Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drivers of the global phosphorus cycle over geological time

Abstract

Phosphorus is a key limiting nutrient of terrestrial and marine primary production. Thus, the global phosphorus cycle is intimately linked with the carbon cycle and influences climate over geological timescales. In this Review, we explore the environmental forcings governing the global phosphorus cycle over the last ~3.0 billion years, focusing on sources from continental weathering and removal through burial in marine sediments. Modern continental weathering of phosphorus is dominated by apatite dissolution (25.4 ± 5.4 × 1010 mol year−1) and organic matter oxidation (1.2 ± 0.2 × 1010 mol year−1), and is governed by local temperature, biota, tectonic activity and atmospheric partial pressures of oxygen and carbon dioxide. Of this modern weathered phosphorus flux, rivers deliver 2.8 ± 0.2 × 1010 mol year−1 dissolved phosphorus and 20 ± 6 × 1010 mol year−1 reactive particulate phosphorus to the ocean, where phosphorus has a residence time of 11,000–27,000 years. Phosphorus burial in marine sediments is the primary sink term and balances with phosphorus weathering on geological timescales. Burial rates are governed by organic matter flux, ocean chemistry, redox conditions, temperature and biological activity in sediments. Enhanced resolution of empirical observations combined with sophisticated data analysis is needed to robustly constrain how environmental drivers influence the phosphorus cycle and, thus, climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The global phosphorus cycle.
Fig. 2: Phosphorus burial across different marine environments.
Fig. 3: Calculation of the evolution of continental phosphorus weathering.
Fig. 4: Effect of temperature, \({{\boldsymbol{p}}}_{{{\rm{CO}}}_{2}}\) and rock type on phosphorus weathering.
Fig. 5: Evolution of phosphorus burial through time.
Fig. 6: Influence of seawater calcium concentration and sedimentation rate on phosphorus burial.

Similar content being viewed by others

Data availability

All the compiled data files for this study are available in the Supplementary Tables.

Code availability

The code for the diagenetic model is available in the Supplementary Information.

References

  1. Westheimer, F. H. Why nature chose phosphates. Science 235, 1173–1178 (1987).

    Article  CAS  Google Scholar 

  2. Ruttenberg, K. The global phosphorus cycle. Treatise Geochem. 8, 682 (2003).

    Google Scholar 

  3. Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

    Article  Google Scholar 

  4. Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    Article  Google Scholar 

  5. Du, E. Z. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–228 (2020).

    Article  CAS  Google Scholar 

  6. Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).

    Article  CAS  Google Scholar 

  7. Guidry, M. W. & Mackenzie, F. T. Apatite weathering and the Phanerozoic phosphorus cycle. Geology 28, 631–634 (2000).

    Article  CAS  Google Scholar 

  8. Berner, R. A. The rise of plants and their effect on weathering and atmospheric CO2. Science 276, 544–546 (1997).

    Article  CAS  Google Scholar 

  9. He, X. J. et al. Global patterns and drivers of soil total phosphorus concentration. Earth Syst. Sci. Data 13, 5831–5846 (2021).

    Article  Google Scholar 

  10. Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M. & West, A. J. Global chemical weathering and associated P-release—the role of lithology, temperature and soil properties. Chem. Geol. 363, 145–163 (2014).

    Article  CAS  Google Scholar 

  11. Föllmi, K. B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Sci. Rev. 40, 55–124 (1996).

    Article  Google Scholar 

  12. Paytan, A. & McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev. 107, 563–576 (2007).

    Article  CAS  Google Scholar 

  13. Filippelli, G. M. The global phosphorus cycle: past, present, and future. Elements 4, 89–95 (2008).

    Article  CAS  Google Scholar 

  14. Zhao, M. Y., Zhang, S., Tarhan, L. G., Reinhard, C. T. & Planavsky, N. The role of calcium in regulating marine phosphorus burial and atmospheric oxygenation. Nat. Commun. 11, 2232 (2020).

    Article  CAS  Google Scholar 

  15. Papadomanolaki, N. M., Lenstra, W. K., Wolthers, M. & Slomp, C. P. Enhanced phosphorus recycling during past oceanic anoxia amplified by low rates of apatite authigenesis. Sci. Adv. 8, eabn2370 (2022).

    Article  CAS  Google Scholar 

  16. Sharoni, S. & Halevy, I. Geologic controls on phytoplankton elemental composition. Proc. Natl Acad. Sci. USA 119, e2113263118 (2022).

    Article  Google Scholar 

  17. Walton, C. R. et al. Evolution of the crustal phosphorus reservoir. Sci. Adv. 9, eade6923 (2023).

    Article  CAS  Google Scholar 

  18. Dodd, M. S. et al. Uncovering the Ediacaran phosphorus cycle. Nature 618, 974–980 (2023).

    Article  CAS  Google Scholar 

  19. Lenton, T. M., Daine, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).

    Article  CAS  Google Scholar 

  20. Föllmi, K. B., Hosein, R., Arn, K. & Steinmann, P. Weathering and the mobility of phosphorus in the catchments and forefields of the Rhône and Oberaar glaciers, central Switzerland: implications for the global phosphorus cycle on glacial–interglacial timescales. Geochim. Cosmochim. Acta 73, 2252–2282 (2009).

    Article  Google Scholar 

  21. Guo, L. et al. Acceleration of phosphorus weathering under warm climates. Sci. Adv. 10, eadm7773 (2024).

    Article  CAS  Google Scholar 

  22. Van Cappellen, P. & Ingall, E. D. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9, 677–692 (1994).

    Article  Google Scholar 

  23. Zhao, M. Y., Tarhan, L., Planavsky, N. & Isson, T. The influence of warming on phosphorus burial in continental margin sediments. Am. J. Sci. 323, 6 (2023).

    Article  Google Scholar 

  24. Benitez-Nelson, C. R. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev. 51, 109–135 (2000).

    Article  CAS  Google Scholar 

  25. Ruttenberg, K. C. Reassessment of the oceanic residence time of phosphorus. Chem. Geol. 107, 405–409 (1993).

    Article  Google Scholar 

  26. Walton, C. R. et al. Phosphorus mineral evolution and prebiotic chemistry: from minerals to microbes. Earth Sci. Rev. 221, 103806 (2021).

    Article  CAS  Google Scholar 

  27. Walton, C. R. et al. Phosphorus availability on the early Earth and the impacts of life. Nat. Geosci. 16, 399–409 (2023).

    Article  CAS  Google Scholar 

  28. Beck, M. A. & Sanchez, P. A. Soil phosphorus fraction dynamics during 18 years of cultivation on a Typic Paleudult. Soil. Sci. Soc. Am. J. 58, 1424–1431 (1994).

    Article  CAS  Google Scholar 

  29. Bortoluzzi, E. C., Pérez, C. A. S., Ardisson, J. D., Tiecher, T. & Caner, L. Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils. Appl. Clay Sci. 104, 196–204 (2015).

    Article  CAS  Google Scholar 

  30. Fink, J. R., Inda, A. V., Tiecher, T. & Barrón, V. Iron oxides and organic matter on soil phosphorus availability. Cienc. Agrotecnol. 40, 369–379 (2016).

    Article  CAS  Google Scholar 

  31. Walker, T. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).

    Article  CAS  Google Scholar 

  32. Wardle, D. A., Walker, L. R. & Bardgett, R. D. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305, 509–513 (2004).

    Article  CAS  Google Scholar 

  33. Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. First plants cooled the Ordovician. Nat. Geosci. 5, 86–89 (2012).

    Article  CAS  Google Scholar 

  34. Berner, R. A. & Rao, J.-L. Phosphorus in sediments of the Amazon River and estuary: implications for the global flux of phosphorus to the sea. Geochim. Cosmochim. Acta 58, 2333–2339 (1994).

    Article  CAS  Google Scholar 

  35. Lebo, M. E. Particle-bound phosphorus along an urbanized coastal plain estuary. Mar. Chem. 34, 225–246 (1991).

    Article  CAS  Google Scholar 

  36. Feely, R. A., Trefry, J. H., Lebon, G. T. & German, C. R. The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawater. Geophys. Res. Lett. 25, 2253–2256 (1998).

    Article  CAS  Google Scholar 

  37. Hao, W. et al. The kaolinite shuttle links the Great Oxidation and Lomagundi events. Nat. Commun. 12, 2944 (2021).

    Article  CAS  Google Scholar 

  38. Fru, E. C. et al. Transient fertilization of a post-Sturtian Snowball ocean margin with dissolved phosphate by clay minerals. Nat. Commun. 14, 8418 (2023).

    Article  CAS  Google Scholar 

  39. Lal, D. & Lee, T. Cosmogenic 32P and 33P used as tracers to study phosphorus recycling in the upper ocean. Nature 333, 752–754 (1988).

    Article  CAS  Google Scholar 

  40. Dyhrman, S. T. et al. Phosphonate utilization by the globally important marine diazotroph. Nature 439, 68–71 (2006).

    Article  CAS  Google Scholar 

  41. Wu, J., Sunda, W., Boyle, E. A. & Karl, D. M. Phosphate depletion in the western North Atlantic Ocean. Science 289, 759–762 (2000).

    Article  CAS  Google Scholar 

  42. Martiny, A. C. et al. Biogeochemical controls of surface ocean phosphate. Sci. Adv. 5, eaax0341 (2019).

    Article  CAS  Google Scholar 

  43. Weber, T. S. & Deutsch, C. Ocean nutrient ratios governed by plankton biogeography. Nature 467, 550–554 (2010).

    Article  CAS  Google Scholar 

  44. Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).

    Article  CAS  Google Scholar 

  45. Galbraith, E. D. & Martiny, A. C. A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems. Proc. Natl Acad. Sci. USA 112, 8199–8204 (2015).

    Article  CAS  Google Scholar 

  46. Yvon-Durocher, G., Dossena, M., Trimmer, M., Woodward, G. & Allen, A. P. Temperature and the biogeography of algal stoichiometry. Glob. Ecol. Biogeogr. 24, 562–570 (2015).

    Article  Google Scholar 

  47. Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 7, 257–265 (2014).

    Article  CAS  Google Scholar 

  48. Fakhraee, M., Planavsky, N. J. & Reinhard, C. T. The role of environmental factors in the long-term evolution of the marine biological pump. Nat. Geosci. 13, 812–816 (2020).

    Article  CAS  Google Scholar 

  49. Ruttenberg, K. C. & Berner, R. A. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim. Cosmochim. Acta 57, 991–1007 (1993).

    Article  CAS  Google Scholar 

  50. Slomp, C. P., Epping, E. H. G., Helder, W. & VanRaaphorst, W. A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. J. Mar. Res. 54, 1179–1205 (1996).

    Article  CAS  Google Scholar 

  51. Berner, R. A. Phosphate removal from sea water by adsorption on volcanogenic ferric oxides. Earth Planet. Sci. Lett. 18, 77–86 (1973).

    Article  CAS  Google Scholar 

  52. Feely, R. A. et al. The effect of hydrothermal processes on midwater phosphorus distributions in the northeast Pacific. Earth Planet. Sci. Lett. 96, 305–318 (1990).

    Article  CAS  Google Scholar 

  53. Poulton, S. W. & Canfield, D. E. Co-diagenesis of iron and phosphorus in hydrothermal sediments from the southern East Pacific Rise: implications for the evaluation of paleoseawater phosphate concentrations. Geochim. Cosmochim. Acta 70, 5883–5898 (2006).

    Article  CAS  Google Scholar 

  54. Dale, A. W., Boyle, R. A., Lenton, T. M., Ingall, E. D. & Wallmann, K. A model for microbial phosphorus cycling in bioturbated marine sediments: significance for phosphorus burial in the early Paleozoic. Geochim. Cosmochim. Acta 189, 251–268 (2016).

    Article  CAS  Google Scholar 

  55. März, C., Poulton, S. W., Wagner, T., Schnetger, B. & Brumsack, H.-J. Phosphorus burial and diagenesis in the central Bering Sea (Bowers Ridge, IODP Site U1341): perspectives on the marine P cycle. Chem. Geol. 363, 270–282 (2014).

    Article  Google Scholar 

  56. Latimer, J. C., Filippelli, G. M., Hendy, I. & Newkirk, D. R. Opal-associated particulate phosphorus: implications for the marine P cycle. Geochim. Cosmochim. Acta 70, 3843–3854 (2006).

    Article  CAS  Google Scholar 

  57. Eijsink, L., Krom, M. & De Lange, G. The use of sequential extraction techniques for sedimentary phosphorus in eastern Mediterranean sediments. Mar. Geol. 139, 147–155 (1997).

    Article  CAS  Google Scholar 

  58. Zhao, M.-Y., Zheng, Y.-F. & Zhao, Y.-Y. Seeking a geochemical identifier for authigenic carbonate. Nat. Commun. 7, 10885 (2016).

    Article  CAS  Google Scholar 

  59. Filippelli, G. M. & Delaney, M. L. Phosphorus geochemistry of equatorial Pacific sediments. Geochim. Cosmochim. Acta 60, 1479–1495 (1996).

    Article  CAS  Google Scholar 

  60. Delaney, M. L. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Glob. Biogeochem. Cycles 12, 563–572 (1998).

    Article  CAS  Google Scholar 

  61. Filippelli, G. M. Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective. Chemosphere 84, 759–766 (2011).

    Article  CAS  Google Scholar 

  62. Compton, J. et al. Variations in the global phosphoruscycle. SEPM Spec. Publ. 66, 21–33 (2000).

    CAS  Google Scholar 

  63. Ingall, E. & Jahnke, R. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim. Cosmochim. Acta 58, 2571–2575 (1994).

    Article  CAS  Google Scholar 

  64. Algeo, T. J. & Ingall, E. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric \({p}_{{{\rm{O}}}_{2}}\). Palaeogeog. Palaeoclimatol. Palaeoecol. 256, 130–155 (2007).

    Article  Google Scholar 

  65. Sharoni, S. & Halevy, I. Rates of seafloor and continental weathering govern Phanerozoic marine phosphate levels. Nat. Geosci. 16, 75–81 (2023).

    Article  CAS  Google Scholar 

  66. Horton, F. Did phosphorus derived from the weathering of large igneous provinces fertilize the Neoproterozoic ocean? Geochem. Geophys. Geosyst. 16, 1723–1738 (2015).

    Article  Google Scholar 

  67. Longman, J., Mills, B. J. W., Manners, H. R., Gernon, T. M. & Palmer, M. R. Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply. Nat. Geosci. 14, 924–929 (2021).

    Article  CAS  Google Scholar 

  68. Chaïrat, C., Schott, J., Oelkers, E. H., Lartigue, J. E. & Harouiya, N. Kinetics and mechanism of natural fluorapatite dissolution at 25 °C and pH from 3 to 12. Geochim. Cosmochim. Acta 71, 5901–5912 (2007).

    Article  Google Scholar 

  69. Cox, G. M., Lyons, T. W., Mitchell, R. N., Hasterok, D. & Gard, M. Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory. Earth Planet. Sci. Lett. 489, 28–36 (2018).

    Article  CAS  Google Scholar 

  70. Algeo, T. J. & Twitchett, R. J. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38, 1023–1026 (2010).

    Article  Google Scholar 

  71. Dal Corso, J. et al. Permo-Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse. Nat. Commun. 11, 2962 (2020).

    Article  CAS  Google Scholar 

  72. Tamburini, F. & Föllmi, K. B. Phosphorus burial in the ocean over glacial–interglacial time scales. Biogeosciences 6, 501–513 (2009).

    Article  CAS  Google Scholar 

  73. Chang, S. B. & Berner, R. A. Coal weathering and the geochemical carbon cycle. Geochim. Cosmochim. Acta 63, 3301–3310 (1999).

    Article  CAS  Google Scholar 

  74. Bolton, E. W., Berner, R. A. & Petsch, S. T. The weathering of sedimentary organic matter as a control on atmospheric O2: II. Theoretical modeling. Am. J. Sci. 306, 575–615 (2006).

    Article  CAS  Google Scholar 

  75. Zondervan, J. R. et al. Rock organic carbon oxidation CO2 release offsets silicate weathering sink. Nature 623, 329–333 (2023).

    Article  CAS  Google Scholar 

  76. Yang, X., Post, W. M., Thornton, P. E. & Jain, A. The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 10, 2525–2537 (2013).

    Article  CAS  Google Scholar 

  77. Augusto, L., Achat, D. L., Jonard, M., Vidal, D. & Ringeval, B. Soil parent material—a major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Change Biol. 23, 3808–3824 (2017).

    Article  Google Scholar 

  78. Delgado-Baquerizo, M. et al. The influence of soil age on ecosystem structure and function across biomes. Nat. Commun. 11, 4721 (2020).

    Article  CAS  Google Scholar 

  79. Van Cappellen, P. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).

    Article  Google Scholar 

  80. Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

    Article  CAS  Google Scholar 

  81. Tang, M., Chu, X., Hao, J. H. & Shen, B. Orogenic quiescence in Earth’s middle age. Science 371, 728–731 (2021).

    Article  CAS  Google Scholar 

  82. Hoffman, P. F. et al. Snowball Earth climate dynamics and Cryogenian geology–geobiology. Sci. Adv. 3, e1600983 (2017).

    Article  Google Scholar 

  83. Yuan, W. et al. Mercury isotopes show vascular plants had colonized land extensively by the early Silurian. Sci. Adv. 9, eade9510 (2023).

    Article  CAS  Google Scholar 

  84. Scotese, C. R., Song, H. J., Mills, B. J. W. & van der Meer, D. G. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years. Earth Sci. Rev. 215, 103503 (2021).

    Article  CAS  Google Scholar 

  85. Syverson, D. D. et al. Nutrient supply to planetary biospheres from anoxic weathering of mafic oceanic crust. Geophys. Res. Lett. 48, e2021GL094442 (2021).

    Article  CAS  Google Scholar 

  86. Berner, R. A. & Caldeira, K. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25, 955–956 (1997).

    Article  Google Scholar 

  87. D’Antonio, M. P., Ibarra, D. E. & Boyce, C. K. Land plant evolution decreased, rather than increased, weathering rates. Geology 48, 29–33 (2020).

    Article  Google Scholar 

  88. Ma, C., Tang, Y. & Ying, J. Global tectonics and oxygenation events drove the Earth-scale phosphorus cycle. Earth Sci. Rev. 233, 104166 (2022).

    Article  CAS  Google Scholar 

  89. Korenaga, J., Planavsky, N. J. & Evans, D. A. D. Global water cycle and the coevolution of the Earth’s interior and surface environment. Phil. Trans. R. Soc. A. 375, 20150393 (2017).

    Article  Google Scholar 

  90. Cheng, Y. T. et al. Spatial distribution of soil total phosphorus in Yingwugou watershed of the Dan River, China. Catena 136, 175–181 (2016).

    Article  CAS  Google Scholar 

  91. Bucholz, C. E. Coevolution of sedimentary and strongly peraluminous granite phosphorus records. Earth Planet. Sci. Lett. 596, 117795 (2022).

    Article  CAS  Google Scholar 

  92. Wan, B. et al. Seismological evidence for the earliest global subduction network at 2 Ga ago. Sci. Adv. 6, eabc5491 (2020).

    Article  Google Scholar 

  93. Porder, S. & Ramachandran, S. The phosphorus concentration of common rocks—a potential driver of ecosystem P status. Plant. Soil. 367, 41–55 (2013).

    Article  CAS  Google Scholar 

  94. Meyer, K. M., Kump, L. R. & Ridgwell, A. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36, 747–750 (2008).

    Article  CAS  Google Scholar 

  95. Sun, H. et al. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian–Triassic boundary. Proc. Natl Acad. Sci. USA 115, 3782–3787 (2018).

    Article  CAS  Google Scholar 

  96. Ma, C., Tang, Y. J. & Ying, J. F. Volcanic phosphorus spikes associated with supercontinent assembly supported the evolution of land plants. Earth Sci. Rev. 232, 104101 (2022).

    Article  CAS  Google Scholar 

  97. Achat, D. L., Pousse, N., Nicolas, M., Brédoire, F. & Augusto, L. Soil properties controlling inorganic phosphorus availability: general results from a national forest network and a global compilation of the literature. Biogeochemistry 127, 255–272 (2016).

    Article  CAS  Google Scholar 

  98. Mehmood, A., Akhtar, M. S., Imran, M. & Rukh, S. Soil apatite loss rate across different parent materials. Geoderma 310, 218–229 (2018).

    Article  CAS  Google Scholar 

  99. Stallard, R. F. Tectonic, environmental, and human aspects of weathering and erosion: a global review using a steady-state perspective. Annu. Rev. Earth Planet. Sci. 23, 11–39 (1995).

    Article  CAS  Google Scholar 

  100. Goddéris, Y. et al. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering. Nat. Geosci. 10, 382–386 (2017).

    Article  Google Scholar 

  101. Porder, S. & Chadwick, O. A. Climate and soil-age constraints on nutrient uplift and retention by plants. Ecology 90, 623–636 (2009).

    Article  Google Scholar 

  102. Guidry, M. W. & Mackenzie, F. T. Experimental study of igneous and sedimentary apatite dissolution: control of pH, distance from equilibrium, and temperature on dissolution rates. Geochim. Cosmochim. Acta 67, 2949–2963 (2003).

    Article  CAS  Google Scholar 

  103. Harouiya, N., Chaïrat, C., Köhler, S. J., Gout, R. & Oelkers, E. H. The dissolution kinetics and apparent solubility of natural apatite in closed reactors at temperatures from 5 to 50 °C and pH from 1 to 6. Chem. Geol. 244, 554–568 (2007).

    Article  CAS  Google Scholar 

  104. West, A. J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks. Geology 40, 811–814 (2012).

    Article  Google Scholar 

  105. Maffre, P. et al. Mountain ranges, climate and weathering. Do orogens strengthen or weaken the silicate weathering carbon sink? Earth Planet. Sci. Lett. 493, 174–185 (2018).

    Article  CAS  Google Scholar 

  106. Hou, E. et al. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob. Change Biol. 24, 3344–3356 (2018).

    Article  Google Scholar 

  107. Sims, J., Simard, R. & Joern, B. Phosphorus loss in agricultural drainage: historical perspective and current research. J. Environ. Qual. 27, 277–293 (1998).

    Article  CAS  Google Scholar 

  108. Zhao, M. Y., Mills, B. J. W., Homoky, W. B. & Peacock, C. L. Oxygenation of the Earth aided by mineral–organic carbon preservation. Nat. Geosci. 16, 262–269 (2023).

    Article  CAS  Google Scholar 

  109. Komar, N. & Zeebe, R. E. Redox-controlled carbon and phosphorus burial: a mechanism for enhanced organic carbon sequestration during the PETM. Earth Planet. Sci. Lett. 479, 71–82 (2017).

    Article  CAS  Google Scholar 

  110. Mills, B. J. W., Donnadieu, Y. & Goddéris, Y. Spatial continuous integration of Phanerozoic global biogeochemistry and climate. Gondwana Res. 100, 73–86 (2021).

    Article  CAS  Google Scholar 

  111. Goddéris, Y., Donnadieu, Y. & Mills, B. J. W. What models tell us about the evolution of carbon sources and sinks over the Phanerozoic. Annu. Rev. Earth Planet. Sci. 51, 471–492 (2023).

    Article  Google Scholar 

  112. Ozaki, K. & Tajika, E. Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redox chemistry: implications for greenhouse climates. Earth Planet. Sci. Lett. 373, 129–139 (2013).

    Article  CAS  Google Scholar 

  113. Hülse, D. et al. End-Permian marine extinction due to temperature-driven nutrient recycling and euxinia. Nat. Geosci. 14, 862–867 (2021).

    Article  Google Scholar 

  114. Wu, X. J. et al. Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes. Msystems 7, e0110721 (2022).

    Article  Google Scholar 

  115. Yao, Q. M. et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat. Ecol. Evol. 2, 499–509 (2018).

    Article  Google Scholar 

  116. Planavsky, N. J. et al. Evolution of the structure and impact of Earth’s biosphere. Nat. Rev. Earth Environ. 2, 123–139 (2021).

    Article  Google Scholar 

  117. Retallack, G. J. Early forest soils and their role in Devonian global change. Science 276, 583–585 (1997).

    Article  CAS  Google Scholar 

  118. Moulton, K. L. & Berner, R. A. Quantification of the effect of plants on weathering: studies in Iceland. Geology 26, 895–898 (1998).

    Article  CAS  Google Scholar 

  119. Algeo, T. J. & Scheckler, S. E. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos. Trans. R. Soc. B Biol. Sci. 353, 113–128 (1998).

    Article  Google Scholar 

  120. Filippelli, G. M. The global phosphorus cycle. Rev. Mineral. Geochem. 48, 391–425 (2002).

    Article  CAS  Google Scholar 

  121. Quirk, J. et al. Constraining the role of early land plants in Palaeozoic weathering and global cooling. Proc. R. Soc. B Biol. Sci. 282, 20151115 (2015).

    Article  Google Scholar 

  122. Berner, R. A. Weathering, plants, and the long-term carbon cycle. Geochim. Cosmochim. Acta 56, 3225–3231 (1992).

    Article  CAS  Google Scholar 

  123. Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016).

    Article  CAS  Google Scholar 

  124. Laakso, T. A. & Schrag, D. P. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet. Sci. Lett. 388, 81–91 (2014).

    Article  CAS  Google Scholar 

  125. Colman, A. S. & Holland, H. D. in Marine Authigenesis: From Global to Microbial (eds Prévôt-Lucas, L., Glenn, C. R. & Lucas, J.) (SEPM, 2000).

  126. Tsandev, I., Reed, D. C. & Slomp, C. P. Phosphorus diagenesis in deep-sea sediments: sensitivity to water column conditions and global scale implications. Chem. Geol. 330, 127–139 (2012).

    Article  Google Scholar 

  127. Schenau, S., Reichart, G.-J. & De Lange, G. Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian Sea sediments. Geochim. Cosmochim. Acta 69, 919–931 (2005).

    Article  CAS  Google Scholar 

  128. Van Cappellen, P. & Berner, R. A. Fluorapatite crystal growth from modified seawater solutions. Geochim. Cosmochim. Acta 55, 1219–1234 (1991).

    Article  Google Scholar 

  129. Boyle, R. A. et al. Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation. Nat. Geosci. 7, 671–676 (2014).

    Article  CAS  Google Scholar 

  130. Tarhan, L. G., Zhao, M. & Planavsky, N. J. Bioturbation feedbacks on the phosphorus cycle. Earth Planet. Sci. Lett. 566, 116961 (2021).

    Article  CAS  Google Scholar 

  131. Derry, L. A. Causes and consequences of mid‐Proterozoic anoxia. Geophys. Res. Lett. 42, 8538–8546 (2015).

    Article  CAS  Google Scholar 

  132. Xiong, Y. J., Guilbaud, R., Peacock, C. L., Krom, M. D. & Poulton, S. W. Phosphorus controls on the formation of vivianite versus green rust under anoxic conditions. Geochim. Cosmochim. Acta 351, 139–151 (2023).

    Article  CAS  Google Scholar 

  133. Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017).

    Article  CAS  Google Scholar 

  134. Nathan, Y., Bremner, J. M., Lowenthal, R. E. & Monteiro, P. Role of bacteria in phosphorite genesis. Geomicrobiol. J. 11, 69–76 (1993).

    Article  CAS  Google Scholar 

  135. Schulz, H. N. & Schulz, H. D. Large sulfur bacteria and the formation of phosphorite. Science 307, 416–418 (2005).

    Article  CAS  Google Scholar 

  136. Goldhammer, T., Brüchert, V., Ferdelman, T. G. & Zabel, M. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat. Geosci. 3, 557–561 (2010).

    Article  CAS  Google Scholar 

  137. Herschy, B. et al. Archean phosphorus liberation induced by iron redox geochemistry. Nat. Commun. 9, 1346 (2018).

    Article  Google Scholar 

  138. Planavsky, N. J. et al. A sedimentary record of the evolution of the global marine phosphorus cycle. Geobiology 21, 168–174 (2023).

    Article  CAS  Google Scholar 

  139. Laakso, T. A., Sperling, E. A., Johnston, D. T. & Knoll, A. H. Ediacaran reorganization of the marine phosphorus cycle. Proc. Natl Acad. Sci. USA 117, 11961–11967 (2020).

    Article  CAS  Google Scholar 

  140. McClellan, G. & Van Kauwenbergh, S. Mineralogical and chemical variation of francolites with geological time. J. Geol. Soc. 148, 809–812 (1991).

    Article  CAS  Google Scholar 

  141. Henrichs, S. M. & Reeburgh, W. S. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 5, 191–237 (1987).

    Article  CAS  Google Scholar 

  142. Betts, J. N. & Holland, H. D. The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen. Glob. Planet. Change. 97, 5–18 (1991).

    Article  CAS  Google Scholar 

  143. Canfield, D. E. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Res. Part. A Oceanogr. Res. Pap. 36, 121–138 (1989).

    Article  CAS  Google Scholar 

  144. Schoepfer, S. D. et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth Sci. Rev. 149, 23–52 (2015).

    Article  CAS  Google Scholar 

  145. Aller, R. C. Diagenetic processes near the sediment–water interface of Long Island sound. I.: decomposition and nutrient element geochemistry (S, N, P). Adv. Geophys. 22, 237–350 (1980).

    Article  CAS  Google Scholar 

  146. Westrich, J. T. & Berner, R. A. The effect of temperature on rates of sulfate reduction in marine sediments. Geomicrobiol. J. 6, 99–117 (1988).

    Article  CAS  Google Scholar 

  147. Middelburg, J. J. et al. Organic matter mineralization in intertidal sediments along an estuarine gradient. Mar. Ecol. Prog. Ser. 132, 157–168 (1996).

    Article  CAS  Google Scholar 

  148. Burdige, D. J. Temperature dependence of organic matter remineralization in deeply-buried marine sediments. Earth Planet. Sci. Lett. 311, 396–410 (2011).

    Article  CAS  Google Scholar 

  149. Burnett, W. C. Apatite–glauconite associations off Peru and Chile: palaeo-oceanograpic implications. J. Geol. Soc. 137, 757–764 (1980).

    Article  CAS  Google Scholar 

  150. Garrison, R. E. & Kastner, M. Phosphatic sediments and rocks recovered from the Peru margin during ODP Leg 112. Proc. Ocean. Drill. Program. Sci. Results 112, 111–134 (1990).

    Google Scholar 

  151. Shimmield, G. & Mowbray, S. The inorganic geochemical record of the northwest Arabian Sea: a history of productivity variation over the last 400 ky from site 722 and 724. Proc. Ocean. Drill. Program. Sci. Results 117, 409–429 (1991).

    Google Scholar 

  152. Schenau, S., Slomp, C. P. & DeLange, G. J. Phosphogenesis and active phosphorite formation in sediments from the Arabian Sea oxygen minimum zone. Mar. Geol. 169, 1–20 (2000).

    Article  CAS  Google Scholar 

  153. Ganeshram, R. S., Pedersen, T. F., Calvert, S. E. & Francois, R. Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories. Nature 415, 156–159 (2002).

    Article  CAS  Google Scholar 

  154. Jahnke, R. A. The synthesis and solubility of carbonate fluorapatite. Am. J. Sci. 284, 58–78 (1984).

    Article  CAS  Google Scholar 

  155. Dickson, J. A. D. Fossil echinoderms as monitor of the Mg/Ca ratio of phanerozoic oceans. Science 298, 1222–1224 (2002).

    Article  CAS  Google Scholar 

  156. Horita, J., Zimmermann, H. & Holland, H. D. Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim. Cosmochim. Acta 66, 3733–3756 (2002).

    Article  CAS  Google Scholar 

  157. Coggon, R. M., Teagle, D. A. H., Smith-Duque, C. E., Alt, J. C. & Cooper, M. J. Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins. Science 327, 1114–1117 (2010).

    Article  CAS  Google Scholar 

  158. Nelson, B. W. Sedimentary phosphate method for estimating paleosalinities. Science 158, 917–920 (1967).

    Article  CAS  Google Scholar 

  159. Weng, H. X., Presley, B. J. & Armstrong, D. Distribution of sedimentary phosphorus in Gulf of Mexico estuaries. Mar. Environ. Res. 37, 375–392 (1994).

    Article  CAS  Google Scholar 

  160. Faul, K. L., Paytan, A. & Wilson, P. Phosphorus and barite concentrations and geochemistry in Site 1221 Paleocene/Eocene boundary sediments. Proc. Ocean. Drill. Program. Sci. Results 199, 1–23 (2005).

    Google Scholar 

  161. Heggie, D. et al. Organic carbon cycling and modern phosphorite formation on the East Australian continental margin: an overview. Geol. Soc. Spec. Publ. 52, 87–117 (1990).

    Article  Google Scholar 

  162. Schuffert, J. D. et al. Rates of formation of modern phosphorite off western Mexico. Geochim. Cosmochim. Acta 58, 5001–5010 (1994).

    Article  CAS  Google Scholar 

  163. Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).

    Article  CAS  Google Scholar 

  164. Poulton, S. W. et al. A continental-weathering control on orbitally driven redox-nutrient cycling during Cretaceous Oceanic Anoxic Event 2. Geology 43, 963–966 (2015).

    Article  CAS  Google Scholar 

  165. Monbet, P., Brunskill, G., Zagorskis, I. & Pfitzner, J. Phosphorus speciation in the sediment and mass balance for the central region of the Great Barrier Reef continental shelf (Australia). Geochim. Cosmochim. Acta 71, 2762–2779 (2007).

    Article  CAS  Google Scholar 

  166. Slomp, C. P. & Van Cappellen, P. The global marine phosphorus cycle: sensitivity to oceanic circulation. Biogeosciences 4, 155–171 (2007).

    Article  CAS  Google Scholar 

  167. Alcott, L. J., Mills, B. J. W. & Poulton, S. W. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science 366, 1333–1337 (2019).

    Article  CAS  Google Scholar 

  168. Jiang, L. et al. Pulses of atmosphere oxygenation during the Cambrian radiation of animals. Earth Planet. Sci. Lett. 590, 117565 (2022).

    Article  CAS  Google Scholar 

  169. Poulton, S. W. Early phosphorus redigested. Nat. Geosci. 10, 75–76 (2017).

    Article  CAS  Google Scholar 

  170. Schobben, M. et al. A nutrient control on marine anoxia during the end-Permian mass extinction. Nat. Geosci. 13, 640–646 (2020).

    Article  CAS  Google Scholar 

  171. Qiu, Z. et al. A nutrient control on expanded anoxia and global cooling during the Late Ordovician mass extinction. Commun. Earth Environ. 3, 82 (2022).

    Article  Google Scholar 

  172. Cauwet, G. Organic-chemistry of sea-water particulates concepts and developments. Oceanol. Acta 1, 99–105 (1978).

    CAS  Google Scholar 

  173. Mort, H. P. et al. Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology 35, 483–486 (2007).

    Article  CAS  Google Scholar 

  174. Song, Y. et al. Dynamic redox and nutrient cycling response to climate forcing in the Mesoproterozoic ocean. Nat. Commun. 14, 6640 (2023).

    Article  CAS  Google Scholar 

  175. Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    Article  CAS  Google Scholar 

  176. Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015).

    Article  CAS  Google Scholar 

  177. Alcott, L. J., Mills, B. J., Bekker, A. & Poulton, S. W. Earth’s Great Oxidation Event facilitated by the rise of sedimentary phosphorus recycling. Nat. Geosci. 15, 210–215 (2022).

    Article  CAS  Google Scholar 

  178. Zegeye, A. et al. Green rust formation controls nutrient availability in a ferruginous water column. Geology 40, 599–602 (2012).

    Article  CAS  Google Scholar 

  179. Bjerrum, C. J. & Canfield, D. E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417, 159–162 (2002).

    Article  CAS  Google Scholar 

  180. Jones, C., Nomosatryo, S., Crowe, S. A., Bjerrum, C. J. & Canfield, D. E. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis. Geology 43, 135–138 (2015).

    Article  CAS  Google Scholar 

  181. Konhauser, K. O., Lalonde, S. V., Amskold, L. & Holland, H. D. Was there really an Archean phosphate crisis? Science 315, 1234–1234 (2007).

    Article  CAS  Google Scholar 

  182. Cosmidis, J. et al. Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France). Geochim. Cosmochim. Acta 126, 78–96 (2014).

    Article  CAS  Google Scholar 

  183. Vuillemin, A. et al. Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia. Biogeosciences 17, 1955–1973 (2020).

    Article  CAS  Google Scholar 

  184. Johnson, B. R. et al. Phosphorus burial in ferruginous SiO2-rich Mesoproterozoic sediments. Geology 48, 92–96 (2020).

    Article  CAS  Google Scholar 

  185. van de Velde, S., Mills, B. J. W., Meysman, F. J. R., Lenton, T. M. & Poulton, S. W. Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing. Nat. Commun. 9, 2554 (2018).

    Article  Google Scholar 

  186. Dahl, T. W. et al. Atmosphere–ocean oxygen and productivity dynamics during early animal radiations. Proc. Natl Acad. Sci. USA 116, 19352–19361 (2019).

    Article  CAS  Google Scholar 

  187. Cribb, A. T., van de Velde, S. J., Berelson, W. M., Bottjer, D. J. & Corsetti, F. A. Ediacaran–Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems. Geobiology 21, 435–453 (2023).

    Article  Google Scholar 

  188. Westacott, S., Zhao, M. & Tarhan, L. G. Extent and biogeochemical impact of Skolithos piperock in the lower Cambrian Zabriskie Quartzite (California, USA). Palaeogeog. Palaeoclimatol. Palaeoecol. 651, 112381 (2024).

    Article  Google Scholar 

  189. Aller, R. C. Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment. Geochim. Cosmochim. Acta 44, 1955–1965 (1980).

    Article  CAS  Google Scholar 

  190. Boudreau, B. P. On the equivalence of nonlocal and radial-diffusion models for porewater irrigation. J. Mar. Res. 42, 731–735 (1984).

    Article  Google Scholar 

  191. Rivas-Lamelo, S. et al. Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin. Geochem. Perspect. Lett. 5, 35–41 (2017).

    Article  Google Scholar 

  192. Brock, J. & Schulz-Vogt, H. N. Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain. ISME J. 5, 497–506 (2011).

    Article  CAS  Google Scholar 

  193. Diaz, J. et al. Marine polyphosphate: a key player in geologic phosphorus sequestration. Science 320, 652–655 (2008).

    Article  CAS  Google Scholar 

  194. Lepland, A. et al. Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis. Nat. Geosci. 7, 20–24 (2014).

    Article  CAS  Google Scholar 

  195. Butterfield, N. J. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7, 1–7 (2009).

    Article  CAS  Google Scholar 

  196. Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 205–221 (1958).

    CAS  Google Scholar 

  197. Arrigo, K. R. Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2005).

    Article  CAS  Google Scholar 

  198. Inomura, K., Deutsch, C., Jahn, O., Dutkiewicz, S. & Follows, M. J. Global patterns in marine organic matter stoichiometry driven by phytoplankton ecophysiology. Nat. Geosci. 15, 1034–1040 (2022).

    Article  CAS  Google Scholar 

  199. Planavsky, N. J. The elements of marine life. Nat. Geosci. 7, 855–856 (2014).

    Article  CAS  Google Scholar 

  200. Cawley, J. L., Burruss, R. C. & Holland, H. D. Chemical weathering in central Iceland: an analog of pre-Silurian weathering. Science 165, 391–392 (1969).

    Article  CAS  Google Scholar 

  201. Volk, T. Feedbacks between weathering and atmospheric CO2 over the last 100 million years. Am. J. Sci. 287, 763–779 (1987).

    Article  CAS  Google Scholar 

  202. Brantley, S. L., Shaughnessy, A., Lebedeva, M. I. & Balashov, V. N. How temperature-dependent silicate weathering acts as Earth’s geological thermostat. Science 379, 382–389 (2023).

    Article  CAS  Google Scholar 

  203. Goddéris, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V. & Nardin, E. The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth Sci. Rev. 128, 122–138 (2014).

    Article  Google Scholar 

  204. Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci. Rev. 123, 53–86 (2013).

    Article  CAS  Google Scholar 

  205. Kraal, P., Dijkstra, N., Behrends, T. & Slomp, C. P. Phosphorus burial in sediments of the sulfidic deep Black Sea: key roles for adsorption by calcium carbonate and apatite authigenesis. Geochim. Cosmochim. Acta 204, 140–158 (2017).

    Article  CAS  Google Scholar 

  206. Kasting, J. F. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res. 34, 205–229 (1987).

    Article  CAS  Google Scholar 

  207. Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J. & Beerling, D. J. CO2 as a primary driver of phanerozoic climate. GSA today 14, 4–10 (2004).

    Article  Google Scholar 

  208. Collerson, K. D. & Kamber, B. S. Evolution of the continents and the atmosphere inferred from Th–U–Nb systematics of the depleted mantle. Science 283, 1519–1522 (1999).

    Article  CAS  Google Scholar 

  209. Condie, K. C., Arndt, N., Davaille, A. & Puetz, S. J. Zircon age peaks: production or preservation of continental crust? Geosphere 13, 227–234 (2017).

    Article  Google Scholar 

  210. McLennan, S. M. & Taylor, S. Geochemical constraints on the growth of the continental crust. J. Geol. 90, 347–361 (1982).

    Article  CAS  Google Scholar 

  211. Rudnick, R. & Gao, S. Composition of the continental crust. Treatise Geochem. 3, 1–64 (2013).

    Google Scholar 

  212. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  CAS  Google Scholar 

  213. Farrell, U. C. et al. The sedimentary geochemistry and paleoenvironments project. Geobiology 19, 545–556 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (NSFC) (42488201, 42325206), the Chinese Academy of Sciences (XDB0710202, XDA0430202) and the IGGCAS Key programme (no. IGGCAS-202201). K.-Q.X. thanks the Hundred Talents Program of the Chinese Academy of Sciences. B.J.W.M. thanks UK Research and Innovation (UKRI) (grants NE/S009663/1 and EP/Y008790/1). The authors thank P. Ju for valuable insights.

Author information

Authors and Affiliations

Authors

Contributions

M.Z. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Mingyu Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Shlomit Sharoni, Craig Walton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Activation energy

The minimum amount of energy required to begin a chemical reaction.

Biodiffusion

The mixing of solids and solutes in sediments by fauna.

Bioirrigation

The exchange of solutes between pore water and seawater through the borrowing of fauna.

Biological pump

The fixation of inorganic carbon to organic carbon in the surface ocean and transport to the deep ocean.

Conveyor-belt feeding

Transfer of particles from depth within sediments to the sediment–water interface by fauna.

Euxinic

Anoxic and sulfidic conditions in the water column.

Ferruginous

Anoxic and iron-rich conditions in the water column.

Great Oxygenation Event

Earth’s first major rise in atmospheric oxygen, which occurred between 2.4 and 2.1 billion years ago (Ga).

Green rust

A mixed ferrous–ferric phase and potentially important precursor mineral during deposition of banded iron formations.

Microbial mats

Multilayered sheets of microorganisms.

Monte Carlo

A mathematical technique that predicts the probability of a range of outcomes when random variables are present.

Non-local chemical exchange

Chemical exchange between non-adjacent sediment layers.

Phosphorite

A phosphorus-rich sedimentary rock consisting of carbonate fluorapatite (CFA) or francolite.

Redfield ratio

The average atomic ratio of carbon, nitrogen and phosphorus in marine phytoplankton.

Sink-switching

The transformation of one chemical phase of a component (for example, phosphorus) to another during diagenesis in sediments.

Ultimate limiting nutrient

The most important nutrient that determines the production rate of new organic matter by phytoplankton or plants.

Wildfire feedback

Fires burn more intensely under increased atmospheric oxygen, which will consume oxygen and stabilize the atmospheric oxygen level.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Mills, B.J.W., Poulton, S.W. et al. Drivers of the global phosphorus cycle over geological time. Nat Rev Earth Environ 5, 873–889 (2024). https://doi.org/10.1038/s43017-024-00603-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-024-00603-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing