  CAS  Google Scholar 

  11. Cavaliere, E. et al. The lake ice continuum concept: influence of winter conditions on energy and ecosystem dynamics. J. Geophys. Res. Biogeosci. 126, e2020JG006165 (2021).

    Article  Google Scholar 

  12. Caldwell, T. J., Chandra, S., Feher, K., Simmons, J. B. & Hogan, Z. Ecosystem response to earlier ice break-up date: climate-driven changes to water temperature, lake-habitat-specific production, and trout habitat and resource use. Glob. Change Biol. 26, 5475–5491 (2020).

    Article  Google Scholar 

  13. Kraemer, B. M. et al. Climate change drives widespread shifts in lake thermal habitat. Nat. Clim. Change 11, 521–528 (2021).

    Article  Google Scholar 

  14. Grant, L. et al. Attribution of global lake systems change to anthropogenic forcing. Nat. Geosci. 14, 849–854 (2021).

    Article  CAS  Google Scholar 

  15. Hock, R. & Huss, M. in Climate Change 3rd edn (ed. Letcher, T. M.) 157–176 (Elsevier, 2021).

  16. Huang, L. et al. Emerging unprecedented lake ice loss in climate change projections. Nat. Commun. 13, 5798 (2022).

    Article  CAS  Google Scholar 

  17. Notarnicola, C. Overall negative trends for snow cover extent and duration in global mountain regions over 1982–2020. Sci. Rep. 12, 13731 (2022).

    Article  CAS  Google Scholar 

  18. Richardson, D. C. et al. Nonlinear responses in interannual variability of lake ice to climate change. Limnol. Oceanogr. 64, 789–801 (2024).

    Article  Google Scholar 

  19. Weyhenmeyer, G. A. et al. Large geographical differences in the sensitivity of ice-covered lakes and rivers in the Northern Hemisphere to temperature changes. Glob. Change Biol. 17, 268–275 (2010).

    Article  Google Scholar 

  20. Sharma, S. et al. Loss of ice cover, shifting phenology, and more extreme events in Northern Hemisphere lakes. J. Geophys. Res. Biogeosci. 126, e2021JG006348 (2021).

    Article  Google Scholar 

  21. Newton, A. M. W. & Mullan, D. J. Climate change and Northern Hemisphere lake and river ice phenology from 1931–2005. Cryosphere 15, 2211–2234 (2021).

    Article  Google Scholar 

  22. Barrette, P. D. A laboratory study on the flexural strength of white ice and clear ice from the Rideau Canal skateway. Can. J. Civ. Eng. 38, 1435–1439 (2011).

    Google Scholar 

  23. Leppäranta, M. Freezing of Lakes and the Evolution of their Ice Cover (Springer, 2015).

  24. Gold, L. W. Use of ice covers for transportation. Can. Geotech. J. 8, 170–181 (1971).

    Article  Google Scholar 

  25. Sharma, S. et al. Increased winter drownings in ice-covered regions with warmer winters. PLoS ONE 15, e0241222 (2020).

    Article  CAS  Google Scholar 

  26. Weyhenmeyer, G. A. et al. Towards critical white ice conditions in lakes under global warming. Nat. Commun. 13, 4974 (2022).

    Article  CAS  Google Scholar 

  27. Kirillin, G. et al. Physics of seasonally ice-covered lakes: a review. Aquat. Sci. 74, 659–682 (2012).

    Article  Google Scholar 

  28. Yang, B., Young, J., Brown, L. & Wells, M. High‐frequency observations of temperature and dissolved oxygen reveal under‐ice convection in a large lake. Geophys. Res. Lett. https://doi.org/10.1002/2017GL075373 (2017).

  29. Obertegger, U., Flaim, G., Corradini, S., Cerasino, L. & Zohary, T. Multi-annual comparisons of summer and under-ice phytoplankton communities of a mountain lake. Hydrobiologia 849, 4613–4635 (2022).

    Article  CAS  Google Scholar 

  30. Bertilsson, S. et al. The under-ice microbiome of seasonally frozen lakes. Limnol. Oceanogr. 58, 1998–2012 (2013).

    Article  Google Scholar 

  31. Palecki, M. A. & Barry, R. G. Freeze-up and break-up of lakes as an index of temperature changes during the transition seasons: a case study for Finland. J. Clim. Appl. Meteorol. 25, 893–902 (1986).

    Article  Google Scholar 

  32. Li, X., Long, D., Huang, Q. & Zhao, F. The state and fate of lake ice thickness in the Northern Hemisphere. Sci. Bull. 67, 537–546 (2022).

    Article  Google Scholar 

  33. Michel, B. & Ramseier, R. O. Classification of river and lake ice. Can. Geotech. J. 8, 36–45 (1971).

    Article  Google Scholar 

  34. Sturm, M., Holmgren, J., König, M. & Morris, K. The thermal conductivity of seasonal snow. J. Glaciol. 43, 26–41 (1997).

    Article  Google Scholar 

  35. Ashton, G. D. River and lake ice thickening, thinning, and snow ice formation. Cold Reg. Sci. Technol. 68, 3–19 (2011).

    Article  Google Scholar 

  36. Jeffries, M. O. & Morris, K. Instantaneous daytime conductive heat flow through snow on lake ice in Alaska. Hydrol. Process. 20, 803–815 (2006).

    Article  Google Scholar 

  37. Korhonen, J. Long-term changes in lake ice cover in Finland. Hydrol. Res. 37, 347–363 (2006).

    Article  Google Scholar 

  38. Bengtsson, L. Ice-covered lakes: environment and climate — required research. Hydrol. Process. 25, 2767–2769 (2011).

    Article  Google Scholar 

  39. Saloranta, T. M. Modeling the evolution of snow, snow ice and ice in the Baltic Sea. Tellus A 52, 93–108 (2000).

    Article  Google Scholar 

  40. Palosuo, E. Frozen slush on lake ice. Geophysica 9, 131–147 (1965).

    Google Scholar 

  41. Brown, L. C. & Duguay, C. R. The response and role of ice cover in lake–climate interactions. Prog. Phys. Geogr. Earth Environ. 34, 671–704 (2010).

    Article  Google Scholar 

  42. Socha, E. et al. Under-ice plankton community response to snow removal experiment in bog lake. Limnol. Oceanogr. 68, 1001–1018 (2023).

    Article  CAS  Google Scholar 

  43. Bartosiewicz, M., Ptak, M., Woolway, R. I. & Sojka, M. On thinning ice: effects of atmospheric warming, changes in wind speed and rainfall on ice conditions in temperate lakes (Northern Poland). J. Hydrol. 597, 125724 (2021).

    Article  Google Scholar 

  44. Armstrong, T. & Roberts, B. Illustrated ice glossary. Polar Rec. 8, 4–12 (1956).

    Article  Google Scholar 

  45. Higgins, S. N., Desjardins, C. M., Drouin, H., Hrenchuk, L. E. & van der Sanden, J. J. The role of climate and lake size in regulating the ice phenology of boreal lakes. J. Geophys. Res. Biogeosci. 126, e2020JG005898 (2021).

    Article  Google Scholar 

  46. Leppäranta, M. & Wang, K. The ice cover on small and large lakes: scaling analysis and mathematical modelling. Hydrobiologia 599, 183–189 (2008).

    Article  Google Scholar 

  47. Katz, S. L. et al. The ‘Melosira years’ of Lake Baikal: winter environmental conditions at ice onset predict under-ice algal blooms in spring. Limnol. Oceanogr. 60, 1950–1964 (2015).

    Article  Google Scholar 

  48. Sturm, M. & Liston, G. E. The snow cover on lakes of the Arctic Coastal Plain of Alaska, U.S.A. J. Glaciol. 49, 370–380 (2003).

    Article  Google Scholar 

  49. Todd, M. C. & Mackay, A. W. Large-scale climatic controls on Lake Baikal ice cover. J. Clim. 16, 3186–3199 (2003).

    Article  Google Scholar 

  50. Moore, M. V. et al. Climate change and the world’s ‘Sacred Sea’ — Lake Baikal, Siberia. BioScience 59, 405–417 (2009).

