Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mortality impacts of the most extreme heat events

Abstract

Extreme heat threatens human life, evidenced by >260,000 heat-related fatalities collectively in the deadliest events since 2000. In this Review, we link physical climate science with heat mortality risk, including crossings of uncompensable thresholds (beyond which human core body temperature rises uncontrollably) and unsurvivable thresholds (lethal core temperature increase within 6 h). Uncompensable thresholds (wet-bulb temperatures ~19–32 °C) depend strongly on age and the combination of air temperature and relative humidity. These thresholds have been breached rarely for younger adults (~2.2% of land area over 1994–2023) but more widely for older adults (~21%). Unsurvivable thresholds (wet-bulb temperatures ~20–34 °C) were only exceeded for older adults (~1.8% of land area). Anthropogenic warming will lead to more frequent threshold crossings, including tripling of the uncompensable land area for young adults if warming reaches 2 °C above preindustrial levels. Interdisciplinary work must improve the understanding of the deadly potential of unprecedented heat and how it can be reduced. Ensuring reliable access for all to cool refugia is an urgent priority as the atmosphere threatens to increasingly overwhelm human physiology under climate warming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed and projected extreme heat.
Fig. 2: Heat and humidity during the deadliest heat events.
Fig. 3: Observed crossing of uncompensable and unsurvivable thresholds.
Fig. 4: Projected exceedance of critical thermal limits.

Similar content being viewed by others

References

  1. Trenberth, K. E., Fasullo, J. T. & Balmaseda, M. A. Earth’s energy imbalance. J. Clim. 27, 3129–3144 (2014).

    Article  Google Scholar 

  2. von Schuckmann, K. et al. Heat stored in the Earth system 1960–2020: where does the energy go? Earth Syst. Sci. Data 15, 1675–1709 (2023).

    Article  Google Scholar 

  3. Forster, P. M. et al. Indicators of global climate change 2022: annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 15, 2295–2327 (2023).

    Article  Google Scholar 

  4. Matthews, T. et al. Latent heat must be visible in climate communications. WIREs Clim. Change 13, e779 (2022).

    Article  Google Scholar 

  5. Willett, K. M. HadISDH.extremes part II: exploring humid heat extremes using wet bulb temperature indices. Adv. Atmos. Sci. 40, 1968–1985 (2023).

    Article  Google Scholar 

  6. Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    Article  CAS  Google Scholar 

  7. Forzieri, G. et al. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Change 48, 97–107 (2018).

    Article  Google Scholar 

  8. Cramer, M. N. & Jay, O. Biophysical aspects of human thermoregulation during heat stress. Auton. Neurosci. 196, 3–13 (2016).

    Article  Google Scholar 

  9. Ebi, K. L. et al. Hot weather and heat extremes: health risks. Lancet 398, 698–708 (2021).

    Article  Google Scholar 

  10. Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & García-Herrera, R. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332, 220–224 (2011).

    Article  CAS  Google Scholar 

  11. Ballester, J. et al. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 29, 1857–1866 (2023).

    Article  CAS  Google Scholar 

  12. Robine, J.-M. et al. Death toll exceeded 70,000 in Europe during the summer of 2003. C. R. Biol. 331, 171–178 (2008).

    Article  Google Scholar 

  13. Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).

    Article  Google Scholar 

  14. Stillman, J. H. Heat waves, the new normal: summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).

    Article  CAS  Google Scholar 

  15. Ma, C.-S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).

    Article  CAS  Google Scholar 

  16. Geange, S. R. et al. The thermal tolerance of photosynthetic tissues: a global systematic review and agenda for future research. N. Phytologist 229, 2497–2513 (2021).

    Article  Google Scholar 

  17. Lüthi, S. et al. Rapid increase in the risk of heat-related mortality. Nat. Commun. 14, 4894 (2023).

    Article  Google Scholar 

  18. Vanos, J. et al. A physiological approach for assessing human survivability and liveability to heat in a changing climate. Nat. Commun. 14, 7653 (2023).

    Article  CAS  Google Scholar 

  19. Vecellio, D. J., Kong, Q., Kenney, W. L. & Huber, M. Greatly enhanced risk to humans as a consequence of empirically determined lower moist heat stress tolerance. Proc. Natl Acad. Sci. USA 120, e2305427120 (2023).

    Article  CAS  Google Scholar 

  20. Powis, C. M. et al. Observational and model evidence together support wide-spread exposure to noncompensable heat under continued global warming. Sci. Adv. 9, eadg9297 (2023).

    Article  Google Scholar 

  21. Barriopedro, D., García-Herrera, R., Ordóñez, C., Miralles, D. G. & Salcedo-Sanz, S. Heat waves: physical understanding and scientific challenges. Rev. Geophys. 61, e2022RG000780 (2023).

    Article  Google Scholar 

  22. Kautz, L.-A. et al. Atmospheric blocking and weather extremes over the Euro-Atlantic sector — a review. Weather Clim. Dyn. 3, 305–336 (2022).

    Article  Google Scholar 

  23. Li, X. et al. Role of atmospheric resonance and land–atmosphere feedbacks as a precursor to the June 2021 Pacific Northwest heat dome event. Proc. Natl Acad. Sci. USA 121, e2315330121 (2024).

    Article  CAS  Google Scholar 

  24. Domeisen, D. I. V. et al. Prediction and projection of heatwaves. Nat. Rev. Earth Environ. 4, 36–50 (2023).

    Article  Google Scholar 

  25. Liu, X., He, B., Guo, L., Huang, L. & Chen, D. Similarities and differences in the mechanisms causing the European summer heatwaves in 2003, 2010, and 2018. Earths Future 8, e2019EF001386 (2020).

    Article  Google Scholar 

  26. White, R. H. et al. The unprecedented Pacific Northwest heatwave of June 2021. Nat. Commun. 14, 727 (2023).

    Article  CAS  Google Scholar 

  27. Röthlisberger, M. & Papritz, L. Quantifying the physical processes leading to atmospheric hot extremes at a global scale. Nat. Geosci. 16, 210–216 (2023).

    Article  Google Scholar 

  28. Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436, 19–35 (2019).

    Article  Google Scholar 

  29. Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).

    Article  Google Scholar 

  30. Burakowski, E. et al. The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the Eastern United States. Agric. For. Meteorol. 249, 367–376 (2018).

    Article  Google Scholar 

  31. Chiang, F., Cook, B. I. & McDermid, S. Diverging global dry and humid heat responses to modern irrigation. Earth Interact. 27, e230006 (2023).

    Article  Google Scholar 

  32. Kandya, A. & Mohan, M. Mitigating the urban heat island effect through building envelope modifications. Energy Build. 164, 266–277 (2018).

    Article  Google Scholar 

  33. Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).

    Article  CAS  Google Scholar 

  34. Deilami, K., Kamruzzaman, M. & Liu, Y. Urban heat island effect: a systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 67, 30–42 (2018).

    Google Scholar 

  35. Ajay, P., Nair, V. S., Babu, S. S., Das, C. & H, U. K. Effects of atmospheric aerosols on heat stress over South Asia. Environ. Res. Clim. 2, 045007 (2023).

    Article  Google Scholar 

  36. Ivanovich, C. C., Horton, R. M., Sobel, A. H. & Singh, D. Subseasonal variability of humid heat during the South Asian summer monsoon. Geophys. Res. Lett. 51, e2023GL107382 (2024).

    Article  Google Scholar 

  37. Raymond, C. et al. On the controlling factors for globally extreme humid heat. Geophys. Res. Lett. 48, e2021GL096082 (2021).

    Article  Google Scholar 

  38. Monteiro, J. M. & Caballero, R. Characterization of extreme wet-bulb temperature events in Southern Pakistan. Geophys. Res. Lett. 46, 10659–10668 (2019).

    Article  Google Scholar 

  39. Souri, A. H., Wang, H., González Abad, G., Liu, X. & Chance, K. Quantifying the impact of excess moisture from transpiration from crops on an extreme heat wave event in the Midwestern U.S.: a top-down constraint from moderate resolution imaging spectroradiometer water vapor retrieval. J. Geophys. Res. Atmos. 125, e2019JD031941 (2020).

    Article  Google Scholar 

  40. Krakauer, N. Y., Cook, B. I. & Puma, M. J. Effect of irrigation on humid heat extremes. Environ. Res. Lett. 15, 094010 (2020).

    Article  Google Scholar 

  41. Mishra, V. et al. Moist heat stress extremes in India enhanced by irrigation. Nat. Geosci. 13, 722–728 (2020).

    Article  CAS  Google Scholar 

  42. Safieddine, S., Clerbaux, C., Clarisse, L., Whitburn, S. & Eltahir, E. A. B. Present and future land surface and wet bulb temperatures in the Arabian Peninsula. Environ. Res. Lett. 17, 044029 (2022).

    Article  Google Scholar 

  43. McDermid, S. et al. Irrigation in the Earth system. Nat. Rev. Earth Environ. 4, 435–453 (2023).

    Article  Google Scholar 

  44. Zhang, T., Mahmood, R., Lin, X. & Pielke, R. A. Irrigation impacts on minimum and maximum surface moist enthalpy in the Central Great Plains of the USA. Weather Clim. Extrem. 23, 100197 (2019).

    Article  Google Scholar 

  45. Chakraborty, T., Venter, Z. S., Qian, Y. & Lee, X. Lower urban humidity moderates outdoor heat stress. AGU Adv. 3, e2022AV000729 (2022).

    Article  Google Scholar 

  46. Zhang, K. et al. Increased heat risk in wet climate induced by urban humid heat. Nature 61l7, 738–742 (2023).

    Article  Google Scholar 

  47. Gao, T., Luo, M., Lau, N.-C. & Chan, T. O. Spatially distinct effects of two El Niño types on summer heat extremes in China. Geophys. Res. Lett. 47, e2020GL086982 (2020).

    Article  Google Scholar 

  48. Marshall, A. G., Wheeler, M. C. & Cowan, T. Madden–Julian oscillation impacts on Australian temperatures and extremes. J. Clim. 36, 335–357 (2022).

    Article  Google Scholar 

  49. Speizer, S., Raymond, C., Ivanovich, C. & Horton, R. M. Concentrated and intensifying humid heat extremes in the IPCC AR6 regions. Geophys. Res. Lett. 49, e2021GL097261 (2022).

    Article  Google Scholar 

  50. Jones, D. A. & Trewin, B. C. On the relationships between the El Niño–Southern Oscillation and Australian land surface temperature. Int. J. Climatol. 20, 697–719 (2000).

    Article  Google Scholar 

  51. Zhang, Y., Boos, W. R., Held, I., Paciorek, C. J. & Fueglistaler, S. Forecasting tropical annual maximum wet-bulb temperatures months in advance from the current state of ENSO. Geophys. Res. Lett. 51, e2023GL106990 (2024).

    Article  Google Scholar 

  52. Kornhuber, K. et al. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Change 10, 48–53 (2020).

    Article  Google Scholar 

  53. Zhao, D., Lin, Y., Li, Y. & Gao, X. An extreme heat event induced by Typhoon Lekima (2019) and its contributing factors. J. Geophys. Res. Atmos. 126, e2021JD034760 (2021).

    Article  Google Scholar 

  54. Schumacher, D. L. et al. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci. https://doi.org/10.1038/s41561-019-0431-6 (2019).

  55. Raymond, C., Shreevastava, A., Slinskey, E. & Waliser, D. Linkages between atmospheric rivers and humid heat across the United States. Nat. Hazards Earth Syst. Sci. 24, 791–801 (2024).

    Article  Google Scholar 

  56. Ganguli, P. & Merz, B. Observational evidence reveals compound humid heat stress-extreme rainfall hotspots in India. Earths Future 12, e2023EF004074 (2024).

    Article  Google Scholar 

  57. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  58. Di Luca, A., de Elía, R., Bador, M. & Argüeso, D. Contribution of mean climate to hot temperature extremes for present and future climates. Weather Clim. Extrem. 28, 100255 (2020).

    Article  Google Scholar 

  59. Gessner, C., Fischer, E. M., Beyerle, U. & Knutti, R. Very rare heat extremes: quantifying and understanding using ensemble reinitialization. J. Clim. 34, 6619–6634 (2021).

    Google Scholar 

  60. Ivanovich, C., Anderson, W., Horton, R., Raymond, C. & Sobel, A. The influence of intraseasonal oscillations on humid heat in the Persian Gulf and South Asia. J. Clim. 35, 4309–4329 (2022).

    Article  Google Scholar 

  61. Raymond, C., Matthews, T. & Horton, R. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).

    Article  Google Scholar 

  62. Kong, Q. & Huber, M. Regimes of soil moisture–wet-bulb temperature coupling with relevance to moist heat stress. J. Clim. 36, 7925–7942 (2023).

    Article  Google Scholar 

  63. Suarez-Gutierrez, L., Müller, W. A., Li, C. & Marotzke, J. Hotspots of extreme heat under global warming. Clim. Dyn. 55, 429–447 (2020).

    Article  Google Scholar 

  64. Pal, J. S. & Eltahir, E. A. B. Future temperature in Southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Change 6, 197–200 (2016).

    Article  Google Scholar 

  65. Rogers, C. D. W. et al. Recent increases in exposure to extreme humid-heat events disproportionately affect populated regions. Geophys. Res. Lett. 48, e2021GL094183 (2021).

    Article  Google Scholar 

  66. Seong, M.-G., Min, S.-K., Kim, Y.-H., Zhang, X. & Sun, Y. Anthropogenic greenhouse gas and aerosol contributions to extreme temperature changes during 1951–2015. J. Clim. 34, 857–870 (2021).

    Article  Google Scholar 

  67. Vautard, R. et al. Heat extremes in Western Europe increasing faster than simulated due to atmospheric circulation trends. Nat. Commun. 14, 6803 (2023).

    Article  CAS  Google Scholar 

  68. Byrne, M. P. & O’Gorman, P. A. Land–ocean warming contrast over a wide range of climates: convective quasi-equilibrium theory and idealized simulations. J. Clim. 26, 4000–4016 (2013).

    Article  Google Scholar 

  69. Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).

    Article  CAS  Google Scholar 

  70. Schwingshackl, C., Sillmann, J., Vicedo-Cabrera, A. M., Sandstad, M. & Aunan, K. Heat stress indicators in CMIP6: estimating future trends and exceedances of impact-relevant thresholds. Earths Future 9, e2020EF001885 (2021).

    Article  Google Scholar 

  71. Zhang, Y. & Boos, W. R. An upper bound for extreme temperatures over midlatitude land. Proc. Natl Acad. Sci. USA 120, e2215278120 (2023).

    Article  CAS  Google Scholar 

  72. Byrne, M. P. Amplified warming of extreme temperatures over tropical land. Nat. Geosci. 14, 837–841 (2021).

    Article  CAS  Google Scholar 

  73. Benson, D. O. & Dirmeyer, P. A. Characterizing the relationship between temperature and soil moisture extremes and their role in the exacerbation of heat waves over the contiguous United States. J. Clim. 34, 2175–2187 (2021).

    Article  Google Scholar 

  74. Costa, D. F., Gomes, H. B., Silva, M. C. L. & Zhou, L. The most extreme heat waves in Amazonia happened under extreme dryness. Clim. Dyn. 59, 281–295 (2022).

    Article  Google Scholar 

  75. Morice, C. P. et al. An updated assessment of near-surface temperature change from 1850: the HadCRUT5 data set. J. Geophys. Res. Atmos. 126, e2019JD032361 (2021).

    Article  Google Scholar 

  76. Zhang, Y., Held, I. & Fueglistaler, S. Projections of tropical heat stress constrained by atmospheric dynamics. Nat. Geosci. 14, 133–137 (2021).

    Article  CAS  Google Scholar 

  77. Brouillet, A. & Joussaume, S. Investigating the role of the relative humidity in the co-occurrence of temperature and heat stress extremes in CMIP5 projections. Geophys. Res. Lett. 46, 11435–11443 (2019).

    Article  Google Scholar 

  78. Coronato, T., Carril, A. F., Zaninelli, P. G. & Abalone, R. Exploring warm extremes in South America: insights into regional climate change projections through dry-bulb and wet-bulb temperatures. Clim. Dyn. 62, 4391–4410 (2024).

    Article  Google Scholar 

  79. Santos, Y. L. F., dos Veiga, J. A. P., Correia, F. W. S., Brito, A. L. & Silva, J. L. G. The impacts of changes in land use/land cover and increases in greenhouse gases on the surface energy balance during the rainy season in the metropolitan region of Manaus. Rev. Bras. Meteorol. 39, e39240055 (2024).

    Article  Google Scholar 

  80. Park, T. et al. What does global land climate look like at 2°C warming? Earths Future 11, e2022EF003330 (2023).

    Article  Google Scholar 

  81. He, Y., Zhu, X., Sheng, Z. & He, M. Resonant waves play an important role in the increasing heat waves in Northern Hemisphere mid-latitudes under global warming. Geophys. Res. Lett. 50, e2023GL104839 (2023).

    Article  Google Scholar 

  82. Rogers, C. D. W., Kornhuber, K., Perkins-Kirkpatrick, S. E., Loikith, P. C. & Singh, D. Sixfold increase in historical Northern Hemisphere concurrent large heatwaves driven by warming and changing atmospheric circulations. J. Clim. 35, 1063–1078 (2022).

    Article  Google Scholar 

  83. Raymond, C. et al. Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble. Environ. Res. Lett. 17, 035005 (2022).

    Article  Google Scholar 

  84. Ma, Q., Chen, Y. & Ionita, M. European summer wet-bulb temperature: spatiotemporal variations and potential drivers. J. Clim. 37, 2059–2080 (2024).

    Article  Google Scholar 

  85. Baldwin, J. W., Dessy, J. B., Vecchi, G. A. & Oppenheimer, M. Temporally compound heat wave events and global warming: an emerging hazard. Earths Future 7, 411–427 (2019).

    Article  Google Scholar 

  86. Al-Yaari, A., Ducharne, A., Thiery, W., Cheruy, F. & Lawrence, D. The role of irrigation expansion on historical climate change: insights from CMIP6. Earths Future 10, e2022EF002859 (2022).

    Article  Google Scholar 

  87. Simpson, I. R. et al. Observed humidity trends in dry regions contradict climate models. Proc. Natl Acad. Sci. USA 121, e2302480120 (2024).

    Article  CAS  Google Scholar 

  88. Asseng, S., Spänkuch, D., Hernandez-Ochoa, I. M. & Laporta, J. The upper temperature thresholds of life. Lancet Planet. Health 5, e378–e385 (2021).

    Article  Google Scholar 

  89. Sherwood, S. C. & Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl Acad. Sci. USA 107, 9552–9555 (2010).

    Article  CAS  Google Scholar 

  90. Van Oldenborgh, G. J. et al. Attributing and projecting heatwaves is hard: we can do better. Earths Future 10, e2021EF002271 (2022).

    Article  Google Scholar 

  91. Zeder, J. & Fischer, E. M. Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change. Adv. Stat. Climatol. Meteorol. Oceanogr. 9, 83–102 (2023).

    Article  Google Scholar 

  92. Thompson, V. et al. The most at-risk regions in the world for high-impact heatwaves. Nat. Commun. 14, 2152 (2023).

    Article  CAS  Google Scholar 

  93. Fischer, E. M. et al. Storylines for unprecedented heatwaves based on ensemble boosting. Nat. Commun. 14, 4643 (2023).

    Article  CAS  Google Scholar 

  94. Ragone, F., Wouters, J. & Bouchet, F. Computation of extreme heat waves in climate models using a large deviation algorithm. Proc. Natl Acad. Sci. USA 115, 24–29 (2018).

    Article  CAS  Google Scholar 

  95. Yiou, P. & Jézéquel, A. Simulation of extreme heat waves with empirical importance sampling. Geosci. Model. Dev. 13, 763–781 (2020).

    Article  Google Scholar 

  96. Duan, S. Q., Ahmed, F. & Neelin, J. D. Moist heatwaves intensified by entrainment of dry air that limits deep convection. Nat. Geosci. https://doi.org/10.1038/s41561-024-01498-y (2024).

  97. Zschenderlein, P., Pfahl, S., Wernli, H. & Fink, A. H. A Lagrangian analysis of upper-tropospheric anticyclones associated with heat waves in Europe. Weather Clim. Dyn. 1, 191–206 (2020).

    Article  Google Scholar 

  98. Neal, E., Huang, C. S. Y. & Nakamura, N. The 2021 Pacific Northwest heat wave and associated blocking: meteorology and the role of an upstream cyclone as a diabatic source of wave activity. Geophys. Res. Lett. 49, e2021GL097699 (2022).

    Article  Google Scholar 

  99. Steinfeld, D. & Pfahl, S. The role of latent heating in atmospheric blocking dynamics: a global climatology. Clim. Dyn. 53, 6159–6180 (2019).

    Article  Google Scholar 

  100. Mo, R., Lin, H. & Vitart, F. An anomalous warm-season trans-Pacific atmospheric river linked to the 2021 western North America heatwave. Commun. Earth Environ. 3, 1–12 (2022).

    Article  Google Scholar 

  101. Noyelle, R., Zhang, Y., Yiou, P. & Faranda, D. Maximal reachable temperatures for Western Europe in current climate. Environ. Res. Lett. 18, 094061 (2023).

    Article  Google Scholar 

  102. Wheeler, P. E. The evolution of bipedality and loss of functional body hair in hominids. J. Hum. Evol. 13, 91–98 (1984).

    Article  Google Scholar 

  103. Best, A. & Kamilar, J. M. The evolution of eccrine sweat glands in human and nonhuman primates. J. Hum. Evol. 117, 33–43 (2018).

    Article  Google Scholar 

  104. Kenney, W. L., Havenith, G. & Jay, O. Thermal physiology, more relevant than ever before. J. Appl. Physiol. https://doi.org/10.1152/japplphysiol.00464.2022 (2022).

  105. Breshears, D. D. et al. Underappreciated plant vulnerabilities to heat waves. N. Phytologist 231, 32–39 (2021).

    Article  Google Scholar 

  106. Peng, S. et al. Rice yields decline with higher night temperature from global warming. Proc. Natl Acad. Sci. USA 101, 9971–9975 (2004).

    Article  CAS  Google Scholar 

  107. Renaudeau, D. et al. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6, 707–728 (2012).

    Article  CAS  Google Scholar 

  108. Ghumman, U. & Horney, J. Characterizing the impact of extreme heat on mortality, Karachi, Pakistan, June 2015. Prehosp. Disaster Med. 31, 263–266 (2016).

    Article  Google Scholar 

  109. Harrington, L. J. & Otto, F. E. L. Reconciling theory with the reality of African heatwaves. Nat. Clim. Change 10, 796–798 (2020).

    Article  Google Scholar 

  110. Gasparrini, A., Armstrong, B. & Kenward, M. G. Distributed lag non-linear models. Stat. Med. 29, 2224–2234 (2010).

    Article  CAS  Google Scholar 

  111. Zhao, Q. et al. Global, regional, and national burden of heatwave-related mortality from 1990 to 2019: a three-stage modelling study. PLoS Med. 21, e1004364 (2024).

    Article  Google Scholar 

  112. Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change 11, 492–500 (2021).

    Article  CAS  Google Scholar 

  113. Le Tertre, A. et al. Impact of the 2003 heatwave on all-cause mortality in 9 French cities. Epidemiology 17, 75 (2006).

    Article  Google Scholar 

  114. Matthews, T. K. R., Wilby, R. L. & Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl Acad. Sci. USA 114, 3861–3866 (2017).

    Article  CAS  Google Scholar 

  115. Dodla, V. B., Satyanarayana, G. C. & Desamsetti, S. Analysis and prediction of a catastrophic Indian coastal heat wave of 2015. Nat. Hazards 87, 395–414 (2017).

    Article  Google Scholar 

  116. Henderson, S. B., McLean, K. E., Lee, M. J. & Kosatsky, T. Analysis of community deaths during the catastrophic 2021 heat dome: early evidence to inform the public health response during subsequent events in greater Vancouver, Canada. Environ. Epidemiol. 6, e189 (2022).

    Article  Google Scholar 

  117. Pinto, I. et al. Dangerous humid heat in southern West Africa about 4 °C hotter due to climate change. World Weather Attribution https://www.worldweatherattribution.org/dangerous-humid-heat-in-southern-west-africa-about-4c-hotter-due-to-climate-change/ (2024).

  118. Semenza, J. C., McCullough, J. E., Flanders, W. D., McGeehin, M. A. & Lumpkin, J. R. Excess hospital admissions during the July 1995 heat wave in Chicago. Am. J. Prev. Med. 16, 269–277 (1999).

    Article  CAS  Google Scholar 

  119. Basagaña, X. et al. Heat waves and cause-specific mortality at all ages. Epidemiology 22, 765 (2011).

    Article  Google Scholar 

  120. Wolf, T. S., Cottle, R. M., Fisher, K. G., Vecellio, D. J. & Larry Kenney, W. Heat stress vulnerability and critical environmental limits for older adults. Commun. Earth Environ. 4, 1–10 (2023).

    Google Scholar 

  121. Leach, O. K., Cottle, R. M., Fisher, K. G., Wolf, S. T. & Kenney, W. L. Sex differences in heat stress vulnerability among middle-aged and older adults (PSU HEAT Project). Am. J. Physiol. Regul. Integr. Comp. Physiol. 327, R320–R327 (2024).

    Article  CAS  Google Scholar 

  122. Zhao, Q. et al. The association between heatwaves and risk of hospitalization in Brazil: a nationwide time series study between 2000 and 2015. PLoS Med. 16, e1002753 (2019).

    Article  Google Scholar 

  123. Chen, W. et al. Experimental study on thermo-physiological differences between children and adults during indoor sedentary conditions. Build. Environ. 255, 111439 (2024).

    Article  Google Scholar 

  124. Tsuji, B., Hayashi, K., Kondo, N. & Nishiyasu, T. Characteristics of hyperthermia-induced hyperventilation in humans. Temperature 3, 146–160 (2016).

    Article  Google Scholar 

  125. Anderson, G. B. et al. Heat-related emergency hospitalizations for respiratory diseases in the Medicare population. Am. J. Respir. Crit. Care Med. 187, 1098–1103 (2013).

    Article  Google Scholar 

  126. Rai, M. et al. Heat-related cardiorespiratory mortality: effect modification by air pollution across 482 cities from 24 countries. Environ. Int. 174, 107825 (2023).

    Article  CAS  Google Scholar 

  127. Shaposhnikov, D. et al. Mortality related to air pollution with the Moscow heat wave and wildfire of 2010. Epidemiology 25, 359 (2014).

    Article  Google Scholar 

  128. Rahman, M. M. et al. The effects of coexposure to extremes of heat and particulate air pollution on mortality in California: implications for climate change. Am. J. Respir. Crit. Care Med. 206, 1117–1127 (2022).

    Article  Google Scholar 

  129. Vandentorren, S. et al. August 2003 heat wave in France: risk factors for death of elderly people living at home. Eur. J. Public Health 16, 583–591 (2006).

    Article  CAS  Google Scholar 

  130. Jay, O. et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet 398, 709–724 (2021).

    Article  Google Scholar 

  131. Bouchama, A. et al. Prognostic factors in heat wave-related deaths: a meta-analysis. Arch. Intern. Med. 167, 2170–2176 (2007).

    Article  Google Scholar 

  132. Kim, Y., Lee, W., Kim, H. & Cho, Y. Social isolation and vulnerability to heatwave-related mortality in the urban elderly population: a time-series multi-community study in Korea. Environ. Int. 142, 105868 (2020).

    Article  Google Scholar 

  133. Poumadère, M., Mays, C., Le Mer, S. & Blong, R. The 2003 heat wave in France: dangerous climate change here and now. Risk Anal. 25, 1483–1494 (2005).

    Article  Google Scholar 

  134. Wilson, A. J. et al. Heat disproportionately kills young people: evidence from wet-bulb temperature in Mexico. Sci. Adv. 10, eadq3367 (2024).

    Article  Google Scholar 

  135. Gronlund, C. J. Racial and socioeconomic disparities in heat-related health effects and their mechanisms: a review. Curr. Epidemiol. Rep. 1, 165–173 (2014).

    Article  Google Scholar 

  136. Semenza, J. C. et al. Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med. 335, 84–90 (1996).

    Article  CAS  Google Scholar 

  137. Klinenberg, E. Heat Wave: A Social Autopsy of Disaster in Chicago (Univ. of Chicago Press, 2015).

  138. Hsu, A., Sheriff, G., Chakraborty, T. & Manya, D. Disproportionate exposure to urban heat island intensity across major US cities. Nat. Commun. 12, 2721 (2021).

    Article  CAS  Google Scholar 

  139. Ramsay, E. E., Hamel, P., Chown, S. L. & Duffy, G. A. Humid heat stress overlooked for one billion people in urban informal settlements. One Earth 7, 2–5 (2024).

    Article  Google Scholar 

  140. Wilby, R. L. et al. Monitoring and moderating extreme indoor temperatures in low-income urban communities. Environ. Res. Lett. 16, 024033 (2021).

    Article  Google Scholar 

  141. Vant-Hull, B. et al. The Harlem Heat Project: a unique media–community collaboration to study indoor heat waves. Bull. Am. Meteorol. Soc. 99, 2491–2506 (2018).

    Article  Google Scholar 

  142. Dousset, B. et al. Satellite monitoring of summer heat waves in the Paris metropolitan area. Int. J. Climatol. 31, 313–323 (2011).

    Article  Google Scholar 

  143. Zhao, Q. et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet. Health 5, e415–e425 (2021).

    Article  Google Scholar 

  144. Gasparrini, A. et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health 1, e360–e367 (2017).

    Article  Google Scholar 

  145. García-León, D. et al. Temperature-related mortality burden and projected change in 1368 European regions: a modelling study. Lancet Public Health 9, e644–e653 (2024).

    Article  Google Scholar 

  146. Sanderson, M., Arbuthnott, K., Kovats, S., Hajat, S. & Falloon, P. The use of climate information to estimate future mortality from high ambient temperature: a systematic literature review. PLoS ONE 12, e0180369 (2017).

    Article  Google Scholar 

  147. Gosling, S. N. et al. Adaptation to climate change: a comparative analysis of modeling methods for heat-related mortality. Environ. Health Perspect. 125, 087008 (2017).

    Article  Google Scholar 

  148. Arbuthnott, K., Hajat, S., Heaviside, C. & Vardoulakis, S. Changes in population susceptibility to heat and cold over time: assessing adaptation to climate change. Environ. Health 15, S33 (2016).

    Article  Google Scholar 

  149. Kinney, P. L. Temporal trends in heat-related mortality: implications for future projections. Atmosphere 9, 409 (2018).

    Article  Google Scholar 

  150. Toloo, G., FitzGerald, G., Aitken, P., Verrall, K. & Tong, S. Evaluating the effectiveness of heat warning systems: systematic review of epidemiological evidence. Int. J. Public Health 58, 667–681 (2013).

    Article  Google Scholar 

  151. Sera, F. et al. Air conditioning and heat-related mortality: a multi-country longitudinal study. Epidemiology 31, 779–787 (2020).

    Article  Google Scholar 

  152. Roti Roti, J. L. Cellular responses to hyperthermia (40-46°C): cell killing and molecular events. Int. J. Hyperthermia. 24, 3–15 (2008).

    Article  Google Scholar 

  153. Fan, Y. & McColl, K. A. Widespread outdoor exposure to uncompensable heat stress with warming. Commun. Earth Environ. 5, 1–13 (2024).

    Article  Google Scholar 

  154. de Freitas, C. R. Weather and place-based human behavior: recreational preferences and sensitivity. Int. J. Biometeorol. 59, 55–63 (2015).

    Article  Google Scholar 

  155. Wolf, S. T., Cottle, R. M., Vecellio, D. J. & Kenney, W. L. Critical environmental limits for young, healthy adults (PSU HEAT Project). J. Appl. Physiol. 132, 327–333 (2022).

    Article  CAS  Google Scholar 

  156. McKenna, Z. J. et al. Age alters the thermoregulatory responses to extreme heat exposure with accompanying activities of daily living. J. Appl. Physiol. 135, 445–455 (2023).

    Article  Google Scholar 

  157. Lu, Y.-C. & Romps, D. M. Is a wet-bulb temperature of 35 °C the correct threshold for human survivability? Environ. Res. Lett. 18, 094021 (2023).

    Article  Google Scholar 

  158. Vecellio, D. J., Wolf, S. T., Cottle, R. M. & Kenney, W. L. Evaluating the 35°C wet-bulb temperature adaptability threshold for young, healthy subjects (PSU HEAT Project). J. Appl. Physiol. 132, 340–345 (2022).

    Article  Google Scholar 

  159. Justine, J., Monteiro, J. M., Shah, H. & Rao, N. The diurnal variation of wet bulb temperatures and exceedance of physiological thresholds relevant to human health in South Asia. Commun. Earth Environ. 4, 1–11 (2023).

    Google Scholar 

  160. Clement, A. et al. Hyperlocal observations reveal persistent extreme urban heat in Southeast Florida. J. Appl. Meteorol. Climatol. 62, 863–872 (2023).

    Article  Google Scholar 

  161. Vecellio, D. J., Cottle, R. M., Wolf, S. T. & Kenney, W. L. Critical environmental limits for human thermoregulation in the context of a changing climate. Exerc. Sport Mov. 1, e00008 (2023).

    Article  Google Scholar 

  162. Davido, A. et al. Risk factors for heat related death during the August 2003 heat wave in Paris, France, in patients evaluated at the emergency department of the Hôpital Européen Georges Pompidou. Emerg. Med. J. 23, 515–518 (2006).

    Article  CAS  Google Scholar 

  163. Gossack-Keenan, K. et al. Heatstroke presentations to urban hospitals during BC’s extreme heat event: lessons for the future. Can. J. Emerg. Med. 26, 111–118 (2024).

    Article  Google Scholar 

  164. Saleem, S. G. et al. Risk factors for heat related deaths during the June 2015 heat wave in Karachi, Pakistan. J. Ayub Med. Coll. Abbottabad 29, 320–324 (2017).

    Google Scholar 

  165. Matthews, T. et al. Humid heat exceeds human tolerance limits and causes mass mortality. Nat. Clim. Change https://doi.org/10.1038/s41558-024-02215-8 (2024).

  166. Gasparrini, A., Vicedo-Cabrera, A. M. & Tobias, A. on behalf of the MCC Collaborative Research Network The Multi-Country Multi-City Collaborative Research Network: an international research consortium investigating environment, climate, and health. Environ. Epidemiol. 8, e339 (2024).

    Article  Google Scholar 

  167. Fischer, E. M. & Knutti, R. Robust projections of combined humidity and temperature extremes. Nat. Clim. Change 3, 126–130 (2013).

    Article  Google Scholar 

  168. Douville, H. & Willett, K. M. A drier than expected future, supported by near-surface relative humidity observations. Sci. Adv. 9, eade6253 (2023).

    Article  CAS  Google Scholar 

  169. Xu, X. et al. Deforestation triggering irreversible transition in Amazon hydrological cycle. Environ. Res. Lett. 17, 034037 (2022).

    Article  Google Scholar 

  170. Alves de Oliveira, B. F., Bottino, M. J., Nobre, P. & Nobre, C. A. Deforestation and climate change are projected to increase heat stress risk in the Brazilian Amazon. Commun. Earth Environ. 2, 1–8 (2021).

    Article  Google Scholar 

  171. Périard, J. D., Racinais, S. & Sawka, M. N. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand. J. Med. Sci. Sports 25, 20–38 (2015).

    Article  Google Scholar 

  172. Horowitz, M. Epigenetics and cytoprotection with heat acclimation. J. Appl. Physiol. 120, 702–710 (2016).

    Article  CAS  Google Scholar 

  173. Laitano, O., Oki, K. & Charkoudian, N. Factors contributing to heat tolerance in humans and experimental models. Physiology 40, 37-45 (2025).

    Article  Google Scholar 

  174. Pörtner, H.-O. et al. Annex II: glossary. in Climate Change 2022: Impacts, Adaptation and Vulnerability (Cambridge Univ. Press, 2022).

  175. Lucas, R. A. I., Epstein, Y. & Kjellstrom, T. Excessive occupational heat exposure: a significant ergonomic challenge and health risk for current and future workers. Extrem. Physiol. Med. 3, 14 (2014).

    Article  Google Scholar 

  176. Song, W., Ding, Q., Huang, M., Xie, X. & Li, X. Meta-analysis study on the effects of personal cooling strategies in reducing human heat stress: possible application to medical workers. J. Build. Eng. 85, 108685 (2024).

    Article  Google Scholar 

  177. Bernhard, M. C. et al. Measuring personal heat exposure in an urban and rural environment. Environ. Res. 137, 410–418 (2015).

    Article  CAS  Google Scholar 

  178. Biardeau, L. T., Davis, L. W., Gertler, P. & Wolfram, C. Heat exposure and global air conditioning. Nat. Sustain. 3, 25–28 (2020).

    Article  Google Scholar 

  179. Foster, J. et al. An advanced empirical model for quantifying the impact of heat and climate change on human physical work capacity. Int. J. Biometeorol. 65, 1215–1229 (2021).

    Article  Google Scholar 

  180. Ioannou, L. G. et al. Occupational heat strain in outdoor workers: a comprehensive review and meta-analysis. Temperature 9, 67–102 (2022).

    Article  Google Scholar 

  181. Lowe, D., Ebi, K. L. & Forsberg, B. Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int. J. Environ. Res. Public Health 8, 4623–4648 (2011).

    Article  Google Scholar 

  182. Vaidyanathan, A. et al. Assessment of extreme heat and hospitalizations to inform early warning systems. Proc. Natl Acad. Sci. USA 116, 5420–5427 (2019).

    Article  CAS  Google Scholar 

  183. Berisha, V. et al. Assessing adaptation strategies for extreme heat: a public health evaluation of cooling centers in Maricopa County, Arizona. Weather Clim. Soc. 9, 71–80 (2017).

    Article  Google Scholar 

  184. Kotharkar, R. & Ghosh, A. Progress in extreme heat management and warning systems: a systematic review of heat-health action plans (1995-2020). Sustain. Cities Soc. 76, 103487 (2022).

    Article  Google Scholar 

  185. Benmarhnia, T., Schwarz, L., Nori-Sarma, A. & Bell, M. L. Quantifying the impact of changing the threshold of New York City heat emergency plan in reducing heat-related illnesses. Environ. Res. Lett. 14, 114006 (2019).

    Article  Google Scholar 

  186. Hess, J. J. et al. Building resilience to climate change: pilot evaluation of the impact of India’s first heat action plan on all-cause mortality. J. Environ. Public Health 2018, 7973519 (2018).

    Article  Google Scholar 

  187. Dwyer, I. J., Barry, S. J. E., Megiddo, I. & White, C. J. Evaluations of heat action plans for reducing the health impacts of extreme heat: methodological developments (2012–2021) and remaining challenges. Int. J. Biometeorol. 66, 1915–1927 (2022).

    Article  Google Scholar 

  188. Stone, B. Jr. et al. Compound climate and infrastructure events: how electrical grid failure alters heat wave risk. Environ. Sci. Technol. 55, 6957–6964 (2021).

    Article  CAS  Google Scholar 

  189. Nahlik, M. J. et al. Building thermal performance, extreme heat, and climate change. J. Infrastruct. Syst. 23, 04016043 (2017).

    Article  Google Scholar 

  190. Kong, J., Zhao, Y., Carmeliet, J. & Lei, C. Urban heat island and its interaction with heatwaves: a review of studies on mesoscale. Sustainability 13, 10923 (2021).

    Article  Google Scholar 

  191. Li, D. et al. Urban heat island: aerodynamics or imperviousness? Sci. Adv. 5, eaau4299 (2019).

    Article  Google Scholar 

  192. Bowler, D. E., Buyung-Ali, L., Knight, T. M. & Pullin, A. S. Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc. Urban Plan. 97, 147–155 (2010).

    Article  Google Scholar 

  193. Waite, M. et al. Global trends in urban electricity demands for cooling and heating. Energy 127, 786–802 (2017).

    Article  Google Scholar 

  194. Takane, Y., Ohashi, Y., Grimmond, C. S. B., Hara, M. & Kikegawa, Y. Asian megacity heat stress under future climate scenarios: impact of air-conditioning feedback. Environ. Res. Commun. 2, 015004 (2020).

    Article  Google Scholar 

  195. Santamouris, M. Cooling the buildings — past, present and future. Energy Build. 128, 617–638 (2016).

    Article  Google Scholar 

  196. Every, D., McLennan, J., Osborn, E. & Cook, C. Experiences of heat stress while homeless on hot summer days in Adelaide. Aust. J. Emerg. Manag. 36, 55–61 (2021).

    Article  Google Scholar 

  197. Kang, S., Pal, J. S. & Eltahir, E. A. B. Future heat stress during Muslim Pilgrimage (Hajj) projected to exceed “extreme danger” levels. Geophys. Res. Lett. 46, 10094–10100 (2019).

    Article  Google Scholar 

  198. Matthews, T., Wilby, R. L. & Murphy, C. An emerging tropical cyclone–deadly heat compound hazard. Nat. Clim. Change 9, 602–606 (2019).

    Article  Google Scholar 

  199. Xu, L. et al. Resilience of renewable power systems under climate risks. Nat. Rev. Electr. Eng. 1, 53–66 (2024).

    Article  Google Scholar 

  200. Zhang, C. et al. Resilient cooling strategies — a critical review and qualitative assessment. Energy Build. 251, 111312 (2021).

    Article  Google Scholar 

  201. Zhang, S. et al. The effect of afforestation on moist heat stress in Loess Plateau, China. J. Hydrol. Reg. Stud. 44, 101209 (2022).

    Article  Google Scholar 

  202. Tabari, H. & Willems, P. Global risk assessment of compound hot-dry events in the context of future climate change and socioeconomic factors. npj Clim. Atmos. Sci. 6, 1–10 (2023).

    Article  Google Scholar 

  203. Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).

    Article  CAS  Google Scholar 

  204. Bernstein, D. N., Neelin, J. D., Li, Q. B. & Chen, D. Could aerosol emissions be used for regional heat wave mitigation? Atmos. Chem. Phys. 13, 6373–6390 (2013).

    Article  Google Scholar 

  205. Persad, G. G. The dependence of aerosols’ global and local precipitation impacts on the emitting region. Atmos. Chem. Phys. 23, 3435–3452 (2023).

    Article  CAS  Google Scholar 

  206. Siders, A. R., Hino, M. & Mach, K. J. The case for strategic and managed climate retreat. Science 365, 761–763 (2019).

    Article  CAS  Google Scholar 

  207. Mueller, V., Gray, C. & Kosec, K. Heat stress increases long-term human migration in rural Pakistan. Nat. Clim. Change 4, 182–185 (2014).

    Article  CAS  Google Scholar 

  208. Horton, R. M., de Sherbinin, A., Wrathall, D. & Oppenheimer, M. Assessing human habitability and migration. Science 372, 1279–1283 (2021).

    Article  CAS  Google Scholar 

  209. Boas, I. et al. Climate migration myths. Nat. Clim. Change 9, 901–903 (2019).

    Article  Google Scholar 

  210. Li, K., Zheng, F., Zhu, J. & Zeng, Q.-C. El Niño and the AMO sparked the astonishingly large margin of warming in the global mean surface temperature in 2023. Adv. Atmos. Sci. https://doi.org/10.1007/s00376-023-3371-4 (2024).

  211. Chan, K. et al. Low-cost electronic sensors for environmental research: pitfalls and opportunities. Prog. Phys. Geogr. Earth Environ. 45, 305–338 (2021).

    Article  Google Scholar 

  212. Fan, Y., Ding, X., Wu, J., Ge, J. & Li, Y. High spatial-resolution classification of urban surfaces using a deep learning method. Build. Environ. 200, 107949 (2021).

    Article  Google Scholar 

  213. Woo, G. A counterfactual perspective on compound weather risk. Weather Clim. Extrem. 32, 100314 (2021).

    Article  Google Scholar 

  214. Foster, J., Schillereff, D., Porter, J. J. & Matthews, T. Interdisciplinary collaboration needed to address the heat-health challenge in a warming climate. J. Appl. Physiol. 136, 1348–1349 (2024).

    Article  Google Scholar 

  215. Vecellio, D. J. & Vanos, J. K. Aligning thermal physiology and biometeorological research for heat adaptation and resilience in a changing climate. J. Appl. Physiol. https://doi.org/10.1152/japplphysiol.00098.2024 (2024).

  216. EM-DAT: the CRED/OFDA International Disaster Database. www.emdat.be (accessed 17 December 2024).

  217. Heat. In Glossary of Meteorology (American Meteorological Society, 2012); http://glossary.ametsoc.org/wiki/heat.

  218. Stoy, P. C., Roh, J. & Bromley, G. T. It’s the heat and the humidity: the complementary roles of temperature and specific humidity to recent changes in the energy content of the near-surface atmosphere. Geophys. Res. Lett. 49, e2021GL096628 (2022).

    Article  Google Scholar 

  219. Cramer, M. N. & Jay, O. Partitional calorimetry. J. Appl. Physiol. 126, 267–277 (2019).

    Article  CAS  Google Scholar 

  220. Brutsaert, W. On a derivable formula for long‐wave radiation from clear skies. Water Resour. Res. 11, 742–744 (1975).

    Article  Google Scholar 

  221. Bouchama, A. & Knochel, J. P. Heat stroke. N. Engl. J. Med. 346, 1978–1988 (2002).

    Article  CAS  Google Scholar 

  222. Sapareto, S. A., Hopwood, L. E., Dewey, W. C., Raju, M. R. & Gray, J. W. Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Cancer Res. 38, 393–400 (1978).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Y.-C. Lu for the assistance in computing the extended heat index. G. Guzman Echavarria is also acknowledged for the help in accessing results from the PyHBB model. T.M. was supported by a UK Research and Innovation Future Leaders Fellowship (grant MR/X03450X/1). J.W.B. was supported by National Oceanic and Atmospheric Administration-Climate Program Office’s Modeling, Analysis, Predictions, and Projections Program, through funds from the Inflation Reduction Act Forward Looking Projections initiative (grant number NA23OAR4310599).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of the content and to writing and editing of the manuscript.

Corresponding authors

Correspondence to Tom Matthews or Radley M. Horton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Kristen Aunan, Yi Zhang and Larry Kenny for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthews, T., Raymond, C., Foster, J. et al. Mortality impacts of the most extreme heat events. Nat Rev Earth Environ 6, 193–210 (2025). https://doi.org/10.1038/s43017-024-00635-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-024-00635-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing