Abstract
Phosphorus is a key limiting nutrient of terrestrial and marine primary production. Thus, the global phosphorus cycle is intimately linked with the carbon cycle and influences climate over geological timescales. In this Review, we explore the environmental forcings governing the global phosphorus cycle over the last ~3.0 billion years, focusing on sources from continental weathering and removal through burial in marine sediments. Modern continental weathering of phosphorus is dominated by apatite dissolution (25.4 ± 5.4 × 1010 mol year−1) and organic matter oxidation (1.2 ± 0.2 × 1010 mol year−1), and is governed by local temperature, biota, tectonic activity and atmospheric partial pressures of oxygen and carbon dioxide. Of this modern weathered phosphorus flux, rivers deliver 2.8 ± 0.2 × 1010 mol year−1 dissolved phosphorus and 20 ± 6 × 1010 mol year−1 reactive particulate phosphorus to the ocean, where phosphorus has a residence time of 11,000–27,000 years. Phosphorus burial in marine sediments is the primary sink term and balances with phosphorus weathering on geological timescales. Burial rates are governed by organic matter flux, ocean chemistry, redox conditions, temperature and biological activity in sediments. Enhanced resolution of empirical observations combined with sophisticated data analysis is needed to robustly constrain how environmental drivers influence the phosphorus cycle and, thus, climate.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
Data availability
All the compiled data files for this study are available in the Supplementary Tables.
Code availability
The code for the diagenetic model is available in the Supplementary Information.
References
Westheimer, F. H. Why nature chose phosphates. Science 235, 1173–1178 (1987).
Ruttenberg, K. The global phosphorus cycle. Treatise Geochem. 8, 682 (2003).
Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).
Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).
Du, E. Z. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–228 (2020).
Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).
Guidry, M. W. & Mackenzie, F. T. Apatite weathering and the Phanerozoic phosphorus cycle. Geology 28, 631–634 (2000).
Berner, R. A. The rise of plants and their effect on weathering and atmospheric CO2. Science 276, 544–546 (1997).
He, X. J. et al. Global patterns and drivers of soil total phosphorus concentration. Earth Syst. Sci. Data 13, 5831–5846 (2021).
Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M. & West, A. J. Global chemical weathering and associated P-release—the role of lithology, temperature and soil properties. Chem. Geol. 363, 145–163 (2014).
Föllmi, K. B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Sci. Rev. 40, 55–124 (1996).
Paytan, A. & McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev. 107, 563–576 (2007).
Filippelli, G. M. The global phosphorus cycle: past, present, and future. Elements 4, 89–95 (2008).
Zhao, M. Y., Zhang, S., Tarhan, L. G., Reinhard, C. T. & Planavsky, N. The role of calcium in regulating marine phosphorus burial and atmospheric oxygenation. Nat. Commun. 11, 2232 (2020).
Papadomanolaki, N. M., Lenstra, W. K., Wolthers, M. & Slomp, C. P. Enhanced phosphorus recycling during past oceanic anoxia amplified by low rates of apatite authigenesis. Sci. Adv. 8, eabn2370 (2022).
Sharoni, S. & Halevy, I. Geologic controls on phytoplankton elemental composition. Proc. Natl Acad. Sci. USA 119, e2113263118 (2022).
Walton, C. R. et al. Evolution of the crustal phosphorus reservoir. Sci. Adv. 9, eade6923 (2023).
Dodd, M. S. et al. Uncovering the Ediacaran phosphorus cycle. Nature 618, 974–980 (2023).
Lenton, T. M., Daine, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).
Föllmi, K. B., Hosein, R., Arn, K. & Steinmann, P. Weathering and the mobility of phosphorus in the catchments and forefields of the Rhône and Oberaar glaciers, central Switzerland: implications for the global phosphorus cycle on glacial–interglacial timescales. Geochim. Cosmochim. Acta 73, 2252–2282 (2009).
Guo, L. et al. Acceleration of phosphorus weathering under warm climates. Sci. Adv. 10, eadm7773 (2024).
Van Cappellen, P. & Ingall, E. D. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9, 677–692 (1994).
Zhao, M. Y., Tarhan, L., Planavsky, N. & Isson, T. The influence of warming on phosphorus burial in continental margin sediments. Am. J. Sci. 323, 6 (2023).
Benitez-Nelson, C. R. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev. 51, 109–135 (2000).
Ruttenberg, K. C. Reassessment of the oceanic residence time of phosphorus. Chem. Geol. 107, 405–409 (1993).
Walton, C. R. et al. Phosphorus mineral evolution and prebiotic chemistry: from minerals to microbes. Earth Sci. Rev. 221, 103806 (2021).
Walton, C. R. et al. Phosphorus availability on the early Earth and the impacts of life. Nat. Geosci. 16, 399–409 (2023).
Beck, M. A. & Sanchez, P. A. Soil phosphorus fraction dynamics during 18 years of cultivation on a Typic Paleudult. Soil. Sci. Soc. Am. J. 58, 1424–1431 (1994).
Bortoluzzi, E. C., Pérez, C. A. S., Ardisson, J. D., Tiecher, T. & Caner, L. Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils. Appl. Clay Sci. 104, 196–204 (2015).
Fink, J. R., Inda, A. V., Tiecher, T. & Barrón, V. Iron oxides and organic matter on soil phosphorus availability. Cienc. Agrotecnol. 40, 369–379 (2016).
Walker, T. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).
Wardle, D. A., Walker, L. R. & Bardgett, R. D. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305, 509–513 (2004).
Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. First plants cooled the Ordovician. Nat. Geosci. 5, 86–89 (2012).
Berner, R. A. & Rao, J.-L. Phosphorus in sediments of the Amazon River and estuary: implications for the global flux of phosphorus to the sea. Geochim. Cosmochim. Acta 58, 2333–2339 (1994).
Lebo, M. E. Particle-bound phosphorus along an urbanized coastal plain estuary. Mar. Chem. 34, 225–246 (1991).
Feely, R. A., Trefry, J. H., Lebon, G. T. & German, C. R. The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawater. Geophys. Res. Lett. 25, 2253–2256 (1998).
Hao, W. et al. The kaolinite shuttle links the Great Oxidation and Lomagundi events. Nat. Commun. 12, 2944 (2021).
Fru, E. C. et al. Transient fertilization of a post-Sturtian Snowball ocean margin with dissolved phosphate by clay minerals. Nat. Commun. 14, 8418 (2023).
Lal, D. & Lee, T. Cosmogenic 32P and 33P used as tracers to study phosphorus recycling in the upper ocean. Nature 333, 752–754 (1988).
Dyhrman, S. T. et al. Phosphonate utilization by the globally important marine diazotroph. Nature 439, 68–71 (2006).
Wu, J., Sunda, W., Boyle, E. A. & Karl, D. M. Phosphate depletion in the western North Atlantic Ocean. Science 289, 759–762 (2000).
Martiny, A. C. et al. Biogeochemical controls of surface ocean phosphate. Sci. Adv. 5, eaax0341 (2019).
Weber, T. S. & Deutsch, C. Ocean nutrient ratios governed by plankton biogeography. Nature 467, 550–554 (2010).
Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).
Galbraith, E. D. & Martiny, A. C. A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems. Proc. Natl Acad. Sci. USA 112, 8199–8204 (2015).
Yvon-Durocher, G., Dossena, M., Trimmer, M., Woodward, G. & Allen, A. P. Temperature and the biogeography of algal stoichiometry. Glob. Ecol. Biogeogr. 24, 562–570 (2015).
Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 7, 257–265 (2014).
Fakhraee, M., Planavsky, N. J. & Reinhard, C. T. The role of environmental factors in the long-term evolution of the marine biological pump. Nat. Geosci. 13, 812–816 (2020).
Ruttenberg, K. C. & Berner, R. A. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim. Cosmochim. Acta 57, 991–1007 (1993).
Slomp, C. P., Epping, E. H. G., Helder, W. & VanRaaphorst, W. A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. J. Mar. Res. 54, 1179–1205 (1996).
Berner, R. A. Phosphate removal from sea water by adsorption on volcanogenic ferric oxides. Earth Planet. Sci. Lett. 18, 77–86 (1973).
Feely, R. A. et al. The effect of hydrothermal processes on midwater phosphorus distributions in the northeast Pacific. Earth Planet. Sci. Lett. 96, 305–318 (1990).
Poulton, S. W. & Canfield, D. E. Co-diagenesis of iron and phosphorus in hydrothermal sediments from the southern East Pacific Rise: implications for the evaluation of paleoseawater phosphate concentrations. Geochim. Cosmochim. Acta 70, 5883–5898 (2006).
Dale, A. W., Boyle, R. A., Lenton, T. M., Ingall, E. D. & Wallmann, K. A model for microbial phosphorus cycling in bioturbated marine sediments: significance for phosphorus burial in the early Paleozoic. Geochim. Cosmochim. Acta 189, 251–268 (2016).
März, C., Poulton, S. W., Wagner, T., Schnetger, B. & Brumsack, H.-J. Phosphorus burial and diagenesis in the central Bering Sea (Bowers Ridge, IODP Site U1341): perspectives on the marine P cycle. Chem. Geol. 363, 270–282 (2014).
Latimer, J. C., Filippelli, G. M., Hendy, I. & Newkirk, D. R. Opal-associated particulate phosphorus: implications for the marine P cycle. Geochim. Cosmochim. Acta 70, 3843–3854 (2006).
Eijsink, L., Krom, M. & De Lange, G. The use of sequential extraction techniques for sedimentary phosphorus in eastern Mediterranean sediments. Mar. Geol. 139, 147–155 (1997).
Zhao, M.-Y., Zheng, Y.-F. & Zhao, Y.-Y. Seeking a geochemical identifier for authigenic carbonate. Nat. Commun. 7, 10885 (2016).
Filippelli, G. M. & Delaney, M. L. Phosphorus geochemistry of equatorial Pacific sediments. Geochim. Cosmochim. Acta 60, 1479–1495 (1996).
Delaney, M. L. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Glob. Biogeochem. Cycles 12, 563–572 (1998).
Filippelli, G. M. Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective. Chemosphere 84, 759–766 (2011).
Compton, J. et al. Variations in the global phosphoruscycle. SEPM Spec. Publ. 66, 21–33 (2000).
Ingall, E. & Jahnke, R. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim. Cosmochim. Acta 58, 2571–2575 (1994).
Algeo, T. J. & Ingall, E. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric \({p}_{{{\rm{O}}}_{2}}\). Palaeogeog. Palaeoclimatol. Palaeoecol. 256, 130–155 (2007).
Sharoni, S. & Halevy, I. Rates of seafloor and continental weathering govern Phanerozoic marine phosphate levels. Nat. Geosci. 16, 75–81 (2023).
Horton, F. Did phosphorus derived from the weathering of large igneous provinces fertilize the Neoproterozoic ocean? Geochem. Geophys. Geosyst. 16, 1723–1738 (2015).
Longman, J., Mills, B. J. W., Manners, H. R., Gernon, T. M. & Palmer, M. R. Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply. Nat. Geosci. 14, 924–929 (2021).
Chaïrat, C., Schott, J., Oelkers, E. H., Lartigue, J. E. & Harouiya, N. Kinetics and mechanism of natural fluorapatite dissolution at 25 °C and pH from 3 to 12. Geochim. Cosmochim. Acta 71, 5901–5912 (2007).
Cox, G. M., Lyons, T. W., Mitchell, R. N., Hasterok, D. & Gard, M. Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory. Earth Planet. Sci. Lett. 489, 28–36 (2018).
Algeo, T. J. & Twitchett, R. J. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38, 1023–1026 (2010).
Dal Corso, J. et al. Permo-Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse. Nat. Commun. 11, 2962 (2020).
Tamburini, F. & Föllmi, K. B. Phosphorus burial in the ocean over glacial–interglacial time scales. Biogeosciences 6, 501–513 (2009).
Chang, S. B. & Berner, R. A. Coal weathering and the geochemical carbon cycle. Geochim. Cosmochim. Acta 63, 3301–3310 (1999).
Bolton, E. W., Berner, R. A. & Petsch, S. T. The weathering of sedimentary organic matter as a control on atmospheric O2: II. Theoretical modeling. Am. J. Sci. 306, 575–615 (2006).
Zondervan, J. R. et al. Rock organic carbon oxidation CO2 release offsets silicate weathering sink. Nature 623, 329–333 (2023).
Yang, X., Post, W. M., Thornton, P. E. & Jain, A. The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 10, 2525–2537 (2013).
Augusto, L., Achat, D. L., Jonard, M., Vidal, D. & Ringeval, B. Soil parent material—a major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Change Biol. 23, 3808–3824 (2017).
Delgado-Baquerizo, M. et al. The influence of soil age on ecosystem structure and function across biomes. Nat. Commun. 11, 4721 (2020).
Van Cappellen, P. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).
Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).
Tang, M., Chu, X., Hao, J. H. & Shen, B. Orogenic quiescence in Earth’s middle age. Science 371, 728–731 (2021).
Hoffman, P. F. et al. Snowball Earth climate dynamics and Cryogenian geology–geobiology. Sci. Adv. 3, e1600983 (2017).
Yuan, W. et al. Mercury isotopes show vascular plants had colonized land extensively by the early Silurian. Sci. Adv. 9, eade9510 (2023).
Scotese, C. R., Song, H. J., Mills, B. J. W. & van der Meer, D. G. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years. Earth Sci. Rev. 215, 103503 (2021).
Syverson, D. D. et al. Nutrient supply to planetary biospheres from anoxic weathering of mafic oceanic crust. Geophys. Res. Lett. 48, e2021GL094442 (2021).
Berner, R. A. & Caldeira, K. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25, 955–956 (1997).
D’Antonio, M. P., Ibarra, D. E. & Boyce, C. K. Land plant evolution decreased, rather than increased, weathering rates. Geology 48, 29–33 (2020).
Ma, C., Tang, Y. & Ying, J. Global tectonics and oxygenation events drove the Earth-scale phosphorus cycle. Earth Sci. Rev. 233, 104166 (2022).
Korenaga, J., Planavsky, N. J. & Evans, D. A. D. Global water cycle and the coevolution of the Earth’s interior and surface environment. Phil. Trans. R. Soc. A. 375, 20150393 (2017).
Cheng, Y. T. et al. Spatial distribution of soil total phosphorus in Yingwugou watershed of the Dan River, China. Catena 136, 175–181 (2016).
Bucholz, C. E. Coevolution of sedimentary and strongly peraluminous granite phosphorus records. Earth Planet. Sci. Lett. 596, 117795 (2022).
Wan, B. et al. Seismological evidence for the earliest global subduction network at 2 Ga ago. Sci. Adv. 6, eabc5491 (2020).
Porder, S. & Ramachandran, S. The phosphorus concentration of common rocks—a potential driver of ecosystem P status. Plant. Soil. 367, 41–55 (2013).
Meyer, K. M., Kump, L. R. & Ridgwell, A. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36, 747–750 (2008).
Sun, H. et al. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian–Triassic boundary. Proc. Natl Acad. Sci. USA 115, 3782–3787 (2018).
Ma, C., Tang, Y. J. & Ying, J. F. Volcanic phosphorus spikes associated with supercontinent assembly supported the evolution of land plants. Earth Sci. Rev. 232, 104101 (2022).
Achat, D. L., Pousse, N., Nicolas, M., Brédoire, F. & Augusto, L. Soil properties controlling inorganic phosphorus availability: general results from a national forest network and a global compilation of the literature. Biogeochemistry 127, 255–272 (2016).
Mehmood, A., Akhtar, M. S., Imran, M. & Rukh, S. Soil apatite loss rate across different parent materials. Geoderma 310, 218–229 (2018).
Stallard, R. F. Tectonic, environmental, and human aspects of weathering and erosion: a global review using a steady-state perspective. Annu. Rev. Earth Planet. Sci. 23, 11–39 (1995).
Goddéris, Y. et al. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering. Nat. Geosci. 10, 382–386 (2017).
Porder, S. & Chadwick, O. A. Climate and soil-age constraints on nutrient uplift and retention by plants. Ecology 90, 623–636 (2009).
Guidry, M. W. & Mackenzie, F. T. Experimental study of igneous and sedimentary apatite dissolution: control of pH, distance from equilibrium, and temperature on dissolution rates. Geochim. Cosmochim. Acta 67, 2949–2963 (2003).
Harouiya, N., Chaïrat, C., Köhler, S. J., Gout, R. & Oelkers, E. H. The dissolution kinetics and apparent solubility of natural apatite in closed reactors at temperatures from 5 to 50 °C and pH from 1 to 6. Chem. Geol. 244, 554–568 (2007).
West, A. J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks. Geology 40, 811–814 (2012).
Maffre, P. et al. Mountain ranges, climate and weathering. Do orogens strengthen or weaken the silicate weathering carbon sink? Earth Planet. Sci. Lett. 493, 174–185 (2018).
Hou, E. et al. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob. Change Biol. 24, 3344–3356 (2018).
Sims, J., Simard, R. & Joern, B. Phosphorus loss in agricultural drainage: historical perspective and current research. J. Environ. Qual. 27, 277–293 (1998).
Zhao, M. Y., Mills, B. J. W., Homoky, W. B. & Peacock, C. L. Oxygenation of the Earth aided by mineral–organic carbon preservation. Nat. Geosci. 16, 262–269 (2023).
Komar, N. & Zeebe, R. E. Redox-controlled carbon and phosphorus burial: a mechanism for enhanced organic carbon sequestration during the PETM. Earth Planet. Sci. Lett. 479, 71–82 (2017).
Mills, B. J. W., Donnadieu, Y. & Goddéris, Y. Spatial continuous integration of Phanerozoic global biogeochemistry and climate. Gondwana Res. 100, 73–86 (2021).
Goddéris, Y., Donnadieu, Y. & Mills, B. J. W. What models tell us about the evolution of carbon sources and sinks over the Phanerozoic. Annu. Rev. Earth Planet. Sci. 51, 471–492 (2023).
Ozaki, K. & Tajika, E. Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redox chemistry: implications for greenhouse climates. Earth Planet. Sci. Lett. 373, 129–139 (2013).
Hülse, D. et al. End-Permian marine extinction due to temperature-driven nutrient recycling and euxinia. Nat. Geosci. 14, 862–867 (2021).
Wu, X. J. et al. Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes. Msystems 7, e0110721 (2022).
Yao, Q. M. et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat. Ecol. Evol. 2, 499–509 (2018).
Planavsky, N. J. et al. Evolution of the structure and impact of Earth’s biosphere. Nat. Rev. Earth Environ. 2, 123–139 (2021).
Retallack, G. J. Early forest soils and their role in Devonian global change. Science 276, 583–585 (1997).
Moulton, K. L. & Berner, R. A. Quantification of the effect of plants on weathering: studies in Iceland. Geology 26, 895–898 (1998).
Algeo, T. J. & Scheckler, S. E. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos. Trans. R. Soc. B Biol. Sci. 353, 113–128 (1998).
Filippelli, G. M. The global phosphorus cycle. Rev. Mineral. Geochem. 48, 391–425 (2002).
Quirk, J. et al. Constraining the role of early land plants in Palaeozoic weathering and global cooling. Proc. R. Soc. B Biol. Sci. 282, 20151115 (2015).
Berner, R. A. Weathering, plants, and the long-term carbon cycle. Geochim. Cosmochim. Acta 56, 3225–3231 (1992).
Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016).
Laakso, T. A. & Schrag, D. P. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet. Sci. Lett. 388, 81–91 (2014).
Colman, A. S. & Holland, H. D. in Marine Authigenesis: From Global to Microbial (eds Prévôt-Lucas, L., Glenn, C. R. & Lucas, J.) (SEPM, 2000).
Tsandev, I., Reed, D. C. & Slomp, C. P. Phosphorus diagenesis in deep-sea sediments: sensitivity to water column conditions and global scale implications. Chem. Geol. 330, 127–139 (2012).
Schenau, S., Reichart, G.-J. & De Lange, G. Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian Sea sediments. Geochim. Cosmochim. Acta 69, 919–931 (2005).
Van Cappellen, P. & Berner, R. A. Fluorapatite crystal growth from modified seawater solutions. Geochim. Cosmochim. Acta 55, 1219–1234 (1991).
Boyle, R. A. et al. Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation. Nat. Geosci. 7, 671–676 (2014).
Tarhan, L. G., Zhao, M. & Planavsky, N. J. Bioturbation feedbacks on the phosphorus cycle. Earth Planet. Sci. Lett. 566, 116961 (2021).
Derry, L. A. Causes and consequences of mid‐Proterozoic anoxia. Geophys. Res. Lett. 42, 8538–8546 (2015).
Xiong, Y. J., Guilbaud, R., Peacock, C. L., Krom, M. D. & Poulton, S. W. Phosphorus controls on the formation of vivianite versus green rust under anoxic conditions. Geochim. Cosmochim. Acta 351, 139–151 (2023).
Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017).
Nathan, Y., Bremner, J. M., Lowenthal, R. E. & Monteiro, P. Role of bacteria in phosphorite genesis. Geomicrobiol. J. 11, 69–76 (1993).
Schulz, H. N. & Schulz, H. D. Large sulfur bacteria and the formation of phosphorite. Science 307, 416–418 (2005).
Goldhammer, T., Brüchert, V., Ferdelman, T. G. & Zabel, M. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat. Geosci. 3, 557–561 (2010).
Herschy, B. et al. Archean phosphorus liberation induced by iron redox geochemistry. Nat. Commun. 9, 1346 (2018).
Planavsky, N. J. et al. A sedimentary record of the evolution of the global marine phosphorus cycle. Geobiology 21, 168–174 (2023).
Laakso, T. A., Sperling, E. A., Johnston, D. T. & Knoll, A. H. Ediacaran reorganization of the marine phosphorus cycle. Proc. Natl Acad. Sci. USA 117, 11961–11967 (2020).
McClellan, G. & Van Kauwenbergh, S. Mineralogical and chemical variation of francolites with geological time. J. Geol. Soc. 148, 809–812 (1991).
Henrichs, S. M. & Reeburgh, W. S. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 5, 191–237 (1987).
Betts, J. N. & Holland, H. D. The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen. Glob. Planet. Change. 97, 5–18 (1991).
Canfield, D. E. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Res. Part. A Oceanogr. Res. Pap. 36, 121–138 (1989).
Schoepfer, S. D. et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth Sci. Rev. 149, 23–52 (2015).
Aller, R. C. Diagenetic processes near the sediment–water interface of Long Island sound. I.: decomposition and nutrient element geochemistry (S, N, P). Adv. Geophys. 22, 237–350 (1980).
Westrich, J. T. & Berner, R. A. The effect of temperature on rates of sulfate reduction in marine sediments. Geomicrobiol. J. 6, 99–117 (1988).
Middelburg, J. J. et al. Organic matter mineralization in intertidal sediments along an estuarine gradient. Mar. Ecol. Prog. Ser. 132, 157–168 (1996).
Burdige, D. J. Temperature dependence of organic matter remineralization in deeply-buried marine sediments. Earth Planet. Sci. Lett. 311, 396–410 (2011).
Burnett, W. C. Apatite–glauconite associations off Peru and Chile: palaeo-oceanograpic implications. J. Geol. Soc. 137, 757–764 (1980).
Garrison, R. E. & Kastner, M. Phosphatic sediments and rocks recovered from the Peru margin during ODP Leg 112. Proc. Ocean. Drill. Program. Sci. Results 112, 111–134 (1990).
Shimmield, G. & Mowbray, S. The inorganic geochemical record of the northwest Arabian Sea: a history of productivity variation over the last 400 ky from site 722 and 724. Proc. Ocean. Drill. Program. Sci. Results 117, 409–429 (1991).
Schenau, S., Slomp, C. P. & DeLange, G. J. Phosphogenesis and active phosphorite formation in sediments from the Arabian Sea oxygen minimum zone. Mar. Geol. 169, 1–20 (2000).
Ganeshram, R. S., Pedersen, T. F., Calvert, S. E. & Francois, R. Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories. Nature 415, 156–159 (2002).
Jahnke, R. A. The synthesis and solubility of carbonate fluorapatite. Am. J. Sci. 284, 58–78 (1984).
Dickson, J. A. D. Fossil echinoderms as monitor of the Mg/Ca ratio of phanerozoic oceans. Science 298, 1222–1224 (2002).
Horita, J., Zimmermann, H. & Holland, H. D. Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim. Cosmochim. Acta 66, 3733–3756 (2002).
Coggon, R. M., Teagle, D. A. H., Smith-Duque, C. E., Alt, J. C. & Cooper, M. J. Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins. Science 327, 1114–1117 (2010).
Nelson, B. W. Sedimentary phosphate method for estimating paleosalinities. Science 158, 917–920 (1967).
Weng, H. X., Presley, B. J. & Armstrong, D. Distribution of sedimentary phosphorus in Gulf of Mexico estuaries. Mar. Environ. Res. 37, 375–392 (1994).
Faul, K. L., Paytan, A. & Wilson, P. Phosphorus and barite concentrations and geochemistry in Site 1221 Paleocene/Eocene boundary sediments. Proc. Ocean. Drill. Program. Sci. Results 199, 1–23 (2005).
Heggie, D. et al. Organic carbon cycling and modern phosphorite formation on the East Australian continental margin: an overview. Geol. Soc. Spec. Publ. 52, 87–117 (1990).
Schuffert, J. D. et al. Rates of formation of modern phosphorite off western Mexico. Geochim. Cosmochim. Acta 58, 5001–5010 (1994).
Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).
Poulton, S. W. et al. A continental-weathering control on orbitally driven redox-nutrient cycling during Cretaceous Oceanic Anoxic Event 2. Geology 43, 963–966 (2015).
Monbet, P., Brunskill, G., Zagorskis, I. & Pfitzner, J. Phosphorus speciation in the sediment and mass balance for the central region of the Great Barrier Reef continental shelf (Australia). Geochim. Cosmochim. Acta 71, 2762–2779 (2007).
Slomp, C. P. & Van Cappellen, P. The global marine phosphorus cycle: sensitivity to oceanic circulation. Biogeosciences 4, 155–171 (2007).
Alcott, L. J., Mills, B. J. W. & Poulton, S. W. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science 366, 1333–1337 (2019).
Jiang, L. et al. Pulses of atmosphere oxygenation during the Cambrian radiation of animals. Earth Planet. Sci. Lett. 590, 117565 (2022).
Poulton, S. W. Early phosphorus redigested. Nat. Geosci. 10, 75–76 (2017).
Schobben, M. et al. A nutrient control on marine anoxia during the end-Permian mass extinction. Nat. Geosci. 13, 640–646 (2020).
Qiu, Z. et al. A nutrient control on expanded anoxia and global cooling during the Late Ordovician mass extinction. Commun. Earth Environ. 3, 82 (2022).
Cauwet, G. Organic-chemistry of sea-water particulates concepts and developments. Oceanol. Acta 1, 99–105 (1978).
Mort, H. P. et al. Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology 35, 483–486 (2007).
Song, Y. et al. Dynamic redox and nutrient cycling response to climate forcing in the Mesoproterozoic ocean. Nat. Commun. 14, 6640 (2023).
Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).
Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015).
Alcott, L. J., Mills, B. J., Bekker, A. & Poulton, S. W. Earth’s Great Oxidation Event facilitated by the rise of sedimentary phosphorus recycling. Nat. Geosci. 15, 210–215 (2022).
Zegeye, A. et al. Green rust formation controls nutrient availability in a ferruginous water column. Geology 40, 599–602 (2012).
Bjerrum, C. J. & Canfield, D. E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417, 159–162 (2002).
Jones, C., Nomosatryo, S., Crowe, S. A., Bjerrum, C. J. & Canfield, D. E. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis. Geology 43, 135–138 (2015).
Konhauser, K. O., Lalonde, S. V., Amskold, L. & Holland, H. D. Was there really an Archean phosphate crisis? Science 315, 1234–1234 (2007).
Cosmidis, J. et al. Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France). Geochim. Cosmochim. Acta 126, 78–96 (2014).
Vuillemin, A. et al. Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia. Biogeosciences 17, 1955–1973 (2020).
Johnson, B. R. et al. Phosphorus burial in ferruginous SiO2-rich Mesoproterozoic sediments. Geology 48, 92–96 (2020).
van de Velde, S., Mills, B. J. W., Meysman, F. J. R., Lenton, T. M. & Poulton, S. W. Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing. Nat. Commun. 9, 2554 (2018).
Dahl, T. W. et al. Atmosphere–ocean oxygen and productivity dynamics during early animal radiations. Proc. Natl Acad. Sci. USA 116, 19352–19361 (2019).
Cribb, A. T., van de Velde, S. J., Berelson, W. M., Bottjer, D. J. & Corsetti, F. A. Ediacaran–Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems. Geobiology 21, 435–453 (2023).
Westacott, S., Zhao, M. & Tarhan, L. G. Extent and biogeochemical impact of Skolithos piperock in the lower Cambrian Zabriskie Quartzite (California, USA). Palaeogeog. Palaeoclimatol. Palaeoecol. 651, 112381 (2024).
Aller, R. C. Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment. Geochim. Cosmochim. Acta 44, 1955–1965 (1980).
Boudreau, B. P. On the equivalence of nonlocal and radial-diffusion models for porewater irrigation. J. Mar. Res. 42, 731–735 (1984).
Rivas-Lamelo, S. et al. Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin. Geochem. Perspect. Lett. 5, 35–41 (2017).
Brock, J. & Schulz-Vogt, H. N. Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain. ISME J. 5, 497–506 (2011).
Diaz, J. et al. Marine polyphosphate: a key player in geologic phosphorus sequestration. Science 320, 652–655 (2008).
Lepland, A. et al. Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis. Nat. Geosci. 7, 20–24 (2014).
Butterfield, N. J. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7, 1–7 (2009).
Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 205–221 (1958).
Arrigo, K. R. Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2005).
Inomura, K., Deutsch, C., Jahn, O., Dutkiewicz, S. & Follows, M. J. Global patterns in marine organic matter stoichiometry driven by phytoplankton ecophysiology. Nat. Geosci. 15, 1034–1040 (2022).
Planavsky, N. J. The elements of marine life. Nat. Geosci. 7, 855–856 (2014).
Cawley, J. L., Burruss, R. C. & Holland, H. D. Chemical weathering in central Iceland: an analog of pre-Silurian weathering. Science 165, 391–392 (1969).
Volk, T. Feedbacks between weathering and atmospheric CO2 over the last 100 million years. Am. J. Sci. 287, 763–779 (1987).
Brantley, S. L., Shaughnessy, A., Lebedeva, M. I. & Balashov, V. N. How temperature-dependent silicate weathering acts as Earth’s geological thermostat. Science 379, 382–389 (2023).
Goddéris, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V. & Nardin, E. The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth Sci. Rev. 128, 122–138 (2014).
Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci. Rev. 123, 53–86 (2013).
Kraal, P., Dijkstra, N., Behrends, T. & Slomp, C. P. Phosphorus burial in sediments of the sulfidic deep Black Sea: key roles for adsorption by calcium carbonate and apatite authigenesis. Geochim. Cosmochim. Acta 204, 140–158 (2017).
Kasting, J. F. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res. 34, 205–229 (1987).
Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J. & Beerling, D. J. CO2 as a primary driver of phanerozoic climate. GSA today 14, 4–10 (2004).
Collerson, K. D. & Kamber, B. S. Evolution of the continents and the atmosphere inferred from Th–U–Nb systematics of the depleted mantle. Science 283, 1519–1522 (1999).
Condie, K. C., Arndt, N., Davaille, A. & Puetz, S. J. Zircon age peaks: production or preservation of continental crust? Geosphere 13, 227–234 (2017).
McLennan, S. M. & Taylor, S. Geochemical constraints on the growth of the continental crust. J. Geol. 90, 347–361 (1982).
Rudnick, R. & Gao, S. Composition of the continental crust. Treatise Geochem. 3, 1–64 (2013).
Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).
Farrell, U. C. et al. The sedimentary geochemistry and paleoenvironments project. Geobiology 19, 545–556 (2021).
Acknowledgements
The authors thank the National Natural Science Foundation of China (NSFC) (42488201, 42325206), the Chinese Academy of Sciences (XDB0710202, XDA0430202) and the IGGCAS Key programme (no. IGGCAS-202201). K.-Q.X. thanks the Hundred Talents Program of the Chinese Academy of Sciences. B.J.W.M. thanks UK Research and Innovation (UKRI) (grants NE/S009663/1 and EP/Y008790/1). The authors thank P. Ju for valuable insights.
Author information
Authors and Affiliations
Contributions
M.Z. wrote the manuscript, with input from all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Shlomit Sharoni, Craig Walton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Activation energy
-
The minimum amount of energy required to begin a chemical reaction.
- Biodiffusion
-
The mixing of solids and solutes in sediments by fauna.
- Bioirrigation
-
The exchange of solutes between pore water and seawater through the borrowing of fauna.
- Biological pump
-
The fixation of inorganic carbon to organic carbon in the surface ocean and transport to the deep ocean.
- Conveyor-belt feeding
-
Transfer of particles from depth within sediments to the sediment–water interface by fauna.
- Euxinic
-
Anoxic and sulfidic conditions in the water column.
- Ferruginous
-
Anoxic and iron-rich conditions in the water column.
- Great Oxygenation Event
-
Earth’s first major rise in atmospheric oxygen, which occurred between 2.4 and 2.1 billion years ago (Ga).
- Green rust
-
A mixed ferrous–ferric phase and potentially important precursor mineral during deposition of banded iron formations.
- Microbial mats
-
Multilayered sheets of microorganisms.
- Monte Carlo
-
A mathematical technique that predicts the probability of a range of outcomes when random variables are present.
- Non-local chemical exchange
-
Chemical exchange between non-adjacent sediment layers.
- Phosphorite
-
A phosphorus-rich sedimentary rock consisting of carbonate fluorapatite (CFA) or francolite.
- Redfield ratio
-
The average atomic ratio of carbon, nitrogen and phosphorus in marine phytoplankton.
- Sink-switching
-
The transformation of one chemical phase of a component (for example, phosphorus) to another during diagenesis in sediments.
- Ultimate limiting nutrient
-
The most important nutrient that determines the production rate of new organic matter by phytoplankton or plants.
- Wildfire feedback
-
Fires burn more intensely under increased atmospheric oxygen, which will consume oxygen and stabilize the atmospheric oxygen level.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhao, M., Mills, B.J.W., Poulton, S.W. et al. Drivers of the global phosphorus cycle over geological time. Nat Rev Earth Environ 5, 873–889 (2024). https://doi.org/10.1038/s43017-024-00603-4
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s43017-024-00603-4
This article is cited by
-
The sources and mobilization processes of rhizosphere bioavailable phosphorus in the subalpine forest of eastern Tibetan Plateau
Plant and Soil (2026)
-
Water Versus Land on Temperate Rocky Planets
Space Science Reviews (2026)
-
Enhanced phosphorus weathering contributed to Late Miocene cooling
Nature Communications (2025)
-
Microbial iron cycling illuminates the biological contribution and potential climate drivers of deep-sea rare earth element enrichment
Communications Earth & Environment (2025)
-
Enhanced phosphorus regeneration linked to Ediacaran ocean oxygenation
Communications Earth & Environment (2025)