    Article  Google Scholar 

  51. Maeda, O. & Ichimura, S.-E. On the high density of a phytoplankton population found in a lake under ice. Int. Rev. Ges. Hydrobiol. Hydrogr. 58, 673–689 (1973).

    Article  CAS  Google Scholar 

  52. Jensen, T. C. Winter decrease of zooplankton abundance and biomass in subalpine oligotrophic Lake Atnsjøen (SE Norway). J. Limnol. 78, 348–363 (2019).

    Article  Google Scholar 

  53. Gow AJ. Flexural strength of ice on temperate lakes. J. Glaciol. 19, 247–256 (1977).

    Article  Google Scholar 

  54. Zdorovennova, G. et al. Dissolved oxygen in a shallow ice-covered lake in winter: effect of changes in light, thermal and ice regimes. Water https://doi.org/10.3390/w13172435 (2021).

  55. Ice Thickness Observation Network (Version 5.7) [Data set]. Open Environmental Information Systems: Hertta (Finnish Environment Institute, 2024); https://wwwp2.ymparisto.fi/scripts/kirjaudu.asp.

  56. Magnuson, J. J., Carpenter, S. R. & Stanley, E. H. North Temperate Lakes LTER: Snow and Ice Depth 1982–current. https://doi.org/10.6073/pasta/038d117f5244b520f7f87ef41dba7a31 (Environmental Data Initiative, 2023).

  57. Leppäranta, M., Terzhevik, A. & Shirasawa, K. Solar radiation and ice melting in Lake Vendyurskoe, Russian Karelia. Hydrol. Res. 41, 50–62 (2010).

    Article  Google Scholar 

  58. Ohata, Y., Toyota, T. & Shiraiwa, T. Lake ice formation processes and thickness evolution at Lake Abashiri, Hokkaido, Japan. J. Glaciol. 62, 563–578 (2016).

    Article  Google Scholar 

  59. Irannezhad, M., Chen, D. & Kløve, B. Interannual variations and trends in surface air temperature in Finland in relation to atmospheric circulation patterns, 1961–2011. Int. J. Climatol. 35, 3078–3092 (2015).

    Article  Google Scholar 

  60. Woolway, R. I. et al. Lake ice will be less safe for recreation and transportation under future warming. Earth’s Future 10, e2022EF002907 (2022).

    Article  Google Scholar 

  61. Danabasoglu, G. et al. The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).

    Article  Google Scholar 

  62. Dibike, Y., Prowse, T., Saloranta, T. & Ahmed, R. Response of Northern Hemisphere lake-ice cover and lake-water thermal structure patterns to a changing climate. Hydrol. Process. 25, 2942–2953 (2011).

    Article  Google Scholar 

  63. Dibike, Y., Prowse, T., Bonsal, B., Rham, Lde & Saloranta, T. Simulation of North American lake-ice cover characteristics under contemporary and future climate conditions. Int. J. Climatol. 32, 695–709 (2012).

    Article  Google Scholar 

  64. Subin, Z. M., Riley, W. J. & Mironov, D. An improved lake model for climate simulations: model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Model. Earth Syst. https://doi.org/10.1029/2011MS000072 (2012).

  65. Deng, J., Dai, A. & Chyi, D. Northern Hemisphere winter air temperature patterns and their associated atmospheric and ocean conditions. J. Clim. 33, 6165–6186 (2020).

    Article  Google Scholar 

  66. Huang, L. & et al. Emergence of lake conditions that exceed natural temperature variability. Nat. Geosci. https://doi.org/10.1038/s41561-024-01491-5 (2024).

    Article  Google Scholar 

  67. Ariano, S. S. & Brown, L. C. Ice processes on medium‐sized north‐temperate lakes. Hydrol. Process. 33, 2434–2448 (2019).

    Article  Google Scholar 

  68. Krasting, J. P., Broccoli, A. J., Dixon, K. W. & Lanzante, J. R. Future changes in Northern Hemisphere snowfall. J. Clim. https://doi.org/10.1175/JCLI-D-12-00832.1 (2013).

  69. Siirila-Woodburn, E. R. et al. A low-to-no snow future and its impacts on water resources in the western United States. Nat. Rev. Earth Environ. 2, 800–819 (2021).

    Article  Google Scholar 

  70. Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth Environ. 1, 388–403 (2020).

    Article  Google Scholar 

  71. Barrette, P. D., Hori, Y. & Kim, A. M. The Canadian winter road infrastructure in a warming climate: toward resiliency assessment and resource prioritization. Sustain. Resilient Infrastruct. 7, 842–860 (2022).

    Article  Google Scholar 

  72. Tam, B. Y., Gough, W. A., Edwards, V. & Tsuji, L. J. S. The impact of climate change on the well-being and lifestyle of a First Nation community in the western James Bay region. Can. Geogr. 57, 441–456 (2013).

    Article  Google Scholar 

  73. Block, B. D. et al. The unique methodological challenges of winter limnology. Limnol. Oceanogr. Methods 17, 42–57 (2019).

    Article  Google Scholar 

  74. Masterson, D. M. State of the art of ice bearing capacity and ice construction. Cold Reg. Sci. Technol. 58, 99–112 (2009).

    Article  Google Scholar 

  75. Hori, Y., Gough, W. A., Butler, K. & Tsuji, L. J. S. Trends in the seasonal length and opening dates of a winter road in the western James Bay region, Ontario, Canada. Theor. Appl. Climatol. 129, 1309–1320 (2017).

    Article  Google Scholar 

  76. Global News. Northern Ontario First Nations declare state of emergency over winter roads. Canadian Press https://globalnews.ca/news/10283878/northern-ontario-first-nations-state-of-emergency-winter-roads/ (2024).

  77. Mullan, D. et al. Climate change and the long-term viability of the World’s busiest heavy haul ice road. Theor. Appl. Climatol. 129, 1089–1108 (2017).

    Article  Google Scholar 

  78. Gädeke, A. et al. Climate change reduces winter overland travel across the Pan-Arctic even under low-end global warming scenarios. Environ. Res. Lett. 16, 024049 (2021).

    Article  Google Scholar 

  79. Dong, Y. et al. Warmer winters are reducing potential ice roads and port accessibility in the Pan-Arctic. Environ. Res. Lett. 17, 104051 (2022).

    Article  Google Scholar 

  80. Fellows, G., Munzur, A. & Winter, J. A socio-economic review of the impacts of Northwest Territories’ Inuvik to Tuktoyaktuk highway 10. CJRS 45, 137–149 (2022).

    Article  Google Scholar 

  81. Streletskiy, D., Shiklomanov, N. & Hatleberg, E. Infrastructure and a changing climate in the Russian Arctic: a geographic impact assessment. In Proc. 10th International Conference on Permafrost Vol. 1, 407–412 (The Northern Publisher, 2012).

  82. Clark, D. G. et al. The role of environmental factors in search and rescue incidents in Nunavut, Canada. Public Health 137, 44–49 (2016).

    Article  CAS  Google Scholar 

  83. Adam, K. M. & Hernandez, H. Snow and ice roads: ability to support traffic and effects on vegetation. Arctic 30, 13–27 (1977).

    Article  Google Scholar 

  84. Durkalec, A., Furgal, C., Skinner, M. W. & Sheldon, T. Investigating environmental determinants of injury and trauma in the Canadian North. Int. J. Environ. Res. Public Health 11, 1536–1548 (2014).

    Article  Google Scholar 

  85. Mudryk, L. R. et al. Impact of 1, 2 and 4 °C of global warming on ship navigation in the Canadian Arctic. Nat. Clim. Change 11, 673–679 (2021).

    Article  Google Scholar 

  86. Dawson, J., Pizzolato, L., Howell, S. E. L., Copland, L. & Johnston, M. E. Temporal and spatial patterns of ship traffic in the Canadian Arctic from 1990 to 2015. Arctic 71, 15–26 (2018).

    Article  Google Scholar 

  87. Dawson, J., Cook, A., Holloway, J. & Copland, L. Analysis of changing levels of ice strengthening (ice class) among vessels operating in the Canadian Arctic over the past 30 years. Arctic 75, 413–430 (2022).

    Google Scholar 

  88. Berkes, F. et al. Wildlife harvesting and sustainable regional native economy in the hudson and James Bay Lowland, Ontario. Arctic 47, 350–360 (1994).

    Article  Google Scholar 

  89. Scott, D., Steiger, R., Rutty, M. & Fang, Y. The changing geography of the winter olympic and paralympic games in a warmer world. Curr. Issues Tour. 22, 1301–1311 (2019).

    Article  Google Scholar 

  90. Hampton, S. E. et al. Ecology under lake ice. Ecol. Lett. 20, 98–111 (2017).

    Article  Google Scholar 

  91. Bramburger, A. J. et al. The not-so-dead of winter: underwater light climate and primary productivity under snow and ice cover in inland lakes. Inland Waters 13, 1–12 (2023).

    Article  Google Scholar 

  92. Ozersky, T. et al. The changing face of winter: lessons and questions from the Laurentian great lakes. J. Geophys. Res. Biogeosci. 126, e2021JG006247 (2021).

    Article  Google Scholar 

  93. Shchapov, K. & Ozersky, T. Opening the black box of winter: full-year dynamics of crustacean zooplankton along a nearshore depth gradient in a large lake. Limnol. Oceanogr. 68, 1438–1451 (2023).

    Article  Google Scholar 

  94. Jakkila, J., Leppäranta, M., Kawamura, T., Shirasawa, K. & Salonen, K. Radiation transfer and heat budget during the ice season in Lake Pääjärvi, Finland. Aquat. Ecol. 43, 681–692 (2009).

    Article  Google Scholar 

  95. Mullen, P. C. & Warren, S. G. Theory of the optical properties of lake ice. J. Geophys. Res. Atmos. 93, 8403–8414 (1988).

    Article  Google Scholar 

  96. Bolsenga, S. J., Herdendorf, C. E. & Norton, D. C. Spectral transmittance of lake ice from 400–850 nm. Hydrobiologia 218, 15–25 (1991).

    Article  Google Scholar 

  97. Bolsenga, S. J. & Vanderploeg, H. A. Estimating photosynthetically available radiation into open and ice-covered freshwater lakes from surface characteristics; a high transmittance case study. Hydrobiologia 243, 95–104 (1992).

    Article  Google Scholar 

  98. Dokulil, M. T. et al. Winter conditions in six European shallow lakes: a comparative synopsis. Estonian J. Ecol. 63, 111 (2014).

    Article  Google Scholar 

  99. Bashenkhaeva, M. V. et al. Sub-ice microalgal and bacterial communities in freshwater Lake Baikal, Russia. Microb. Ecol. 70, 751–765 (2015).

    Article  Google Scholar 

  100. Tran, P. et al. Microbial life under ice: metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered lakes. Environ. Microbiol. 20, 2568–2584 (2018).

    Article  CAS  Google Scholar 

  101. Cabello-Yeves, P. J. et al. Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl. Environ. Microbiol. 84, e02132–17 (2017).

    Google Scholar 

  102. Zakharova, Y. et al. Variability of microbial communities in two long-term ice-covered freshwater lakes in the subarctic region of Yakutia, Russia. Microb. Ecol. 84, 958–973 (2022).

    Article  CAS  Google Scholar 

  103. Tranvik, L. J. in Aquatic Humic Substances: Ecology and Biogeochemistry (eds Hessen, D. O. & Tranvik, L. J.) 259–283 (Springer, 1998).

  104. Münster, U. & Chróst, R. J. in Aquatic Microbial Ecology: Biochemical and Molecular Approaches (eds Overbeck, J. & Chróst, R. J.) 8–46 (Springer, 1990).

  105. Reitner, B., Herzig, A. & Herndl, G. J. Microbial activity under the ice cover of the shallow Neusiedler See (Austria, Central Europe). Hydrobiologia 357, 173–184 (1997).

    Article  CAS  Google Scholar 

  106. Bižić-Ionescu, M., Amann, R. & Grossart, H.-P. Massive regime shifts and high activity of heterotrophic bacteria in an ice-covered lake. PLoS ONE 9, e113611 (2014).

    Article  Google Scholar 

  107. Tulonen, T. Bacterial production in a mesohumic lake estimated from [14C]leucine incorporation rate. Microb. Ecol. 26, 201–217 (1993).

    Article  CAS  Google Scholar 

  108. Tulonen, T., Kankaala, P., Ojala, A. & Arvola, L. Factors controlling production of phytoplankton and bacteria under ice in a humic, boreal lake. J. Plankton Res. 16, 1411–1432 (1994).

    Article  Google Scholar 

  109. Beall, B. F. N. et al. Ice cover extent drives phytoplankton and bacterial community structure in a large north-temperate lake: implications for a warming climate. Environ. Microbiol. 18, 1704–1719 (2016).

    Article  CAS  Google Scholar 

  110. Obertegger, U. Temporal and spatial differences of the under-ice microbiome are linked to light transparency and chlorophyll-a. Hydrobiologia 849, 1593–1612 (2022).

    Article  Google Scholar 

  111. Cai, M. et al. Microbial difference and its influencing factors in ice-covered lakes on the three poles. Environ. Res. 252, 118753 (2024).

    Article  CAS  Google Scholar 

  112. Grosbois, G., Mariash, H., Schneider, T. & Rautio, M. Under-ice availability of phytoplankton lipids is key to freshwater zooplankton winter survival. Sci. Rep. 7, 11543 (2017).

    Article  Google Scholar 

  113. Yang, B., Wells, M. G., Li, J. & Young, J. Mixing, stratification, and plankton under lake‐ice during winter in a large lake: implications for spring dissolved oxygen levels. Limnol. Oceanogr. 65, 2713–2729 (2020).

    Article  CAS  Google Scholar 

  114. Knoll, L. B., Fry, B., Hayes, N. M. & Sauer, H. M. Reduced snow and increased nutrients show enhanced ice-associated photoautotrophic growth using a modified experimental under-ice design. Limnol. Oceanogr. 69, 203–216 (2024).

    Article  CAS  Google Scholar 

  115. Özkundakci, D., Gsell, A. S., Hintze, T., Täuscher, H. & Adrian, R. Winter severity determines functional trait composition of phytoplankton in seasonally ice-covered lakes. Glob. Change Biol. 22, 284–298 (2016).

    Article  Google Scholar 

  116. Jewson, D. H., Granin, N. G., Zhdanov, A. A. & Gnatovsky, R. Y. Effect of snow depth on under-ice irradiance and growth of Aulacoseira baicalensis in Lake Baikal. Aquat. Ecol. 43, 673–679 (2009).

    Article  CAS  Google Scholar 

  117. Jewson, D. H. & Granin, N. G. Cyclical size change and population dynamics of a planktonic diatom, Aulacoseira baicalensis, in Lake Baikal. Eur. J. Phycol. 50, 1–19 (2015).

    Article  CAS  Google Scholar 

  118. Pasche, N. et al. Implications of river intrusion and convective mixing on the spatial and temporal variability of under-ice CO2. Inland Waters 9, 162–176 (2019).

    Article  CAS  Google Scholar 

  119. Bouffard, D. & Wüest, A. Convection in lakes. Annu. Rev. Fluid Mech. 51, 189–215 (2019).

    Article  Google Scholar 

  120. Kelley, D. E. Convection in ice-covered lakes: effects on algal suspension. J. Plankton Res. 19, 1859–1880 (1997).

    Article  Google Scholar 

  121. Jansen, J. et al. Winter limnology: how do hydrodynamics and biogeochemistry shape ecosystems under ice? J. Geophys. Res. Biogeosci. 126, e2020JG006237 (2021).

    Article  CAS  Google Scholar 

  122. Palmer, M. A. et al. Light and nutrient control of photosynthesis in natural phytoplankton populations from the Chukchi and Beaufort seas, Arctic Ocean. Limnol. Oceanogr. 58, 2185–2205 (2013).

    Article  CAS  Google Scholar 

  123. Lewis, K. M. et al. Photoacclimation of Arctic Ocean phytoplankton to shifting light and nutrient limitation. Limnol. Oceanogr. 64, 284–301 (2019).

    Article  CAS  Google Scholar 

  124. Jones, R. I. & Ilmavirta, V. Flagellates in freshwater ecosystems — concluding remarks. Hydrobiologia 161, 271–274 (1988).

    Article  Google Scholar 

  125. Woolway, R. I. et al. Northern Hemisphere atmospheric stilling accelerates lake thermal responses to a warming world. Geophys. Res. Lett. 46, 11983–11992 (2019).

    Article  Google Scholar 

  126. Magnuson, J. J. et al. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289, 1743–1746 (2000).

    Article  CAS  Google Scholar 

  127. Feiner, Z. S., Dugan, H. A., Lottig, N. R., Sass, G. G. & Gerrish, G. A. A perspective on the ecological and evolutionary consequences of phenological variability in lake ice on north-temperate lakes. Can. J. Fish. Aquat. Sci. 79, 1590–1604 (2022).

    Article  Google Scholar 

  128. Bramm, M. E. et al. The role of light for fish–zooplankton–phytoplankton interactions during winter in shallow lakes — a climate change perspective. Freshw. Biol. 54, 1093–1109 (2009).

    Article  Google Scholar 

  129. Jensen, T. C. et al. Historical human impact on productivity and biodiversity in a subalpine oligotrophic lake in Scandinavia. J. Paleolimnol. 63, 1–20 (2020).

    Article  Google Scholar 

  130. Hayden, B., Harrod, C. & Kahilainen, K. K. Dual fuels: intra-annual variation in the relative importance of benthic and pelagic resources to maintenance, growth and reproduction in a generalist salmonid fish. J. Anim. Ecol. 83, 1501–1512 (2014).

    Article  Google Scholar 

  131. Schneider, T., Grosbois, G., Vincent, W. F. & Rautio, M. Carotenoid accumulation in copepods is related to lipid metabolism and reproduction rather than to UV-protection. Limnol. Oceanogr. 61, 1201–1213 (2016).

    Article  Google Scholar 

  132. Auer, M. T., Auer, N. A., Urban, N. R. & Auer, T. Distribution of the amphipod Diporeia in Lake Superior: the Ring of Fire. J. Gt Lakes Res. 39, 33–46 (2013).

    Article  CAS  Google Scholar 

  133. Fitzgerald, S. A. & Gardner, W. S. An algal carbon budget for pelagic–benthic coupling in Lake Michigan. Limnol. Oceanogr. 38, 547–560 (1993).

    Article  Google Scholar 

  134. Gardner, W. S., Frez, W. A., Cichocki, E. A. & Parrish, C. C. Micromethod for lipids in aquatic invertebrates. Limnol. Oceanogr. 30, 1099–1105 (1985).

    Article  CAS  Google Scholar 

  135. Wilhelm, S. W. et al. Seasonal changes in microbial community structure and activity imply winter production is linked to summer hypoxia in a large lake. FEMS Microbiol. Ecol. 87, 475–485 (2014).

    Article  CAS  Google Scholar 

  136. Hrycik, A. R. & Stockwell, J. D. Under-ice mesocosms reveal the primacy of light but the importance of zooplankton in winter phytoplankton dynamics. Limnol. Oceanogr. 66, 481–495 (2021).

    Article  Google Scholar 

  137. Farmer, T. M., Marschall, E. A., Dabrowski, K. & Ludsin, S. A. Short winters threaten temperate fish populations. Nat. Commun. 6, 7724 (2015).

    Article  CAS  Google Scholar 

  138. Shuter, B. J., Finstad, A. G., Helland, I. P., Zweimüller, I. & Hölker, F. The role of winter phenology in shaping the ecology of freshwater fish and their sensitivities to climate change. Aquat. Sci. 74, 637–657 (2012).

    Article  CAS  Google Scholar 

  139. Hrycik, A. R. et al. Earlier winter/spring runoff and snowmelt during warmer winters lead to lower summer chlorophyll-a in north temperate lakes. Glob. Change Biol. https://doi.org/10.1111/gcb.15797 (2021).

    Article  Google Scholar 

  140. Moe, S., Hobæk, A., Persson, J., Skjelbred, B. & Løvik, J. Shifted dynamics of plankton communities in a restored lake: exploring the effects of climate change on phenology through four decades. Clim. Res. https://doi.org/10.3354/cr01654 (2021).

  141. Block, B. D., Stockwell, J. D. & Marsden, J. E. Contributions of winter foraging to the annual growth of thermally dissimilar fish species. Hydrobiologia 847, 4325–4341 (2020).

    Article  Google Scholar 

  142. Murfitt, J. & Duguay, C. R. 50 years of lake ice research from active microwave remote sensing: progress and prospects. Remote Sens. Environ. 264, 112616 (2021).

    Article  Google Scholar 

  143. Murfitt, J., Duguay, C., Picard, G. & Gunn, G. Forward modelling of synthetic aperture radar backscatter from lake ice over Canadian subarctic lakes. Remote Sens. Environ. 286, 113424 (2023).

    Article  Google Scholar 

  144. Murfitt, J., Duguay, C. R., Picard, G. & Gunn, G. E. Investigating the effect of lake ice properties on multifrequency backscatter using the Snow Microwave Radiative Transfer (SMRT) model.IEEE Trans. Geosci. Remote Sens. https://doi.org/10.1109/TGRS.2022.3197109 (2022).

    Article  Google Scholar 

  145. Picard, G., Sandells, M. & Löwe, H. SMRT: an active–passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0). Geosci. Model. Dev. 11, 2763–2788 (2018).

    Article  Google Scholar 

  146. Rogers, C. K., Lawrence, G. A. & Hamblin, P. F. Observations and numerical simulation of a shallow ice-covered midlatitude lake. Limnol. Oceanogr. 40, 374–385 (1995).

    Article  Google Scholar 

  147. Hamilton, D. P., Magee, M. R., Wu, C. H. & Kratz, T. K. Ice cover and thermal regime in a dimictic seepage lake under climate change. Inland Waters 8, 381–398 (2018).

    Article  Google Scholar 

  148. Caramatti, I., Peeters, F., Hamilton, D. & Hofmann, H. Modelling inter-annual and spatial variability of ice cover in a temperate lake with complex morphology. Hydrol. Process. 34, 691–704 (2020).

    Article  Google Scholar 

  149. Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).

    Article  Google Scholar 

  150. Sharma, S. et al. Long-term ice phenology records spanning up to 578 years for 78 lakes around the Northern Hemisphere. Sci. Data 9, 318 (2022).

    Article  Google Scholar 

  151. Sharma, S. et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Change 9, 227–231 (2019).

    Article  Google Scholar 

  152. Sharma, S., Blagrave, K., Filazzola, A., Imrit, M. A. & Hendricks Franssen, H.-J. Forecasting the permanent loss of lake ice in the Northern Hemisphere within the 21st century. Geophys. Res. Lett. 48, e2020GL091108 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Global Lake Ecological Observatory Network (GLEON) for initial conversation and feedback on the conceptual ideas from which this manuscript benefited. Funding for this work was provided by the Natural Sciences and Engineering Research Council (NSERC) Discovery Grant, York University Research Chair Programme, and ArcticNet, a Network for Centres of Excellence Canada, to S.S. G.A.W. and E.J. acknowledge funding from the Swedish Research Council (grant no. 2020-03222) and the Swedish Research Council for Environment, Agricultural Sciences, and Spatial Planning (FORMAS, grant no. 2020-01091). S.H. was supported by the National Science Foundation DEB (grant no. 2306886). R.I.W. was supported by a UKRI Natural Environment Research Council (NERC) Independent Research Fellowship (grant no. NE/T011246/1) and a NERC grant (reference no. NE/X019071/1), ‘UK EO Climate Information Service’. The authors would also like to thank M. Pulkkanen for assistance in navigating the Finnish Environmental Institute database. They also thank M. Magee and G. Gunn for critical feedback.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to discussion of the content, wrote, reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Joshua Culpepper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Lian Feng, Andrew Newton and Andrew Bramburger for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Culpepper, J., Jakobsson, E., Weyhenmeyer, G.A. et al. Lake ice quality in a warming world. Nat Rev Earth Environ 5, 671–685 (2024). https://doi.org/10.1038/s43017-024-00590-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-024-00590-6

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene