Abstract
Extreme heat threatens human life, evidenced by >260,000 heat-related fatalities collectively in the deadliest events since 2000. In this Review, we link physical climate science with heat mortality risk, including crossings of uncompensable thresholds (beyond which human core body temperature rises uncontrollably) and unsurvivable thresholds (lethal core temperature increase within 6 h). Uncompensable thresholds (wet-bulb temperatures ~19–32 °C) depend strongly on age and the combination of air temperature and relative humidity. These thresholds have been breached rarely for younger adults (~2.2% of land area over 1994–2023) but more widely for older adults (~21%). Unsurvivable thresholds (wet-bulb temperatures ~20–34 °C) were only exceeded for older adults (~1.8% of land area). Anthropogenic warming will lead to more frequent threshold crossings, including tripling of the uncompensable land area for young adults if warming reaches 2 °C above preindustrial levels. Interdisciplinary work must improve the understanding of the deadly potential of unprecedented heat and how it can be reduced. Ensuring reliable access for all to cool refugia is an urgent priority as the atmosphere threatens to increasingly overwhelm human physiology under climate warming.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Trenberth, K. E., Fasullo, J. T. & Balmaseda, M. A. Earth’s energy imbalance. J. Clim. 27, 3129–3144 (2014).
von Schuckmann, K. et al. Heat stored in the Earth system 1960–2020: where does the energy go? Earth Syst. Sci. Data 15, 1675–1709 (2023).
Forster, P. M. et al. Indicators of global climate change 2022: annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 15, 2295–2327 (2023).
Matthews, T. et al. Latent heat must be visible in climate communications. WIREs Clim. Change 13, e779 (2022).
Willett, K. M. HadISDH.extremes part II: exploring humid heat extremes using wet bulb temperature indices. Adv. Atmos. Sci. 40, 1968–1985 (2023).
Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).
Forzieri, G. et al. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Change 48, 97–107 (2018).
Cramer, M. N. & Jay, O. Biophysical aspects of human thermoregulation during heat stress. Auton. Neurosci. 196, 3–13 (2016).
Ebi, K. L. et al. Hot weather and heat extremes: health risks. Lancet 398, 698–708 (2021).
Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & García-Herrera, R. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332, 220–224 (2011).
Ballester, J. et al. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 29, 1857–1866 (2023).
Robine, J.-M. et al. Death toll exceeded 70,000 in Europe during the summer of 2003. C. R. Biol. 331, 171–178 (2008).
Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).
Stillman, J. H. Heat waves, the new normal: summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).
Ma, C.-S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).
Geange, S. R. et al. The thermal tolerance of photosynthetic tissues: a global systematic review and agenda for future research. N. Phytologist 229, 2497–2513 (2021).
Lüthi, S. et al. Rapid increase in the risk of heat-related mortality. Nat. Commun. 14, 4894 (2023).
Vanos, J. et al. A physiological approach for assessing human survivability and liveability to heat in a changing climate. Nat. Commun. 14, 7653 (2023).
Vecellio, D. J., Kong, Q., Kenney, W. L. & Huber, M. Greatly enhanced risk to humans as a consequence of empirically determined lower moist heat stress tolerance. Proc. Natl Acad. Sci. USA 120, e2305427120 (2023).
Powis, C. M. et al. Observational and model evidence together support wide-spread exposure to noncompensable heat under continued global warming. Sci. Adv. 9, eadg9297 (2023).
Barriopedro, D., García-Herrera, R., Ordóñez, C., Miralles, D. G. & Salcedo-Sanz, S. Heat waves: physical understanding and scientific challenges. Rev. Geophys. 61, e2022RG000780 (2023).
Kautz, L.-A. et al. Atmospheric blocking and weather extremes over the Euro-Atlantic sector — a review. Weather Clim. Dyn. 3, 305–336 (2022).
Li, X. et al. Role of atmospheric resonance and land–atmosphere feedbacks as a precursor to the June 2021 Pacific Northwest heat dome event. Proc. Natl Acad. Sci. USA 121, e2315330121 (2024).
Domeisen, D. I. V. et al. Prediction and projection of heatwaves. Nat. Rev. Earth Environ. 4, 36–50 (2023).
Liu, X., He, B., Guo, L., Huang, L. & Chen, D. Similarities and differences in the mechanisms causing the European summer heatwaves in 2003, 2010, and 2018. Earths Future 8, e2019EF001386 (2020).
White, R. H. et al. The unprecedented Pacific Northwest heatwave of June 2021. Nat. Commun. 14, 727 (2023).
Röthlisberger, M. & Papritz, L. Quantifying the physical processes leading to atmospheric hot extremes at a global scale. Nat. Geosci. 16, 210–216 (2023).
Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436, 19–35 (2019).
Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).
Burakowski, E. et al. The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the Eastern United States. Agric. For. Meteorol. 249, 367–376 (2018).
Chiang, F., Cook, B. I. & McDermid, S. Diverging global dry and humid heat responses to modern irrigation. Earth Interact. 27, e230006 (2023).
Kandya, A. & Mohan, M. Mitigating the urban heat island effect through building envelope modifications. Energy Build. 164, 266–277 (2018).
Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).
Deilami, K., Kamruzzaman, M. & Liu, Y. Urban heat island effect: a systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 67, 30–42 (2018).
Ajay, P., Nair, V. S., Babu, S. S., Das, C. & H, U. K. Effects of atmospheric aerosols on heat stress over South Asia. Environ. Res. Clim. 2, 045007 (2023).
Ivanovich, C. C., Horton, R. M., Sobel, A. H. & Singh, D. Subseasonal variability of humid heat during the South Asian summer monsoon. Geophys. Res. Lett. 51, e2023GL107382 (2024).
Raymond, C. et al. On the controlling factors for globally extreme humid heat. Geophys. Res. Lett. 48, e2021GL096082 (2021).
Monteiro, J. M. & Caballero, R. Characterization of extreme wet-bulb temperature events in Southern Pakistan. Geophys. Res. Lett. 46, 10659–10668 (2019).
Souri, A. H., Wang, H., González Abad, G., Liu, X. & Chance, K. Quantifying the impact of excess moisture from transpiration from crops on an extreme heat wave event in the Midwestern U.S.: a top-down constraint from moderate resolution imaging spectroradiometer water vapor retrieval. J. Geophys. Res. Atmos. 125, e2019JD031941 (2020).
Krakauer, N. Y., Cook, B. I. & Puma, M. J. Effect of irrigation on humid heat extremes. Environ. Res. Lett. 15, 094010 (2020).
Mishra, V. et al. Moist heat stress extremes in India enhanced by irrigation. Nat. Geosci. 13, 722–728 (2020).
Safieddine, S., Clerbaux, C., Clarisse, L., Whitburn, S. & Eltahir, E. A. B. Present and future land surface and wet bulb temperatures in the Arabian Peninsula. Environ. Res. Lett. 17, 044029 (2022).
McDermid, S. et al. Irrigation in the Earth system. Nat. Rev. Earth Environ. 4, 435–453 (2023).
Zhang, T., Mahmood, R., Lin, X. & Pielke, R. A. Irrigation impacts on minimum and maximum surface moist enthalpy in the Central Great Plains of the USA. Weather Clim. Extrem. 23, 100197 (2019).
Chakraborty, T., Venter, Z. S., Qian, Y. & Lee, X. Lower urban humidity moderates outdoor heat stress. AGU Adv. 3, e2022AV000729 (2022).
Zhang, K. et al. Increased heat risk in wet climate induced by urban humid heat. Nature 61l7, 738–742 (2023).
Gao, T., Luo, M., Lau, N.-C. & Chan, T. O. Spatially distinct effects of two El Niño types on summer heat extremes in China. Geophys. Res. Lett. 47, e2020GL086982 (2020).
Marshall, A. G., Wheeler, M. C. & Cowan, T. Madden–Julian oscillation impacts on Australian temperatures and extremes. J. Clim. 36, 335–357 (2022).
Speizer, S., Raymond, C., Ivanovich, C. & Horton, R. M. Concentrated and intensifying humid heat extremes in the IPCC AR6 regions. Geophys. Res. Lett. 49, e2021GL097261 (2022).
Jones, D. A. & Trewin, B. C. On the relationships between the El Niño–Southern Oscillation and Australian land surface temperature. Int. J. Climatol. 20, 697–719 (2000).
Zhang, Y., Boos, W. R., Held, I., Paciorek, C. J. & Fueglistaler, S. Forecasting tropical annual maximum wet-bulb temperatures months in advance from the current state of ENSO. Geophys. Res. Lett. 51, e2023GL106990 (2024).
Kornhuber, K. et al. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Change 10, 48–53 (2020).
Zhao, D., Lin, Y., Li, Y. & Gao, X. An extreme heat event induced by Typhoon Lekima (2019) and its contributing factors. J. Geophys. Res. Atmos. 126, e2021JD034760 (2021).
Schumacher, D. L. et al. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci. https://doi.org/10.1038/s41561-019-0431-6 (2019).
Raymond, C., Shreevastava, A., Slinskey, E. & Waliser, D. Linkages between atmospheric rivers and humid heat across the United States. Nat. Hazards Earth Syst. Sci. 24, 791–801 (2024).
Ganguli, P. & Merz, B. Observational evidence reveals compound humid heat stress-extreme rainfall hotspots in India. Earths Future 12, e2023EF004074 (2024).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Di Luca, A., de Elía, R., Bador, M. & Argüeso, D. Contribution of mean climate to hot temperature extremes for present and future climates. Weather Clim. Extrem. 28, 100255 (2020).
Gessner, C., Fischer, E. M., Beyerle, U. & Knutti, R. Very rare heat extremes: quantifying and understanding using ensemble reinitialization. J. Clim. 34, 6619–6634 (2021).
Ivanovich, C., Anderson, W., Horton, R., Raymond, C. & Sobel, A. The influence of intraseasonal oscillations on humid heat in the Persian Gulf and South Asia. J. Clim. 35, 4309–4329 (2022).
Raymond, C., Matthews, T. & Horton, R. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).
Kong, Q. & Huber, M. Regimes of soil moisture–wet-bulb temperature coupling with relevance to moist heat stress. J. Clim. 36, 7925–7942 (2023).
Suarez-Gutierrez, L., Müller, W. A., Li, C. & Marotzke, J. Hotspots of extreme heat under global warming. Clim. Dyn. 55, 429–447 (2020).
Pal, J. S. & Eltahir, E. A. B. Future temperature in Southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Change 6, 197–200 (2016).
Rogers, C. D. W. et al. Recent increases in exposure to extreme humid-heat events disproportionately affect populated regions. Geophys. Res. Lett. 48, e2021GL094183 (2021).
Seong, M.-G., Min, S.-K., Kim, Y.-H., Zhang, X. & Sun, Y. Anthropogenic greenhouse gas and aerosol contributions to extreme temperature changes during 1951–2015. J. Clim. 34, 857–870 (2021).
Vautard, R. et al. Heat extremes in Western Europe increasing faster than simulated due to atmospheric circulation trends. Nat. Commun. 14, 6803 (2023).
Byrne, M. P. & O’Gorman, P. A. Land–ocean warming contrast over a wide range of climates: convective quasi-equilibrium theory and idealized simulations. J. Clim. 26, 4000–4016 (2013).
Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).
Schwingshackl, C., Sillmann, J., Vicedo-Cabrera, A. M., Sandstad, M. & Aunan, K. Heat stress indicators in CMIP6: estimating future trends and exceedances of impact-relevant thresholds. Earths Future 9, e2020EF001885 (2021).
Zhang, Y. & Boos, W. R. An upper bound for extreme temperatures over midlatitude land. Proc. Natl Acad. Sci. USA 120, e2215278120 (2023).
Byrne, M. P. Amplified warming of extreme temperatures over tropical land. Nat. Geosci. 14, 837–841 (2021).
Benson, D. O. & Dirmeyer, P. A. Characterizing the relationship between temperature and soil moisture extremes and their role in the exacerbation of heat waves over the contiguous United States. J. Clim. 34, 2175–2187 (2021).
Costa, D. F., Gomes, H. B., Silva, M. C. L. & Zhou, L. The most extreme heat waves in Amazonia happened under extreme dryness. Clim. Dyn. 59, 281–295 (2022).
Morice, C. P. et al. An updated assessment of near-surface temperature change from 1850: the HadCRUT5 data set. J. Geophys. Res. Atmos. 126, e2019JD032361 (2021).
Zhang, Y., Held, I. & Fueglistaler, S. Projections of tropical heat stress constrained by atmospheric dynamics. Nat. Geosci. 14, 133–137 (2021).
Brouillet, A. & Joussaume, S. Investigating the role of the relative humidity in the co-occurrence of temperature and heat stress extremes in CMIP5 projections. Geophys. Res. Lett. 46, 11435–11443 (2019).
Coronato, T., Carril, A. F., Zaninelli, P. G. & Abalone, R. Exploring warm extremes in South America: insights into regional climate change projections through dry-bulb and wet-bulb temperatures. Clim. Dyn. 62, 4391–4410 (2024).
Santos, Y. L. F., dos Veiga, J. A. P., Correia, F. W. S., Brito, A. L. & Silva, J. L. G. The impacts of changes in land use/land cover and increases in greenhouse gases on the surface energy balance during the rainy season in the metropolitan region of Manaus. Rev. Bras. Meteorol. 39, e39240055 (2024).
Park, T. et al. What does global land climate look like at 2°C warming? Earths Future 11, e2022EF003330 (2023).
He, Y., Zhu, X., Sheng, Z. & He, M. Resonant waves play an important role in the increasing heat waves in Northern Hemisphere mid-latitudes under global warming. Geophys. Res. Lett. 50, e2023GL104839 (2023).
Rogers, C. D. W., Kornhuber, K., Perkins-Kirkpatrick, S. E., Loikith, P. C. & Singh, D. Sixfold increase in historical Northern Hemisphere concurrent large heatwaves driven by warming and changing atmospheric circulations. J. Clim. 35, 1063–1078 (2022).
Raymond, C. et al. Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble. Environ. Res. Lett. 17, 035005 (2022).
Ma, Q., Chen, Y. & Ionita, M. European summer wet-bulb temperature: spatiotemporal variations and potential drivers. J. Clim. 37, 2059–2080 (2024).
Baldwin, J. W., Dessy, J. B., Vecchi, G. A. & Oppenheimer, M. Temporally compound heat wave events and global warming: an emerging hazard. Earths Future 7, 411–427 (2019).
Al-Yaari, A., Ducharne, A., Thiery, W., Cheruy, F. & Lawrence, D. The role of irrigation expansion on historical climate change: insights from CMIP6. Earths Future 10, e2022EF002859 (2022).
Simpson, I. R. et al. Observed humidity trends in dry regions contradict climate models. Proc. Natl Acad. Sci. USA 121, e2302480120 (2024).
Asseng, S., Spänkuch, D., Hernandez-Ochoa, I. M. & Laporta, J. The upper temperature thresholds of life. Lancet Planet. Health 5, e378–e385 (2021).
Sherwood, S. C. & Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl Acad. Sci. USA 107, 9552–9555 (2010).
Van Oldenborgh, G. J. et al. Attributing and projecting heatwaves is hard: we can do better. Earths Future 10, e2021EF002271 (2022).
Zeder, J. & Fischer, E. M. Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change. Adv. Stat. Climatol. Meteorol. Oceanogr. 9, 83–102 (2023).
Thompson, V. et al. The most at-risk regions in the world for high-impact heatwaves. Nat. Commun. 14, 2152 (2023).
Fischer, E. M. et al. Storylines for unprecedented heatwaves based on ensemble boosting. Nat. Commun. 14, 4643 (2023).
Ragone, F., Wouters, J. & Bouchet, F. Computation of extreme heat waves in climate models using a large deviation algorithm. Proc. Natl Acad. Sci. USA 115, 24–29 (2018).
Yiou, P. & Jézéquel, A. Simulation of extreme heat waves with empirical importance sampling. Geosci. Model. Dev. 13, 763–781 (2020).
Duan, S. Q., Ahmed, F. & Neelin, J. D. Moist heatwaves intensified by entrainment of dry air that limits deep convection. Nat. Geosci. https://doi.org/10.1038/s41561-024-01498-y (2024).
Zschenderlein, P., Pfahl, S., Wernli, H. & Fink, A. H. A Lagrangian analysis of upper-tropospheric anticyclones associated with heat waves in Europe. Weather Clim. Dyn. 1, 191–206 (2020).
Neal, E., Huang, C. S. Y. & Nakamura, N. The 2021 Pacific Northwest heat wave and associated blocking: meteorology and the role of an upstream cyclone as a diabatic source of wave activity. Geophys. Res. Lett. 49, e2021GL097699 (2022).
Steinfeld, D. & Pfahl, S. The role of latent heating in atmospheric blocking dynamics: a global climatology. Clim. Dyn. 53, 6159–6180 (2019).
Mo, R., Lin, H. & Vitart, F. An anomalous warm-season trans-Pacific atmospheric river linked to the 2021 western North America heatwave. Commun. Earth Environ. 3, 1–12 (2022).
Noyelle, R., Zhang, Y., Yiou, P. & Faranda, D. Maximal reachable temperatures for Western Europe in current climate. Environ. Res. Lett. 18, 094061 (2023).
Wheeler, P. E. The evolution of bipedality and loss of functional body hair in hominids. J. Hum. Evol. 13, 91–98 (1984).
Best, A. & Kamilar, J. M. The evolution of eccrine sweat glands in human and nonhuman primates. J. Hum. Evol. 117, 33–43 (2018).
Kenney, W. L., Havenith, G. & Jay, O. Thermal physiology, more relevant than ever before. J. Appl. Physiol. https://doi.org/10.1152/japplphysiol.00464.2022 (2022).
Breshears, D. D. et al. Underappreciated plant vulnerabilities to heat waves. N. Phytologist 231, 32–39 (2021).
Peng, S. et al. Rice yields decline with higher night temperature from global warming. Proc. Natl Acad. Sci. USA 101, 9971–9975 (2004).
Renaudeau, D. et al. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6, 707–728 (2012).
Ghumman, U. & Horney, J. Characterizing the impact of extreme heat on mortality, Karachi, Pakistan, June 2015. Prehosp. Disaster Med. 31, 263–266 (2016).
Harrington, L. J. & Otto, F. E. L. Reconciling theory with the reality of African heatwaves. Nat. Clim. Change 10, 796–798 (2020).
Gasparrini, A., Armstrong, B. & Kenward, M. G. Distributed lag non-linear models. Stat. Med. 29, 2224–2234 (2010).
Zhao, Q. et al. Global, regional, and national burden of heatwave-related mortality from 1990 to 2019: a three-stage modelling study. PLoS Med. 21, e1004364 (2024).
Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change 11, 492–500 (2021).
Le Tertre, A. et al. Impact of the 2003 heatwave on all-cause mortality in 9 French cities. Epidemiology 17, 75 (2006).
Matthews, T. K. R., Wilby, R. L. & Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl Acad. Sci. USA 114, 3861–3866 (2017).
Dodla, V. B., Satyanarayana, G. C. & Desamsetti, S. Analysis and prediction of a catastrophic Indian coastal heat wave of 2015. Nat. Hazards 87, 395–414 (2017).
Henderson, S. B., McLean, K. E., Lee, M. J. & Kosatsky, T. Analysis of community deaths during the catastrophic 2021 heat dome: early evidence to inform the public health response during subsequent events in greater Vancouver, Canada. Environ. Epidemiol. 6, e189 (2022).
Pinto, I. et al. Dangerous humid heat in southern West Africa about 4 °C hotter due to climate change. World Weather Attribution https://www.worldweatherattribution.org/dangerous-humid-heat-in-southern-west-africa-about-4c-hotter-due-to-climate-change/ (2024).
Semenza, J. C., McCullough, J. E., Flanders, W. D., McGeehin, M. A. & Lumpkin, J. R. Excess hospital admissions during the July 1995 heat wave in Chicago. Am. J. Prev. Med. 16, 269–277 (1999).
Basagaña, X. et al. Heat waves and cause-specific mortality at all ages. Epidemiology 22, 765 (2011).
Wolf, T. S., Cottle, R. M., Fisher, K. G., Vecellio, D. J. & Larry Kenney, W. Heat stress vulnerability and critical environmental limits for older adults. Commun. Earth Environ. 4, 1–10 (2023).
Leach, O. K., Cottle, R. M., Fisher, K. G., Wolf, S. T. & Kenney, W. L. Sex differences in heat stress vulnerability among middle-aged and older adults (PSU HEAT Project). Am. J. Physiol. Regul. Integr. Comp. Physiol. 327, R320–R327 (2024).
Zhao, Q. et al. The association between heatwaves and risk of hospitalization in Brazil: a nationwide time series study between 2000 and 2015. PLoS Med. 16, e1002753 (2019).
Chen, W. et al. Experimental study on thermo-physiological differences between children and adults during indoor sedentary conditions. Build. Environ. 255, 111439 (2024).
Tsuji, B., Hayashi, K., Kondo, N. & Nishiyasu, T. Characteristics of hyperthermia-induced hyperventilation in humans. Temperature 3, 146–160 (2016).
Anderson, G. B. et al. Heat-related emergency hospitalizations for respiratory diseases in the Medicare population. Am. J. Respir. Crit. Care Med. 187, 1098–1103 (2013).
Rai, M. et al. Heat-related cardiorespiratory mortality: effect modification by air pollution across 482 cities from 24 countries. Environ. Int. 174, 107825 (2023).
Shaposhnikov, D. et al. Mortality related to air pollution with the Moscow heat wave and wildfire of 2010. Epidemiology 25, 359 (2014).
Rahman, M. M. et al. The effects of coexposure to extremes of heat and particulate air pollution on mortality in California: implications for climate change. Am. J. Respir. Crit. Care Med. 206, 1117–1127 (2022).
Vandentorren, S. et al. August 2003 heat wave in France: risk factors for death of elderly people living at home. Eur. J. Public Health 16, 583–591 (2006).
Jay, O. et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet 398, 709–724 (2021).
Bouchama, A. et al. Prognostic factors in heat wave-related deaths: a meta-analysis. Arch. Intern. Med. 167, 2170–2176 (2007).
Kim, Y., Lee, W., Kim, H. & Cho, Y. Social isolation and vulnerability to heatwave-related mortality in the urban elderly population: a time-series multi-community study in Korea. Environ. Int. 142, 105868 (2020).
Poumadère, M., Mays, C., Le Mer, S. & Blong, R. The 2003 heat wave in France: dangerous climate change here and now. Risk Anal. 25, 1483–1494 (2005).
Wilson, A. J. et al. Heat disproportionately kills young people: evidence from wet-bulb temperature in Mexico. Sci. Adv. 10, eadq3367 (2024).
Gronlund, C. J. Racial and socioeconomic disparities in heat-related health effects and their mechanisms: a review. Curr. Epidemiol. Rep. 1, 165–173 (2014).
Semenza, J. C. et al. Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med. 335, 84–90 (1996).
Klinenberg, E. Heat Wave: A Social Autopsy of Disaster in Chicago (Univ. of Chicago Press, 2015).
Hsu, A., Sheriff, G., Chakraborty, T. & Manya, D. Disproportionate exposure to urban heat island intensity across major US cities. Nat. Commun. 12, 2721 (2021).
Ramsay, E. E., Hamel, P., Chown, S. L. & Duffy, G. A. Humid heat stress overlooked for one billion people in urban informal settlements. One Earth 7, 2–5 (2024).
Wilby, R. L. et al. Monitoring and moderating extreme indoor temperatures in low-income urban communities. Environ. Res. Lett. 16, 024033 (2021).
Vant-Hull, B. et al. The Harlem Heat Project: a unique media–community collaboration to study indoor heat waves. Bull. Am. Meteorol. Soc. 99, 2491–2506 (2018).
Dousset, B. et al. Satellite monitoring of summer heat waves in the Paris metropolitan area. Int. J. Climatol. 31, 313–323 (2011).
Zhao, Q. et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet. Health 5, e415–e425 (2021).
Gasparrini, A. et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health 1, e360–e367 (2017).
García-León, D. et al. Temperature-related mortality burden and projected change in 1368 European regions: a modelling study. Lancet Public Health 9, e644–e653 (2024).
Sanderson, M., Arbuthnott, K., Kovats, S., Hajat, S. & Falloon, P. The use of climate information to estimate future mortality from high ambient temperature: a systematic literature review. PLoS ONE 12, e0180369 (2017).
Gosling, S. N. et al. Adaptation to climate change: a comparative analysis of modeling methods for heat-related mortality. Environ. Health Perspect. 125, 087008 (2017).
Arbuthnott, K., Hajat, S., Heaviside, C. & Vardoulakis, S. Changes in population susceptibility to heat and cold over time: assessing adaptation to climate change. Environ. Health 15, S33 (2016).
Kinney, P. L. Temporal trends in heat-related mortality: implications for future projections. Atmosphere 9, 409 (2018).
Toloo, G., FitzGerald, G., Aitken, P., Verrall, K. & Tong, S. Evaluating the effectiveness of heat warning systems: systematic review of epidemiological evidence. Int. J. Public Health 58, 667–681 (2013).
Sera, F. et al. Air conditioning and heat-related mortality: a multi-country longitudinal study. Epidemiology 31, 779–787 (2020).
Roti Roti, J. L. Cellular responses to hyperthermia (40-46°C): cell killing and molecular events. Int. J. Hyperthermia. 24, 3–15 (2008).
Fan, Y. & McColl, K. A. Widespread outdoor exposure to uncompensable heat stress with warming. Commun. Earth Environ. 5, 1–13 (2024).
de Freitas, C. R. Weather and place-based human behavior: recreational preferences and sensitivity. Int. J. Biometeorol. 59, 55–63 (2015).
Wolf, S. T., Cottle, R. M., Vecellio, D. J. & Kenney, W. L. Critical environmental limits for young, healthy adults (PSU HEAT Project). J. Appl. Physiol. 132, 327–333 (2022).
McKenna, Z. J. et al. Age alters the thermoregulatory responses to extreme heat exposure with accompanying activities of daily living. J. Appl. Physiol. 135, 445–455 (2023).
Lu, Y.-C. & Romps, D. M. Is a wet-bulb temperature of 35 °C the correct threshold for human survivability? Environ. Res. Lett. 18, 094021 (2023).
Vecellio, D. J., Wolf, S. T., Cottle, R. M. & Kenney, W. L. Evaluating the 35°C wet-bulb temperature adaptability threshold for young, healthy subjects (PSU HEAT Project). J. Appl. Physiol. 132, 340–345 (2022).
Justine, J., Monteiro, J. M., Shah, H. & Rao, N. The diurnal variation of wet bulb temperatures and exceedance of physiological thresholds relevant to human health in South Asia. Commun. Earth Environ. 4, 1–11 (2023).
Clement, A. et al. Hyperlocal observations reveal persistent extreme urban heat in Southeast Florida. J. Appl. Meteorol. Climatol. 62, 863–872 (2023).
Vecellio, D. J., Cottle, R. M., Wolf, S. T. & Kenney, W. L. Critical environmental limits for human thermoregulation in the context of a changing climate. Exerc. Sport Mov. 1, e00008 (2023).
Davido, A. et al. Risk factors for heat related death during the August 2003 heat wave in Paris, France, in patients evaluated at the emergency department of the Hôpital Européen Georges Pompidou. Emerg. Med. J. 23, 515–518 (2006).
Gossack-Keenan, K. et al. Heatstroke presentations to urban hospitals during BC’s extreme heat event: lessons for the future. Can. J. Emerg. Med. 26, 111–118 (2024).
Saleem, S. G. et al. Risk factors for heat related deaths during the June 2015 heat wave in Karachi, Pakistan. J. Ayub Med. Coll. Abbottabad 29, 320–324 (2017).
Matthews, T. et al. Humid heat exceeds human tolerance limits and causes mass mortality. Nat. Clim. Change https://doi.org/10.1038/s41558-024-02215-8 (2024).
Gasparrini, A., Vicedo-Cabrera, A. M. & Tobias, A. on behalf of the MCC Collaborative Research Network The Multi-Country Multi-City Collaborative Research Network: an international research consortium investigating environment, climate, and health. Environ. Epidemiol. 8, e339 (2024).
Fischer, E. M. & Knutti, R. Robust projections of combined humidity and temperature extremes. Nat. Clim. Change 3, 126–130 (2013).
Douville, H. & Willett, K. M. A drier than expected future, supported by near-surface relative humidity observations. Sci. Adv. 9, eade6253 (2023).
Xu, X. et al. Deforestation triggering irreversible transition in Amazon hydrological cycle. Environ. Res. Lett. 17, 034037 (2022).
Alves de Oliveira, B. F., Bottino, M. J., Nobre, P. & Nobre, C. A. Deforestation and climate change are projected to increase heat stress risk in the Brazilian Amazon. Commun. Earth Environ. 2, 1–8 (2021).
Périard, J. D., Racinais, S. & Sawka, M. N. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand. J. Med. Sci. Sports 25, 20–38 (2015).
Horowitz, M. Epigenetics and cytoprotection with heat acclimation. J. Appl. Physiol. 120, 702–710 (2016).
Laitano, O., Oki, K. & Charkoudian, N. Factors contributing to heat tolerance in humans and experimental models. Physiology 40, 37-45 (2025).
Pörtner, H.-O. et al. Annex II: glossary. in Climate Change 2022: Impacts, Adaptation and Vulnerability (Cambridge Univ. Press, 2022).
Lucas, R. A. I., Epstein, Y. & Kjellstrom, T. Excessive occupational heat exposure: a significant ergonomic challenge and health risk for current and future workers. Extrem. Physiol. Med. 3, 14 (2014).
Song, W., Ding, Q., Huang, M., Xie, X. & Li, X. Meta-analysis study on the effects of personal cooling strategies in reducing human heat stress: possible application to medical workers. J. Build. Eng. 85, 108685 (2024).
Bernhard, M. C. et al. Measuring personal heat exposure in an urban and rural environment. Environ. Res. 137, 410–418 (2015).
Biardeau, L. T., Davis, L. W., Gertler, P. & Wolfram, C. Heat exposure and global air conditioning. Nat. Sustain. 3, 25–28 (2020).
Foster, J. et al. An advanced empirical model for quantifying the impact of heat and climate change on human physical work capacity. Int. J. Biometeorol. 65, 1215–1229 (2021).
Ioannou, L. G. et al. Occupational heat strain in outdoor workers: a comprehensive review and meta-analysis. Temperature 9, 67–102 (2022).
Lowe, D., Ebi, K. L. & Forsberg, B. Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int. J. Environ. Res. Public Health 8, 4623–4648 (2011).
Vaidyanathan, A. et al. Assessment of extreme heat and hospitalizations to inform early warning systems. Proc. Natl Acad. Sci. USA 116, 5420–5427 (2019).
Berisha, V. et al. Assessing adaptation strategies for extreme heat: a public health evaluation of cooling centers in Maricopa County, Arizona. Weather Clim. Soc. 9, 71–80 (2017).
Kotharkar, R. & Ghosh, A. Progress in extreme heat management and warning systems: a systematic review of heat-health action plans (1995-2020). Sustain. Cities Soc. 76, 103487 (2022).
Benmarhnia, T., Schwarz, L., Nori-Sarma, A. & Bell, M. L. Quantifying the impact of changing the threshold of New York City heat emergency plan in reducing heat-related illnesses. Environ. Res. Lett. 14, 114006 (2019).
Hess, J. J. et al. Building resilience to climate change: pilot evaluation of the impact of India’s first heat action plan on all-cause mortality. J. Environ. Public Health 2018, 7973519 (2018).
Dwyer, I. J., Barry, S. J. E., Megiddo, I. & White, C. J. Evaluations of heat action plans for reducing the health impacts of extreme heat: methodological developments (2012–2021) and remaining challenges. Int. J. Biometeorol. 66, 1915–1927 (2022).
Stone, B. Jr. et al. Compound climate and infrastructure events: how electrical grid failure alters heat wave risk. Environ. Sci. Technol. 55, 6957–6964 (2021).
Nahlik, M. J. et al. Building thermal performance, extreme heat, and climate change. J. Infrastruct. Syst. 23, 04016043 (2017).
Kong, J., Zhao, Y., Carmeliet, J. & Lei, C. Urban heat island and its interaction with heatwaves: a review of studies on mesoscale. Sustainability 13, 10923 (2021).
Li, D. et al. Urban heat island: aerodynamics or imperviousness? Sci. Adv. 5, eaau4299 (2019).
Bowler, D. E., Buyung-Ali, L., Knight, T. M. & Pullin, A. S. Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc. Urban Plan. 97, 147–155 (2010).
Waite, M. et al. Global trends in urban electricity demands for cooling and heating. Energy 127, 786–802 (2017).
Takane, Y., Ohashi, Y., Grimmond, C. S. B., Hara, M. & Kikegawa, Y. Asian megacity heat stress under future climate scenarios: impact of air-conditioning feedback. Environ. Res. Commun. 2, 015004 (2020).
Santamouris, M. Cooling the buildings — past, present and future. Energy Build. 128, 617–638 (2016).
Every, D., McLennan, J., Osborn, E. & Cook, C. Experiences of heat stress while homeless on hot summer days in Adelaide. Aust. J. Emerg. Manag. 36, 55–61 (2021).
Kang, S., Pal, J. S. & Eltahir, E. A. B. Future heat stress during Muslim Pilgrimage (Hajj) projected to exceed “extreme danger” levels. Geophys. Res. Lett. 46, 10094–10100 (2019).
Matthews, T., Wilby, R. L. & Murphy, C. An emerging tropical cyclone–deadly heat compound hazard. Nat. Clim. Change 9, 602–606 (2019).
Xu, L. et al. Resilience of renewable power systems under climate risks. Nat. Rev. Electr. Eng. 1, 53–66 (2024).
Zhang, C. et al. Resilient cooling strategies — a critical review and qualitative assessment. Energy Build. 251, 111312 (2021).
Zhang, S. et al. The effect of afforestation on moist heat stress in Loess Plateau, China. J. Hydrol. Reg. Stud. 44, 101209 (2022).
Tabari, H. & Willems, P. Global risk assessment of compound hot-dry events in the context of future climate change and socioeconomic factors. npj Clim. Atmos. Sci. 6, 1–10 (2023).
Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).
Bernstein, D. N., Neelin, J. D., Li, Q. B. & Chen, D. Could aerosol emissions be used for regional heat wave mitigation? Atmos. Chem. Phys. 13, 6373–6390 (2013).
Persad, G. G. The dependence of aerosols’ global and local precipitation impacts on the emitting region. Atmos. Chem. Phys. 23, 3435–3452 (2023).
Siders, A. R., Hino, M. & Mach, K. J. The case for strategic and managed climate retreat. Science 365, 761–763 (2019).
Mueller, V., Gray, C. & Kosec, K. Heat stress increases long-term human migration in rural Pakistan. Nat. Clim. Change 4, 182–185 (2014).
Horton, R. M., de Sherbinin, A., Wrathall, D. & Oppenheimer, M. Assessing human habitability and migration. Science 372, 1279–1283 (2021).
Boas, I. et al. Climate migration myths. Nat. Clim. Change 9, 901–903 (2019).
Li, K., Zheng, F., Zhu, J. & Zeng, Q.-C. El Niño and the AMO sparked the astonishingly large margin of warming in the global mean surface temperature in 2023. Adv. Atmos. Sci. https://doi.org/10.1007/s00376-023-3371-4 (2024).
Chan, K. et al. Low-cost electronic sensors for environmental research: pitfalls and opportunities. Prog. Phys. Geogr. Earth Environ. 45, 305–338 (2021).
Fan, Y., Ding, X., Wu, J., Ge, J. & Li, Y. High spatial-resolution classification of urban surfaces using a deep learning method. Build. Environ. 200, 107949 (2021).
Woo, G. A counterfactual perspective on compound weather risk. Weather Clim. Extrem. 32, 100314 (2021).
Foster, J., Schillereff, D., Porter, J. J. & Matthews, T. Interdisciplinary collaboration needed to address the heat-health challenge in a warming climate. J. Appl. Physiol. 136, 1348–1349 (2024).
Vecellio, D. J. & Vanos, J. K. Aligning thermal physiology and biometeorological research for heat adaptation and resilience in a changing climate. J. Appl. Physiol. https://doi.org/10.1152/japplphysiol.00098.2024 (2024).
EM-DAT: the CRED/OFDA International Disaster Database. www.emdat.be (accessed 17 December 2024).
Heat. In Glossary of Meteorology (American Meteorological Society, 2012); http://glossary.ametsoc.org/wiki/heat.
Stoy, P. C., Roh, J. & Bromley, G. T. It’s the heat and the humidity: the complementary roles of temperature and specific humidity to recent changes in the energy content of the near-surface atmosphere. Geophys. Res. Lett. 49, e2021GL096628 (2022).
Cramer, M. N. & Jay, O. Partitional calorimetry. J. Appl. Physiol. 126, 267–277 (2019).
Brutsaert, W. On a derivable formula for long‐wave radiation from clear skies. Water Resour. Res. 11, 742–744 (1975).
Bouchama, A. & Knochel, J. P. Heat stroke. N. Engl. J. Med. 346, 1978–1988 (2002).
Sapareto, S. A., Hopwood, L. E., Dewey, W. C., Raju, M. R. & Gray, J. W. Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Cancer Res. 38, 393–400 (1978).
Acknowledgements
The authors thank Y.-C. Lu for the assistance in computing the extended heat index. G. Guzman Echavarria is also acknowledged for the help in accessing results from the PyHBB model. T.M. was supported by a UK Research and Innovation Future Leaders Fellowship (grant MR/X03450X/1). J.W.B. was supported by National Oceanic and Atmospheric Administration-Climate Program Office’s Modeling, Analysis, Predictions, and Projections Program, through funds from the Inflation Reduction Act Forward Looking Projections initiative (grant number NA23OAR4310599).
Author information
Authors and Affiliations
Contributions
All authors contributed to the discussion of the content and to writing and editing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Kristen Aunan, Yi Zhang and Larry Kenny for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Matthews, T., Raymond, C., Foster, J. et al. Mortality impacts of the most extreme heat events. Nat Rev Earth Environ 6, 193–210 (2025). https://doi.org/10.1038/s43017-024-00635-w
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s43017-024-00635-w
This article is cited by
-
A Global High-Resolution Comprehensive Heat Indices Dataset from 1950 to 2024
Scientific Data (2026)
-
Multi-metric insights on humid heatwaves in China: regional shifts and implications
Theoretical and Applied Climatology (2025)
-
Variability of urban heat extremes in the tropical city of Bhubaneswar
Acta Geophysica (2025)


